Tag Archives: Mark Schlueb

Faster diagnostics with nanoparticles and magnetic phenomenon discovered 170 years ago

A Jan. 19, 2017 news item on ScienceDaily announces some new research from the University of Central Florida (UCF),

A UCF researcher has combined cutting-edge nanoscience with a magnetic phenomenon discovered more than 170 years ago to create a method for speedy medical tests.

The discovery, if commercialized, could lead to faster test results for HIV, Lyme disease, syphilis, rotavirus and other infectious conditions.

“I see no reason why a variation of this technique couldn’t be in every hospital throughout the world,” said Shawn Putnam, an assistant professor in the University of Central Florida’s College of Engineering & Computer Science.

A Jan. 19, 2017 UCF news release by Mark Schlueb, which originated the news item,  provides more technical detail,

At the core of the research recently published in the academic journal Small are nanoparticles – tiny particles that are one-billionth of a meter. Putnam’s team coated nanoparticles with the antibody to BSA, or bovine serum albumin, which is commonly used as the basis of a variety of diagnostic tests.

By mixing the nanoparticles in a test solution – such as one used for a blood test – the BSA proteins preferentially bind with the antibodies that coat the nanoparticles, like a lock and key.

That reaction was already well known. But Putnam’s team came up with a novel way of measuring the quantity of proteins present. He used nanoparticles with an iron core and applied a magnetic field to the solution, causing the particles to align in a particular formation. As proteins bind to the antibody-coated particles, the rotation of the particles becomes sluggish, which is easy to detect with laser optics.

The interaction of a magnetic field and light is known as Faraday rotation, a principle discovered by scientist Michael Faraday in 1845. Putnam adapted it for biological use.

“It’s an old theory, but no one has actually applied this aspect of it,” he said.

Other antigens and their unique antibodies could be substituted for the BSA protein used in the research, allowing medical tests for a wide array of infectious diseases.

The proof of concept shows the method could be used to produce biochemical immunology test results in as little as 15 minutes, compared to several hours for ELISA, or enzyme-linked immunosorbent assay, which is currently a standard approach for biomolecule detection.

Here’s a link to and a citation for the paper,

High-Throughput, Protein-Targeted Biomolecular Detection Using Frequency-Domain Faraday Rotation Spectroscopy by Richard J. Murdock, Shawn A. Putnam, Soumen Das, Ankur Gupta, Elyse D. Z. Chase, and Sudipta Seal. Small DOI: 10.1002/smll.201602862 Version of Record online: 16 JAN 2017

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Solar-powered clothing

This research comes from the University of Central Florida (US) and includes a pop culture reference to the movie “Back to the Future.”  From a Nov. 14, 2016 news item on phys.org,

Marty McFly’s self-lacing Nikes in Back to the Future Part II inspired a UCF scientist who has developed filaments that harvest and store the sun’s energy—and can be woven into textiles.

The breakthrough would essentially turn jackets and other clothing into wearable, solar-powered batteries that never need to be plugged in. It could one day revolutionize wearable technology, helping everyone from soldiers who now carry heavy loads of batteries to a texting-addicted teen who could charge his smartphone by simply slipping it in a pocket.

A Nov. 14, 2016 University of Central Florida news release (also on EurekAlert) by Mark Schlueb, which originated the news item, expands on the theme,

“That movie was the motivation,” Associate Professor Jayan Thomas, a nanotechnology scientist at the University of Central Florida’s NanoScience Technology Center, said of the film released in 1989. “If you can develop self-charging clothes or textiles, you can realize those cinematic fantasies – that’s the cool thing.”

Thomas already has been lauded for earlier ground-breaking research. Last year, he received an R&D 100 Award – given to the top inventions of the year worldwide – for his development of a cable that can not only transmit energy like a normal cable but also store energy like a battery. He’s also working on semi-transparent solar cells that can be applied to windows, allowing some light to pass through while also harvesting solar power.

His new work builds on that research.

“The idea came to me: We make energy-storage devices and we make solar cells in the labs. Why not combine these two devices together?” Thomas said.

Thomas, who holds joint appointments in the College of Optics & Photonics and the Department of Materials Science & Engineering, set out to do just that.

Taking it further, he envisioned technology that could enable wearable tech. His research team developed filaments in the form of copper ribbons that are thin, flexible and lightweight. The ribbons have a solar cell on one side and energy-storing layers on the other.

Though more comfortable with advanced nanotechnology, Thomas and his team then bought a small, tabletop loom. After another UCF scientists taught them to use it, they wove the ribbons into a square of yarn.

The proof-of-concept shows that the filaments could be laced throughout jackets or other outwear to harvest and store energy to power phones, personal health sensors and other tech gadgets. It’s an advancement that overcomes the main shortcoming of solar cells: The energy they produce must flow into the power grid or be stored in a battery that limits their portability.

“A major application could be with our military,” Thomas said. “When you think about our soldiers in Iraq or Afghanistan, they’re walking in the sun. Some of them are carrying more than 30 pounds of batteries on their bodies. It is hard for the military to deliver batteries to these soldiers in this hostile environment. A garment like this can harvest and store energy at the same time if sunlight is available.”

There are a host of other potential uses, including electric cars that could generate and store energy whenever they’re in the sun.

“That’s the future. What we’ve done is demonstrate that it can be made,” Thomas said. “It’s going to be very useful for the general public and the military and many other applications.”

The proof-of-concept shows that the filaments could be laced throughout jackets or other outwear to harvest and store energy to power phones, personal health sensors and other tech gadgets. It's an advancement that overcomes the main shortcoming of solar cells: the energy they produce must flow into the power grid or be stored in a battery that limits their portability. Credit: UCF Read more at: http://phys.org/news/2016-11-future-solar-nanotech-powered.html#jCp

The proof-of-concept shows that the filaments could be laced throughout jackets or other outwear to harvest and store energy to power phones, personal health sensors and other tech gadgets. It’s an advancement that overcomes the main shortcoming of solar cells: the energy they produce must flow into the power grid or be stored in a battery that limits their portability. Credit: UCF

Here’s a link to and a citation for the paper,

Wearable energy-smart ribbons for synchronous energy harvest and storage by Chao Li, Md. Monirul Islam, Julian Moore, Joseph Sleppy, Caleb Morrison, Konstantin Konstantinov, Shi Xue Dou, Chait Renduchintala, & Jayan Thomas. Nature Communications 7, Article number: 13319 (2016)  doi:10.1038/ncomms13319 Published online: 11 November 2016

This paper is open access.

Dexter Johnson in a Nov. 15, 2016 posting on his blog Nanoclast on the IEEE (Institute of Electrical and Electronics Engineers) provides context for this research and, in this excerpt, more insight from the researcher,

In a telephone interview with IEEE Spectrum, Thomas did concede that at this point, the supercapacitor was not capable of storing enough energy to replace the batteries entirely, but could be used to make a hybrid battery that would certainly reduce the load a soldier carries.

Thomas added: “By combining a few sets of ribbons (2-3 ribbons) in parallel and connecting these sets (3-4) in a series, it’s possible to provide enough power to operate a radio for 10 minutes. …

For anyone interested in knowing more about how this research fits into the field of textiles that harvest energy, I recommend reading Dexter’s piece.

New $1 test for early stage prostate cancer more sensitive and exact than standard tests

An April 5, 2015 news item on Nanotechnology Now describes an exciting development in testing for cancer,

The simple test developed by University of Central Florida scientist Qun “Treen” Huo holds the promise of earlier detection of one of the deadliest cancers among men. It would also reduce the number of unnecessary and invasive biopsies stemming from the less precise PSA test that’s now used.

“It’s fantastic,” said Dr. Inoel Rivera, a urologic oncologist at Florida Hospital Cancer Institute, which collaborated with Huo on the recent pilot studies. “It’s a simple test. It’s much better than the test we have right now, which is the PSA, and it’s cost-effective.”

An April 3, 2015 University of Central Florida (UCF) news release by Mark Schlueb (also on EurekAlert), which originated the news item, describes the test in more detail,

When a cancerous tumor begins to develop, the body mobilizes to produce antibodies. Huo’s test detects that immune response using gold nanoparticles about 10,000 times smaller than a freckle.

When a few drops of blood serum from a finger prick are mixed with the gold nanoparticles, certain cancer biomarkers cling to the surface of the tiny particles, increasing their size and causing them to clump together.

Among researchers, gold nanoparticles are known for their extraordinary efficiency at absorbing and scattering light. Huo and her team at UCF’s NanoScience Technology Center developed a technique known as nanoparticle-enabled dynamic light scattering assay (NanoDLSay) to measure the size of the particles by analyzing the light they throw off. That size reveals whether a patient has prostate cancer and how advanced it may be.

And although it uses gold, the test is cheap. A small bottle of nanoparticles suspended in water costs about $250, and contains enough for about 2,500 tests.

“What’s different and unique about our technique is it’s a very simple process, and the material required for the test is less than $1,” Huo said. “And because it’s low-cost, we’re hoping most people can have this test in their doctor’s office. If we can catch this cancer in its early stages, the impact is going to be big.”

After lung cancer, prostate cancer is the second-leading killer cancer among men, with more than 240,000 new diagnoses and 28,000 deaths every year. The most commonly used screening tool is the PSA, but it produces so many false-positive results – leading to painful biopsies and extreme treatments – that one of its discoverers recently called it “hardly more effective than a coin toss.”

Pilot studies found Huo’s technique is significantly more exact. The test determines with 90 to 95 percent confidence that the result is not false-positive. When it comes to false-negatives, there is 50 percent confidence – not ideal, but still significantly higher than the PSA’s 20 percent – and Huo is working to improve that number.

The results of the pilot studies were published recently in ACS Applied Materials & Interfaces. Huo is also scheduled to present her findings in June at the TechConnect World Innovation Summit & Expo in suburban Washington, D.C.

Huo’s team is pursuing more extensive clinical validation studies with Florida Hospital and others, including the VA Medical Center Orlando. She hopes to complete major clinical trials and see the test being used by physicians in two to three years.

Huo also is researching her technique’s effectiveness as a screening tool for other tumors.

“Potentially, we could have a universal screening test for cancer,” she said. “Our vision is to develop an array of blood tests for early detection and diagnosis of all major cancer types, and these blood tests are all based on the same technique and same procedure.”

Huo co-founded Nano Discovery Inc., a startup company headquartered in a UCF Business Incubator, to commercialize the new diagnostic test. The company manufacturers a test device specifically for medical research and diagnostic purposes.

Here’s a link to and a citation for the study,

Gold Nanoparticle-Enabled Blood Test for Early Stage Cancer Detection and Risk Assessment by Tianyu Zheng, Nickisha Pierre-Pierre, Xin Yan, Qun Huo, Alvin J.O. Almodovar, Felipe Valerio, Inoel Rivera-Ramirez, Elizabeth Griffith, David D. Decker, Sixue Chen, and Ning Zhu. ACS Appl. Mater. Interfaces, 2015, 7 (12), pp 6819–6827 DOI: 10.1021/acsami.5b00371

Publication Date (Web): March 10, 2015

This paper is behind a paywall.

You can find out more about Huo’s company, Nano Discovery Inc. here.

Citrus canker, Florida, and Zinkicide

Found in Florida orchards in 2005, a citrus canker, citrus greening, poses a serious threat to the US state’s fruit industry. An April 2, 2105 news item on phys.org describes a possible solution to the problem,

Since it was discovered in South Florida in 2005, the plague of citrus greening has spread to nearly every grove in the state, stoking fears among growers that the $10.7 billion-a-year industry may someday disappear.

Now the U.S. Department of Agriculture has awarded the University of Florida a $4.6 million grant aimed at testing a potential new weapon in the fight against citrus greening: Zinkicide, a bactericide invented by a nanoparticle researcher at the University of Central Florida.

An April 2, 2015 University of Central Florida news release by Mark Schlueb (also on EurekAlert), which originated the news item, describes the problem and the solution (Zinkicide),

Citrus greening – also known by its Chinese name, Huanglongbing, or HLB – causes orange, grapefruit and other citrus trees to produce small, bitter fruit that drop prematurely and is unsuitable for sale or juice. Eventually, infected trees die. Florida has lost tens of thousands of acres to the disease.

“It’s a hundred-year-old disease, but to date there is no cure. It’s a killer, a true killer for the citrus industry,” said Swadeshmukul Santra, associate professor in the NanoScience Technology Center at UCF.

The bacteria that causes HLB is carried by the Asian citrus psyllid, a tiny insect that  feeds on leaves and stems of infected citrus trees, then carries the bacteria to healthy trees.

Zinkicide, developed by Santra, is designed to kill the bacteria.

The $4.6 million grant is the largest of five totaling $23 million that were recently announced by the USDA’s National Institute of Food and Agriculture.

The evaluation of Zinkicide is a multi-institute project involving 13 investigators from six institutions. Evan Johnson of UF’s [University of Florida] Citrus Research and Education Center at Lake Alfred is the project director, and there are a dozen co-principal investigators from UF, UCF, Oak Ridge National Laboratory (ORNL), Auburn University, New Mexico State University and The Ohio State University.

”Managing systemic diseases like HLB is a difficult challenge that has faced plant pathologists for many years,” said Johnson “It is a privilege to work with an excellent team of researchers from many different disciplines with the goal of developing new tools that are both effective and safe.”

A portion of the grant money, $1.4 million, flows to UCF, where Santra leads a team that also includes Andre Gesquiere, Laurene Tetard and the Oak Ridge National Laboratory collaborator, Loukas Petridis.

HLB control is difficult because current bactericidal sprays, such as copper, simply leave a protective film on the outside of a plant. The insect-transmitted bacteria bypasses that barrier and lives inside a tree’s fruit, stems and roots, in the vascular tissue known as the phloem. There, it deprives the tree of carbohydrate and nutrients, causing root loss and ultimately death. For a bactericide to be effective against HLB, it must be able to move within the plant, too.

Zinkicide is a nanoparticle smaller than a single microscopic cell, and researchers are cautiously optimistic it will be able to move systemically from cell to cell to kill the bacteria that cause HLB.

“The bacteria hide inside the plant in the phloem region,” Santra said. “If you spray and your compound doesn’t travel to the phloem region, then you cannot treat HLB.”

Zinkicide is derived from ingredients which are found in plants, and is designed to break down and be metabolized after its job is done. [emphasis mine]

It’s the first step in a years-long process to bring a treatment to market. UF will lead five years of greenhouse and field trials on grapefruit and sweet orange to determine the effectiveness of Zinkicide and the best method and timing of application.

The project also includes research to study where the nanoparticles travel within the plant, understand how they interact with plant tissue and how long they remain before breaking down. [emphasis mine]

If effective, the bactericide could have a substantial role in combatting HLB in Florida, and in other citrus-producing states and countries. It would also likely be useful for control of other bacterial pathogens infecting other crops.

The Zinkicide project builds as a spinoff from previous collaborations between Santra and UF’s Jim Graham, at the Citrus Research and Education Center to develop alternatives to copper for citrus canker control.

The previous Citrus Research and Education Foundation (CRDF)-funded Zinkicide project has issued three reports, for June 30, 2014, Sept. 30, 2014, and Dec. 31, 2014. This project’s completion date is May 2015. The reports which are remarkably succinct, consisting of two paragraphs, can be found here.

Oddly, the UCF news release doesn’t mention that Zinkicide (although it can be inferred) is a zinc particulate (I’m guessing they mean zinc nanoparticle) as noted on the CRDF project webpage. Happily, they are researching what happens after the bactericide has done its work on the infection. It’s good to see a life cycle approach to this research.