Tag Archives: Martin Wegener

Medieval chain mail inspires physicists

A Feb. 9, 2017 news item on Nanowerk describes new research at the Karlsruhe Institute of Technology (KIT), which takes its inspiration from medieval chain mail,

The Middle Ages certainly were far from being science-friendly: Whoever looked for new findings off the beaten track faced the threat of being burned at the stake. Hence, the contribution of this era to technical progress is deemed to be rather small. Scientists of Karlsruhe Institute of Technology (KIT), however, were inspired by medieval mail armor when producing a new metamaterial with novel properties. They succeeded in reversing the Hall coefficient of a material.

The Hall effect is the occurrence of a transverse electric voltage across an electric conductor passed by current flow, if this conductor is located in a magnetic field. This effect is a basic phenomenon of physics and allows to measure [sic] the strength of magnetic fields. It is the basis of magnetic speed sensors in cars or compasses in smartphones. Apart from measuring magnetic fields, the Hall effect can also be used to characterize metals and semiconductors and in particular to determine charge carrier density of the material. The sign of the measured Hall voltage allows conclusions to be drawn as to whether charge carriers in the semiconductor element carry positive or negative charge.

The ring structure of the metamaterial was inspired by mail armor of medieval knights. (Photo: KIT)

A Feb. ?, 2017 KIT press release (also on EurekAlert), which originated the news item, expands on the theme,

Mathematicians already predicted theoretically that it is possible to reverse the Hall coefficient of a material (such as gold or silicon), i.e. to reverse its sign. This was expected to be achieved by a three-dimensional ring structure resembling medieval mail armor. How-ever, this was considered difficult, as the ring mesh of millionths of a meter in size would have to be composed of three different components.

 

Die Ringstruktur des Metamaterials wurde von Kettenhemden aus der Ritterzeit inspiriert. (Bild: KIT)
The ring mesh of millionths of a meter in size. (Photo: KIT)

Christian Kern, Muamer Kadic, and Martin Wegener of KIT’s Institute of Applied Physics now found that a single basic material is sufficient, provided that the ring structure chosen follows a certain geometric arrangement. First, they produced polymer scaffolds with a highest-resolution 3D printer. Then, they coated these scaffolds with semiconducting zinc oxide.

The result of the experiment: The scientists can produce meta-materials with a positive coefficient, even though their components have negative coefficients. This sounds a bit like the philosopher’s stone, the formula, by means of which medieval alchemists tried to convert one substance into another. But here, no conversion takes place. “The charge carriers in the metamaterial remain negatively charged electrons,” Christian Kern explains. “Hall measurements only make them appear positively charged, as the structure forces them to take detours.”

Kern admits that this discovery so far is of no practical use. There are sufficient solids with both negative and positive Hall coefficients. But Kern wants to continue research. The next step will be the production of anisotropic structures with a Hall voltage in the direction of the magnetic field. Normally, Hall voltage is directed vertically to current and magnetic fields. Such unconventional materials might be applied in novel sensors for the direct measurement of magnetic field eddies.

The researchers do not seem to have published a paper about this work.

Invisibility cloak effective in fog and milk

It’s an intriguing notion, an invisibility cloak that’s effective in milk and I suspect that I’ve never entirely understood the implications of the research featured in a June 6, 2014 news item on Nanowerk,

Real invisibility cloaks are rather complex and work in certain situations only. The laws of physics prevent an optical invisibility cloak from making objects in air invisible for any directions, colors, and polarizations. If the medium is changed, however, it becomes much easier to hide objects. KIT physicists have now succeeded in manufacturing with relatively simple means and testing an ideal invisibility cloak for diffusive light-scattering media, such as fog or milk. …

A June 6, 2014 Karlsruhe Institute of Technology (KIT) press release, which originated the news item, provides more details,

In diffusive media, light does no longer propagate linearly, but is scattered permanently by the particles in the medium. Examples are fog, clouds, or frosted glass panes that let the light in, but hide the light source. “This property of light-scattering media can be used to hide objects inside,” says Robert Schittny, first author of the study. “The new invisibility cloaks have a rather simple structure.”

In the experiment, Schittny used an extended light source to illuminate a Plexiglas tank of a few centimeters in width from the back. The tank was filled with a white, turbid liquid. Objects inside cast a visible shadow onto the tank wall. Simple metal cylinders or spheres of a few centimeters in diameter were used as test objects. To hide them, they were first coated with a white dispersion paint, such that the light was reflected in a diffusive manner. To pass the light around the object, the researchers applied a thin shell made of the transparent silicon material PDMS, to which a certain concentration of light-scattering melamine microparticles was added. The silicon/melamine shell caused a quicker diffusion than in the environment and, thus, passed the light around the objects. Hence, they did no longer cast a shadow. “Disappearance of the shadow indicates successful cloaking.”

“Ideal optical invisibility cloaks in air have a drawback,” Martin Wegener points out. He conducts research at the KIT Institute of Applied Physics and the KIT Institute of Nanotechnology. “They violate Albert Einstein’s theory of relativity that prescribes an upper limit for the speed of light. “In diffuse media, in which light is scattered several times, however, the effective speed of light is reduced. Here, ideal invisibility cloaks can be realized.”

The researchers have provided this image to illustrate their work,

In a diffusive light-scattering medium, light moves on random paths (see magnifying glass). A normal object (left) casts a shadow, an object with an invisibility cloak (right) does not. (Image: R. Schittny / KIT)

In a diffusive light-scattering medium, light moves on random paths (see magnifying glass). A normal object (left) casts a shadow, an object with an invisibility cloak (right) does not. (Image: R. Schittny / KIT)

I’m not convinced that there’s actually a cloaked object in that image but I appreciate the call to use my imagination.

Here’s a link to and a citation for the paper,

Invisibility cloaking in a diffusive light scattering medium by Robert Schittny, Muamer Kadic, Tiemo Bückmann, and Martin Wegener. Science DOI: 10.1126/science.1254524 Published Online June 5 2014

This article is behind a paywall.