Tag Archives: Matt Shipman

The science of the Avengers: Age of Ultron

The American Chemical Society (ACS) has produced a video (almost 4 mins.) in their Reactions Science Video Series of podcasts focusing on the Avengers, super heroes, as portrayed in Avengers: Age of Ultron and science. From an April 29, 2015 ACS news release on EurekAlert,

Science fans, assemble! On May 1, the world’s top superhero team is back to save the day in “Avengers: Age of Ultron.” This week, Reactions looks at the chemistry behind these iconic heroes’ gear and superpowers, including Tony Stark’s suit, Captain America’s shield and more.

Here’s the video,


While the chemists are interested in the metal alloys, there is more ‘super hero science’ writing out there. Given my interests, I found the ‘Captain America’s shield as supercapacitor theory’ as described in Matt Shipman’s April 15, 2014 post on The Abstract (North Carolina State University’s official newsroom blog quite interesting. I featured Shipman’s ‘super hero and science’ series of posts in my April 28, 2014 posting.

Captain America, Wolverine, Iron Man, and Thor on The Abstract, North Carolina State University’s news blog

Captain America’s shield as a supercapacitor? Intriguing, oui? Thank you to Matt Shipman and his April 15, 2014 post on The Abstract (North Carolina State University’s official newsroom blog, [h/t phys.org]) for presenting a very intriguing exploration of the science to be found in comic books and, now, the movies,

Image from Captain America By Ed Brubaker Vol. 2 Premiere HC (2011 – Present). Release Date: February 21, 2012. Image credit: Marvel.com

Image from Captain America By Ed Brubaker Vol. 2 Premiere HC (2011 – Present).
Release Date: February 21, 2012. Image credit: Marvel.com
Courtesy: NCSU

I have a new appreciation for Captain America (never one of my favourite super heroes). From Shipman’s April 15, 2014 posting on The Abstract (Note: Links have been removed),

It’s tough to explain how the shield works, in part because it behaves differently under different circumstances. Sometimes the shield is thrown and becomes embedded in a wall; but sometimes it bounces off of walls, ricocheting wildly. Sometimes the shield seems to easily absorb tremendous force; but sometimes it is damaged by the attacks of Cap’s most powerful foes.

“However, from a scientific perspective, it’s important to remember that we’re talking about the first law of thermodynamics,” says Suveen Mathaudhu, a program manager in the materials science division of the U.S. Army Research Office, adjunct materials science professor at NC State University and hardcore comics fan. “Energy is conserved. It doesn’t disappear, it just changes form.

“When enormous energy, such as a blow from Thor’s hammer, strikes Cap’s shield, that energy needs to go somewhere.”

Normally, that energy would need to be either stored or converted into heat or sound. But comic-book readers and moviegoers know that Cap’s shield usually doesn’t give off waves of heat or roaring shrieks (that shockwave from Thor’s hammer in The Avengers film notwithstanding).

“That absence of heat and sound means that the energy has to be absorbed somehow; the atomic bonds in the shield – which is made of vibranium – must be able to store that energy in some form,” Mathaudhu says.

Mathaudhu, later in the posting, describes the shield’s qualities as a supercapacitor. (For more information about supercapacitors, you can look at my April 9, 2014 posting.)

Shipman’s piece appears to be part of a series featuring Wolverine, Iron Man, and Thor, which you can access by scrolling past the end of the Captain America posting (April 15, 2014 post), where you will also find at least one comment, which is worth checking out.