Tag Archives: Megan Fellman

Make electricity by flowing water over nanolayers of metal

Scientists at Northwestern University (Chicago, Illinois) and the California Institute of Technology (CalTech) have developed what could be a more sustainable way to produce electricity. From a July 31, 2019 news item on Nanowerk,

Scientists from Northwestern University and Caltech have produced electricity by simply flowing water over extremely thin layers of inexpensive metals, including iron, that have oxidized. These films represent an entirely new way of generating electricity and could be used to develop new forms of sustainable power production.

A July 31, 2019 Northwester University news release (also on EurekAlert) by Megan Fellman, which originated the news item, provides details that suggest this discovery could prove beneficial in medical implants, as well as, in solar cells,

The films have a conducting metal nanolayer (10 to 20 nanometers thick) that is insulated with an oxide layer (2 nanometers thick). Current is generated when pulses of rainwater and ocean water alternate and move across the nanolayers. The difference in salinity drags the electrons along in the metal below.

“It’s the oxide layer over the nanometal that really makes this device go,” said Franz M. Geiger, the Dow Professor of Chemistry in Northwestern’s Weinberg College of Arts and Sciences. “Instead of corrosion, the presence of the oxides on the right metals leads to a mechanism that shuttles electrons.”

The films are transparent, a feature that could be taken advantage of in solar cells. The researchers intend to study the method using other ionic liquids, including blood. Developments in this area could lead to use in stents and other implantable devices.

“The ease of scaling up the metal nanolayer to large areas and the ease with which plastics can be coated gets us to three-dimensional structures where large volumes of liquids can be used,” Geiger said. “Foldable designs that fit, for instance, into a backpack are a possibility as well. Given how transparent the films are, it’s exciting to think about coupling the metal nanolayers to a solar cell or coating the outside of building windows with metal nanolayers to obtain energy when it rains.”

The study, titled “Energy Conversion via Metal Nanolayers,” was published this week [on July 29, 2019] in the journal Proceedings of the National Academy of Sciences (PNAS).

Geiger is the study’s corresponding author; his Northwestern team conducted the experiments. Co-author Thomas Miller, professor of chemistry at Caltech, led a team that conducted atomistic simulations to study the device’s behavior at the atomic level.

The new method produces voltages and currents comparable to graphene-based devices reported to have efficiencies of around 30% — similar to other approaches under investigation (carbon nanotubes and graphene) but with a single-step fabrication from earth-abundant elements instead of multistep fabrication. This simplicity allows for scalability, rapid implementation and low cost. Northwestern has filed for a provisional patent.

Of the metals studied, the researchers found that iron, nickel and vanadium worked best. They tested a pure rust sample as a control experiment; it did not produce a current.

The mechanism behind the electricity generation is complex, involving ion adsorption and desorption, but it essentially works like this: The ions present in the rainwater/saltwater attract electrons in the metal beneath the oxide layer; as the water flows, so do those ions, and through that attractive force, they drag the electrons in the metal along with them, generating an electrical current.

“There are interesting prospects for a variety of energy and sustainability applications, but the real value is the new mechanism of oxide-metal electron transfer,” Geiger said. “The underlying mechanism appears to involve various oxidation states.”

The team used a process called physical vapor deposition (PVD), which turns normally solid materials into a vapor that condenses on a desired surface. PVD allowed them to deposit onto glass metal layers only 10 to 20 nanometers thick. An oxide layer then forms spontaneously in air. It grows to a thickness of 2 nanometers and then stops growing.

“Thicker films of metal don’t succeed — it’s a nano-confinement effect,” Geiger said. “We have discovered the sweet spot.”

When tested, the devices generated several tens of millivolts and several microamps per centimeter squared.

“For perspective, plates having an area of 10 square meters each would generate a few kilowatts per hour — enough for a standard U.S. home,” Miller said. “Of course, less demanding applications, including low-power devices in remote locations, are more promising in the near term.”

Here’s a link to and a citation for the paper,

Energy conversion via metal nanolayers by Mavis D. Boamah, Emilie H. Lozier, Jeongmin Kim, Paul E. Ohno, Catherine E. Walker, Thomas F. Miller III, and Franz M. Geiger. PNAS DOI: https://doi.org/10.1073/pnas.1906601116 First published July 29, 2019

This paper is behind a paywall.

How do nanoparticles interact with the environment and with humans over time?

I meant to get this piece published sooner but good intentions don’t get you far.

At Northwestern University, scientists have researched the impact engineered nanoparticles (ENPs) might have as they enter the food chain. An October 18, 2019 Northwestern University news release (also on EurekAlert) by Megan Fellman describes research on an investigation of ENPs and their interaction with living organisms,

Personal electronic devices — smartphones, computers, TVs, tablets, screens of all kinds — are a significant and growing source of the world’s electronic waste. Many of these products use nanomaterials, but little is known about how these modern materials and their tiny particles interact with the environment and living things.

Now a research team of Northwestern University chemists and colleagues from the national Center for Sustainable Nanotechnology has discovered that when certain coated nanoparticles interact with living organisms it results in new properties that cause the nanoparticles to become sticky. Fragmented lipid coronas form on the particles, causing them to stick together and grow into long kelp-like strands. Nanoparticles with 5-nanometer diameters form long structures that are microns in size in solution. The impact on cells is not known.

“Why not make a particle that is benign from the beginning?” said Franz M. Geiger, professor of chemistry in Northwestern’s Weinberg College of Arts and Sciences. He led the Northwestern portion of the research.

“This study provides insight into the molecular mechanisms by which nanoparticles interact with biological systems,” Geiger said. “This may help us understand and predict why some nanomaterial/ligand coating combinations are detrimental to cellular organisms while others are not. We can use this to engineer nanoparticles that are benign by design.”

Using experiments and computer simulations, the research team studied how gold nanoparticles wrapped in strings having positively charged beads interact with a variety of bilayer membrane models. The researchers found that a nearly circular layer of lipids forms spontaneously around the particles. Formation of these “fragmented lipid coronas” have never been seen before to form from membranes.

The study points to solving problems with chemistry. Scientists can use the findings to design a better ligand coating for nanoparticles that avoids the ammonium-phosphate interaction, which causes the aggregation. (Ligands are used in nanomaterials for layering.)

The results will be published Oct. 18 [2018] in the journal Chem.

Geiger is the study’s corresponding author. Other authors include scientists from the Center for Sustainable Nanotechnology’s other institutional partners. Based at the University of Wisconsin-Madison, the center studies engineered nanomaterials and their interaction with the environment, including biological systems — both the negative and positive aspects.

“The nanoparticles pick up parts of the lipid cellular membrane like a snowball rolling in a snowfield, and they become sticky,” Geiger said. “This unintended effect happens because of the presence of the nanoparticle. It can bring lipids to places in cells where lipids are not meant to be.”

The experiments were conducted in idealized laboratory settings that nevertheless are relevant to environments found during the late summer in a landfill — at 21-22 degrees Celsius and a couple feet below ground, where soil and groundwater mix and the food chain begins.

By pairing spectroscopic and imaging experiments with atomistic and coarse-grain simulations, the researchers identified that ion pairing between the lipid head groups of biological membranes and the polycations’ ammonium groups in the nanoparticle wrapping leads to the formation of fragmented lipid coronas. These coronas engender new properties, including composition and stickiness, to the particles with diameters below 10 nanometers.

The study’s insights help predict the impact that the increasingly widespread use of engineered nanomaterials has on the nanoparticles’ fate once they enter the food chain, which many of them may eventually do.

“New technologies and mass consumer products are emerging that feature nanomaterials as critical operational components,” Geiger said. “We can upend the existing paradigm in nanomaterial production towards one in which companies design nanomaterials to be sustainable from the beginning, as opposed to risking expensive product recalls — or worse — down the road.” [emphases mine]

Here’s an image illustrating the work,

Caption: This is a computer simulation of a lipid corona around a 5-nanometer nanoparticle showing ammonium-phosphate ion pairing. Credit: Northwestern University

The curious can find the paper here,

Lipid Corona Formation from Nanoparticle Interactions with Bilayers by Laura L. Olenick, Julianne M. Troiano, Ariane Vartanian, Eric S. Melby, Arielle C. Mensch, Leili Zhang, Jiewei Hong, Oluwaseun Mesele, Tian Qiu, Jared Bozich, Samuel Lohse, Xi Zhang, Thomas R. Kuech, Augusto Millevolte, Ian Gunsolus, Alicia C. McGeachy, Merve Doğangün, Tianzhe Li, Dehong Hu, Stephanie R. Walter, Aurash Mohaimani, Angela Schmoldt, Marco D. Torelli, Katherine R. Hurley, Joe Dalluge, Gene Chong, Z. Vivian Feng, Christy L. Haynes, Robert J. Hamers, Joel A. Pedersen, Qiang Cui, Rigoberto Hernandez, Rebecca Klaper, Galya Orr, Catherine J. Murphy, Franz M. Geiger. Chem Volume 4, ISSUE 11, P2709-2723, November 08, 2018 DOI:https://doi.org/10.1016/j.chempr.2018.09.018 Published:October 18, 2018

This paper is behind a paywall.

Cloaking devices made from DNA and gold nanoparticles using top-down lithography

This new technique seems promising but there’ve been a lot of ‘cloaking’ devices announced in the years I’ve been blogging and, in all likelihood, I was late to the party so I’m exercising a little caution before getting too excited. For the latest development in cloaking devices, there’s a January 18, 2018 news item on Nanowerk,

Northwestern University researchers have developed a first-of-its-kind technique for creating entirely new classes of optical materials and devices that could lead to light bending and cloaking devices — news to make the ears of Star Trek’s Spock perk up.

Using DNA [deoxyribonucleic acid] as a key tool, the interdisciplinary team took gold nanoparticles of different sizes and shapes and arranged them in two and three dimensions to form optically active superlattices. Structures with specific configurations could be programmed through choice of particle type and both DNA-pattern and sequence to exhibit almost any color across the visible spectrum, the scientists report.

A January 18, 2018 Northwestern University news release (also on EurekAlert) by Megan Fellman, which originated the news item, delves into more detail (Note: Links have been removed),

“Architecture is everything when designing new materials, and we now have a new way to precisely control particle architectures over large areas,” said Chad A. Mirkin, the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences at Northwestern. “Chemists and physicists will be able to build an almost infinite number of new structures with all sorts of interesting properties. These structures cannot be made by any known technique.”

The technique combines an old fabrication method — top-down lithography, the same method used to make computer chips — with a new one — programmable self-assembly driven by DNA. The Northwestern team is the first to combine the two to achieve individual particle control in three dimensions.

The study was published online by the journal Science today (Jan. 18). Mirkin and Vinayak P. Dravid and Koray Aydin, both professors in Northwestern’s McCormick School of Engineering, are co-corresponding authors.

Scientists will be able to use the powerful and flexible technique to build metamaterials — materials not found in nature — for a range of applications including sensors for medical and environmental uses.

The researchers used a combination of numerical simulations and optical spectroscopy techniques to identify particular nanoparticle superlattices that absorb specific wavelengths of visible light. The DNA-modified nanoparticles — gold in this case — are positioned on a pre-patterned template made of complementary DNA. Stacks of structures can be made by introducing a second and then a third DNA-modified particle with DNA that is complementary to the subsequent layers.

In addition to being unusual architectures, these materials are stimuli-responsive: the DNA strands that hold them together change in length when exposed to new environments, such as solutions of ethanol that vary in concentration. The change in DNA length, the researchers found, resulted in a change of color from black to red to green, providing extreme tunability of optical properties.

“Tuning the optical properties of metamaterials is a significant challenge, and our study achieves one of the highest tunability ranges achieved to date in optical metamaterials,” said Aydin, assistant professor of electrical engineering and computer science at McCormick.

“Our novel metamaterial platform — enabled by precise and extreme control of gold nanoparticle shape, size and spacing — holds significant promise for next-generation optical metamaterials and metasurfaces,” Aydin said.

The study describes a new way to organize nanoparticles in two and three dimensions. The researchers used lithography methods to drill tiny holes — only one nanoparticle wide — in a polymer resist, creating “landing pads” for nanoparticle components modified with strands of DNA. The landing pads are essential, Mirkin said, since they keep the structures that are grown vertical.

The nanoscopic landing pads are modified with one sequence of DNA, and the gold nanoparticles are modified with complementary DNA. By alternating nanoparticles with complementary DNA, the researchers built nanoparticle stacks with tremendous positional control and over a large area. The particles can be different sizes and shapes (spheres, cubes and disks, for example).

“This approach can be used to build periodic lattices from optically active particles, such as gold, silver and any other material that can be modified with DNA, with extraordinary nanoscale precision,” said Mirkin, director of Northwestern’s International Institute for Nanotechnology.

Mirkin also is a professor of medicine at Northwestern University Feinberg School of Medicine and professor of chemical and biological engineering, biomedical engineering and materials science and engineering in the McCormick School.

The success of the reported DNA programmable assembly required expertise with hybrid (soft-hard) materials and exquisite nanopatterning and lithographic capabilities to achieve the requisite spatial resolution, definition and fidelity across large substrate areas. The project team turned to Dravid, a longtime collaborator of Mirkin’s who specializes in nanopatterning, advanced microscopy and characterization of soft, hard and hybrid nanostructures.

Dravid contributed his expertise and assisted in designing the nanopatterning and lithography strategy and the associated characterization of the new exotic structures. He is the Abraham Harris Professor of Materials Science and Engineering in McCormick and the founding director of the NUANCE center, which houses the advanced patterning, lithography and characterization used in the DNA-programmed structures.

Here’s a link to and a citation for the paper,

Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly by Qing-Yuan Lin, Jarad A. Mason, Zhongyang, Wenjie Zhou, Matthew N. O’Brien, Keith A. Brown, Matthew R. Jones, Serkan Butun, Byeongdu Lee, Vinayak P. Dravid, Koray Aydin, Chad A. Mirkin. Science 18 Jan 2018: eaaq0591 DOI: 10.1126/science.aaq0591

This paper is behind a paywall.

As noted earlier, it could be a while before cloaking devices are made available. In the meantime, you may find this image inspiring,

Caption: Northwestern University researchers have developed a new method to precisely arrange nanoparticles of different sizes and shapes in two and three dimensions, resulting in optically active superlattices. Credit: Northwestern University

Colliding organic nanoparticles caught on camera for the first time

There is high excitement about this development in a November 17, 2017 news item on Nanowerk,

A Northwestern University research team is the first to capture on video organic nanoparticles colliding and fusing together. This unprecedented view of “chemistry in motion” will aid Northwestern nanoscientists developing new drug delivery methods as well as demonstrate to researchers around the globe how an emerging imaging technique opens a new window on a very tiny world.

A November 17, 2017 Northwestern University news release (also on EurekAlert) by Megan Fellman, which originated the news item, further illuminates the matter,

This is a rare example of particles in motion. The dynamics are reminiscent of two bubbles coming together and merging into one: first they join and have a membrane between them, but then they fuse and become one larger bubble.

“I had an image in my mind, but the first time I saw these fusing nanoparticles in black and white was amazing,” said professor Nathan C. Gianneschi, who led the interdisciplinary study and works at the intersection of nanotechnology and biomedicine.

“To me, it’s literally a window opening up to this world you have always known was there, but now you’ve finally got an image of it. I liken it to the first time I saw Jupiter’s moons through a telescope. Nothing compares to actually seeing,” he said.

Gianneschi is the Jacob and Rosaline Cohn Professor in the department of chemistry in the Weinberg College of Arts and Sciences and in the departments of materials science and engineering and of biomedical engineering in the McCormick School of Engineering.

The study, which includes videos of different nanoparticle fusion events, was published today (Nov. 1 [2017]7) by the Journal of the American Chemical Society.

The research team used liquid-cell transmission electron microscopy to directly image how polymer-based nanoparticles, or micelles, that Gianneschi’s lab is developing for treating cancer and heart attacks change over time. The powerful new technique enabled the scientists to directly observe the particles’ transformation and characterize their dynamics.

“We can see on the molecular level how the polymeric matter rearranges when the particles fuse into one object,” said Lucas R. Parent, first author of the paper and a National Institutes of Health Postdoctoral Fellow in Gianneschi’s research group. “This is the first study of many to come in which researchers will use this method to look at all kinds of dynamic phenomena in organic materials systems on the nanoscale.”

In the Northwestern study, organic particles in water bounce off each other, and some collide and merge, undergoing a physical transformation. The researchers capture the action by shining an electron beam through the sample. The tiny particles — the largest are only approximately 200 nanometers in diameter — cast shadows that are captured directly by a camera below.

“We’ve observed classical fusion behavior on the nanoscale,” said Gianneschi, a member of Northwestern’s International Institute for Nanotechnology. “Capturing the fundamental growth and evolution processes of these particles in motion will help us immensely in our work with synthetic materials and their interactions with biological systems.”

The National Institutes of Health, the National Science Foundation, the Air Force Office of Scientific Research and the Army Research Office supported the research.

Here’s a link to and a citation for the paper,

Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy by Lucas R. Parent, Evangelos Bakalis, Abelardo Ramírez-Hernández, Jacquelin K. Kammeyer, Chiwoo Park, Juan de Pablo, Francesco Zerbetto, Joseph P. Patterson, and Nathan C. Gianneschi. J. Am. Chem. Soc., Article ASAP DOI: 10.1021/jacs.7b09060 Publication Date (Web): November 17, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

Nominations open for Kabiller Prizes in Nanoscience and Nanomedicine ($250,000 for visionary researcher and $10,000 for young investigator)

For a change I can publish something that doesn’t have a deadline in three days or less! Without more ado (from a Feb. 20, 2017 Northwestern University news release by Megan Fellman [h/t Nanowerk’s Feb. 20, 2017 news item]),

Northwestern University’s International Institute for Nanotechnology (IIN) is now accepting nominations for two prestigious international prizes: the $250,000 Kabiller Prize in Nanoscience and Nanomedicine and the $10,000 Kabiller Young Investigator Award in Nanoscience and Nanomedicine.

The deadline for nominations is May 15, 2017. Details are available on the IIN website.

“Our goal is to recognize the outstanding accomplishments in nanoscience and nanomedicine that have the potential to benefit all humankind,” said David G. Kabiller, a Northwestern trustee and alumnus. He is a co-founder of AQR Capital Management, a global investment management firm in Greenwich, Connecticut.

The two prizes, awarded every other year, were established in 2015 through a generous gift from Kabiller. Current Northwestern-affiliated researchers are not eligible for nomination until 2018 for the 2019 prizes.

The Kabiller Prize — the largest monetary award in the world for outstanding achievement in the field of nanomedicine — celebrates researchers who have made the most significant contributions to the field of nanotechnology and its application to medicine and biology.

The Kabiller Young Investigator Award recognizes young emerging researchers who have made recent groundbreaking discoveries with the potential to make a lasting impact in nanoscience and nanomedicine.

“The IIN at Northwestern University is a hub of excellence in the field of nanotechnology,” said Kabiller, chair of the IIN executive council and a graduate of Northwestern’s Weinberg College of Arts and Sciences and Kellogg School of Management. “As such, it is the ideal organization from which to launch these awards recognizing outstanding achievements that have the potential to substantially benefit society.”

Nanoparticles for medical use are typically no larger than 100 nanometers — comparable in size to the molecules in the body. At this scale, the essential properties (e.g., color, melting point, conductivity, etc.) of structures behave uniquely. Researchers are capitalizing on these unique properties in their quest to realize life-changing advances in the diagnosis, treatment and prevention of disease.

“Nanotechnology is one of the key areas of distinction at Northwestern,” said Chad A. Mirkin, IIN director and George B. Rathmann Professor of Chemistry in Weinberg. “We are very grateful for David’s ongoing support and are honored to be stewards of these prestigious awards.”

An international committee of experts in the field will select the winners of the 2017 Kabiller Prize and the 2017 Kabiller Young Investigator Award and announce them in September.

The recipients will be honored at an awards banquet Sept. 27 in Chicago. They also will be recognized at the 2017 IIN Symposium, which will include talks from prestigious speakers, including 2016 Nobel Laureate in Chemistry Ben Feringa, from the University of Groningen, the Netherlands.

2015 recipient of the Kabiller Prize

The winner of the inaugural Kabiller Prize, in 2015, was Joseph DeSimone the Chancellor’s Eminent Professor of Chemistry at the University of North Carolina at Chapel Hill and the William R. Kenan Jr. Distinguished Professor of Chemical Engineering at North Carolina State University and of Chemistry at UNC-Chapel Hill.

DeSimone was honored for his invention of particle replication in non-wetting templates (PRINT) technology that enables the fabrication of precisely defined, shape-specific nanoparticles for advances in disease treatment and prevention. Nanoparticles made with PRINT technology are being used to develop new cancer treatments, inhalable therapeutics for treating pulmonary diseases, such as cystic fibrosis and asthma, and next-generation vaccines for malaria, pneumonia and dengue.

2015 recipient of the Kabiller Young Investigator Award

Warren Chan, professor at the Institute of Biomaterials and Biomedical Engineering at the University of Toronto, was the recipient of the inaugural Kabiller Young Investigator Award, also in 2015. Chan and his research group have developed an infectious disease diagnostic device for a point-of-care use that can differentiate symptoms.

BTW, Warren Chan, winner of the ‘Young Investigator Award’, and/or his work have been featured here a few times, most recently in a Nov. 1, 2016 posting, which is mostly about another award he won but also includes links to some his work including my April 27, 2016 post about the discovery that fewer than 1% of nanoparticle-based drugs reach their destination.

Northwestern University’s (US) International Institute for Nanotechnology (IIN) rakes in some cash

Within less than a month Northwestern University’s International Institute for Nanotechnology (IIN) has been granted awarded two grants by the US Department of Defense.

4D printing

The first grant, for 4D printing, was announced in a June 11, 2015 Northwestern news release by Megan Fellman (Note: A link has been removed),

Northwestern University’s International Institute for Nanotechnology (IIN) has received a five-year, $8.5 million grant from the U.S. Department of Defense’s competitive Multidisciplinary University Research Initiative (MURI) program to develop a “4-dimensional printer” — the next generation of printing technology for the scientific world.

Once developed, the 4-D printer, operating on the nanoscale, will be used to construct new devices for research in chemistry, materials sciences and U.S. defense-related areas that could lead to new chemical and biological sensors, catalysts, microchip designs and materials designed to respond to specific materials or signals.

“This research promises to bring transformative advancement to the development of biosensors, adaptive optics, artificially engineered tissues and more by utilizing nanotechnology,” said IIN director and chemist Chad A. Mirkin, who is leading the multi-institution project. Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences.

The award, issued by the Air Force Office of Scientific Research, supports a team of experts from Northwestern, the University of Miami, the University of California, San Diego, and the University of Maryland.

In science, “printing” encodes information at specific locations on a material’s surface, similar to how we print words on paper with ink. The 4-dimensional printer will consist of millions of tiny elastomeric “pens” that can be used individually and independently to create nanometer-size features composed of hard or soft materials.

The information encoded can be in the form of materials with a defined set of chemical and physical properties. The printing speed and resolution determine the amount and complexity of the information that can be encoded.

Progress in fields ranging from biology to chemical sensing to computing currently are limited by the lack of low-cost equipment that can perform high-resolution printing and 3-dimensional patterning on hard materials (e.g., metals and semiconductors) and soft materials (e.g., organic and biological materials) at nanometer resolution (approximately 1,000 times smaller than the width of a human hair).

“Ultimately, the 4-D printer will provide a foundation for a new generation of tools to develop novel architectures, wherein the hard materials that form the functional components of electronics can be merged with biological or soft materials,” said Milan Mrksich, a co-principal investigator on the grant.

Mrksich is the Henry Wade Rogers Professor of Biomedical Engineering, Chemistry and Cell and Molecular Biology, with appointments in the McCormick School of Engineering and Applied Science, Weinberg and Northwestern University Feinberg School of Medicine.

A July 10, 2015 article about the ‘4D printer’ grant  by Madeline Fox for the Daily Northwestern features a description of 4D printing from Milan Mrksich, a co-principal investigator on the grant,

Milan Mrksich, one of the project’s five senior participants, said that while most people are familiar with the three dimensions of length, width and depth, there are often misconceptions about the fourth property of a four-dimensional object. Mrksich used Legos as an analogy to describe 4D printing technology.

“If you take Lego blocks, you can basically build any structure you want by controlling which Lego is connected to which Lego and controlling all their dimensions in space,” Mrksich said. “Within an object made up of nanoparticles, we’re controlling the placement — as we use a printer to control the placement of every particle, our fourth dimension lets us choose which nanoparticle with which property would be at each position.”

Thank you Dr. Mrksich and Ms. Fox for that helpful analogy.

Designing advanced bioprogrammable nanomaterials

The second grant, announced in a July 6, 2015 Northwestern news release by Megan Fellman, is apparently the only one of its kind in the US (Note: A link has been removed),

Northwestern University’s International Institute for Nanotechnology (IIN) has been awarded a U.S. Air Force Center of Excellence grant to design advanced bioprogrammable nanomaterials for solutions to challenging problems in the areas of energy, the environment, security and defense, as well as for developing ways to monitor and mitigate human stress.

The five-year, $9.8 million grant establishes the Center of Excellence for Advanced Bioprogrammable Nanomaterials (C-ABN), the only one of its kind in the country. After the initial five years, the grant potentially could be renewed for an additional five years.

“Northwestern University was chosen to lead this Center of Excellence because of its investment in infrastructure development, including new facilities and instrumentation; its recruitment of high-caliber faculty members and students; and its track record in bio-nanotechnology and cognitive sciences,” said Timothy Bunning, chief scientist at the U.S. Air Force Research Laboratory (AFRL) Materials and Manufacturing Directorate.

Led by IIN director Chad A. Mirkin, C-ABN will support collaborative, discovery-based research projects aimed at developing bioprogrammable nanomaterials that will meet both military and civilian needs and facilitate the efficient transition of these new technologies from the laboratory to marketplace.

Bioprogrammable nanomaterials are structures that typically contain a biomolecular component, such as nucleic acids or proteins, which give the materials a variety of novel capabilities. [emphasis mine] Nanomaterials can be designed to assemble into large 3-D structures, to interface with biological structures inside cells or tissues, or to interface with existing macroscale devices, for example. These new bioprogrammable nanomaterials and the fundamental knowledge gained through their development will ultimately lead to the creation of wearable, portable and/or human-interactive devices with extraordinary capabilities that will significantly impact both civilian and Air Force needs.

In one research area, scientists will work to understand the molecular underpinnings of vulnerability and resilience to stress. They will use bioprogrammable nanomaterials to develop ultrasensitive sensors capable of detecting and quantifying biomarkers for human stress in biological fluids (e.g., saliva, perspiration or blood), providing means to easily monitor the soldier during times of extreme stress. Ultimately, these bioprogrammable materials may lead to methods to increase human cellular resilience to the effects of stress and/or to correct genetic mutations that decrease cellular resilience of susceptible individuals.

Other research projects, encompassing a wide variety of nanotechnology-enabled goals, include:

Developing hybrid wearable energy-storage devices;
Developing devices to identify chemical and biological targets in a field environment;
Developing flexible bio-electronic circuits;
Designing a new class of flat optics; and
Advancing understanding of design rules between 2-D and 3-D architectures.

The analysis of these nanostructures also will extend fundamental knowledge in the fields of materials science and engineering, human performance, chemistry, biology and physics.

The center will be housed under the IIN, providing researchers with access to IIN’s strong entrepreneurial community and its close ties with Northwestern’s renowned Kellogg School of Management.

This second news release provides an interesting contrast to a recent news release from Sweden’s Karolinska Intitute where the writer was careful to note that the enzymes and organic electronic ion pumps were not living as noted in my June 26, 2015 posting. It seems nucleic acids (as in RNA and DNA) can be mentioned without a proviso in the US. as there seems to be little worry about anti-GMO (genetically modified organisms) and similar backlashes affecting biotechnology research.

Liquid nanolaser: the first one

According to an April 24, 2015 news item on Nanowerk, there has been a big discovery at Northwestern University (located in Chicago, Illinois, US),

Northwestern University scientists have developed the first liquid nanoscale laser. And it’s tunable in real time, meaning you can quickly and simply produce different colors, a unique and useful feature. The laser technology could lead to practical applications, such as a new form of a “lab on a chip” for medical diagnostics.

To understand the concept, imagine a laser pointer whose color can be changed simply by changing the liquid inside it, instead of needing a different laser pointer for every desired color.

In addition to changing color in real time, the liquid nanolaser has additional advantages over other nanolasers: it is simple to make, inexpensive to produce and operates at room temperature.

An April 24, 2015 Northwestern University news release by Megan Fellman (also on EurekAlert), which originated the news item, offers a little history buttressed by some technical details (Note: Links have been removed),

Nanoscopic lasers — first demonstrated in 2009 — are only found in research labs today. They are, however, of great interest for advances in technology and for military applications.

“Our study allows us to think about new laser designs and what could be possible if they could actually be made,” said Teri W. Odom, who led the research. “My lab likes to go after new materials, new structures and new ways of putting them together to achieve things not yet imagined. We believe this work represents a conceptual and practical engineering advance for on-demand, reversible control of light from nanoscopic sources.”

The liquid nanolaser in this study is not a laser pointer but a laser device on a chip, Odom explained. The laser’s color can be changed in real time when the liquid dye in the microfluidic channel above the laser’s cavity is changed.

The laser’s cavity is made up of an array of reflective gold nanoparticles, where the light is concentrated around each nanoparticle and then amplified. (In contrast to conventional laser cavities, no mirrors are required for the light to bounce back and forth.) Notably, as the laser color is tuned, the nanoparticle cavity stays fixed and does not change; only the liquid gain around the nanoparticles changes.

The main advantages of very small lasers are:

• They can be used as on-chip light sources for optoelectronic integrated circuits;

• They can be used in optical data storage and lithography;

• They can operate reliably at one wavelength; and

• They should be able to operate much faster than conventional lasers because they are made from metals.

Some technical background

Plasmon lasers are promising nanoscale coherent sources of optical fields because they support ultra-small sizes and show ultra-fast dynamics. Although plasmon lasers have been demonstrated at different spectral ranges, from the ultraviolet to near-infrared, a systematic approach to manipulate the lasing emission wavelength in real time has not been possible.

The main limitation is that only solid gain materials have been used in previous work on plasmon nanolasers; hence, fixed wavelengths were shown because solid materials cannot easily be modified. Odom’s research team has found a way to integrate liquid gain materials with gold nanoparticle arrays to achieve nanoscale plasmon lasing that can be tuned dynamical, reversibly and in real time.

The use of liquid gain materials has two significant benefits:

• The organic dye molecules can be readily dissolved in solvents with different refractive indices. Thus, the dielectric environment around the nanoparticle arrays can be tuned, which also tunes the lasing wavelength.

• The liquid form of gain materials enables the fluid to be manipulated within a microfluidic channel. Thus, dynamic tuning of the lasing emission is possible simply by flowing liquid with different refractive indices. Moreover, as an added benefit of the liquid environment, the lasing-on-chip devices can show long-term stability because the gain molecules can be constantly refreshed.

These nanoscale lasers can be mass-produced with emission wavelengths over the entire gain bandwidth of the dye. Thus, the same fixed nanocavity structure (the same gold nanoparticle array) can exhibit lasing wavelengths that can be tuned over 50 nanometers, from 860 to 910 nanometers, simply by changing the solvent the dye is dissolved in.

Here’s a link to and a citation for the paper,

Real-time tunable lasing from plasmonic nanocavity arrays by Ankun Yang, Thang B. Hoang, Montacer Dridi, Claire Deeb, Maiken H. Mikkelsen, George C. Schatz, & Teri W. Odom. Nature Communications 6, Article number: 6939 doi:10.1038/ncomms7939 Published 20 April 2015

This paper is open access.

Richard Van Duyne solves mystery of Renoir’s red with surface-enhanced Raman spectroscopy (SERS) and Canadian scientists uncover forgeries

The only things these two items have in common is that they are concerned with visual art. and with solving mysteries The first item concerns research by Richard Van Duyne into the nature of the red paint used in one of Renoir’s paintings. A February 14, 2014 news item on Azonano describes some of the art conservation work that Van Duyne’s (nanoish) technology has made possible along with details about this most recent work,

Scientists are using powerful analytical and imaging tools to study artworks from all ages, delving deep below the surface to reveal the process and materials used by some of the world’s greatest artists.

Northwestern University chemist Richard P. Van Duyne, in collaboration with conservation scientists at the Art Institute of Chicago, has been using a scientific method he discovered nearly four decades ago to investigate masterpieces by Pierre-Auguste Renoir, Winslow Homer and Mary Cassatt.

Van Duyne recently identified the chemical components of paint, now partially faded, used by Renoir in his oil painting “Madame Léon Clapisson.” Van Duyne discovered the artist used carmine lake, a brilliant but light-sensitive red pigment, on this colorful canvas. The scientific investigation is the cornerstone of a new exhibition at the Art Institute of Chicago.

The Art Institute of Chicago’s exhibition is called, Renoir’s True Colors: Science Solves a Mystery. being held from Feb. 12, 2014 – April 27, 2014. Here is an image of the Renoir painting in question and an image featuring the equipment being used,

Renoir-Madame-Leon-Clapisson.Art Institute of Chicago.

Renoir-Madame-Leon-Clapisson.Art Institute of Chicago.

Renoir and surface-enhanced Raman spectroscopy (SERS). Art Institute of Chicago

Renoir and surface-enhanced Raman spectroscopy (SERS). Art Institute of Chicago

The Feb. 13, 2014 Northwestern University news release (also on EurekAlert) by Megan Fellman, which originated the news item, gives a brief description of Van Duyne’s technique and its impact on conservation at the Art Institute of Chicago (Note: A link has been removed),

To see what the naked eye cannot see, Van Duyne used surface-enhanced Raman spectroscopy (SERS) to uncover details of Renoir’s paint. SERS, discovered by Van Duyne in 1977, is widely recognized as the most sensitive form of spectroscopy capable of identifying molecules.

Van Duyne and his colleagues’ detective work informed the production of a new digital visualization of the painting’s original colors by the Art Institute’s conservation department. The re-colorized reproduction and the original painting (presented in a case that offers 360-degree views) can be viewed side by side at the exhibition “Renoir’s True Colors: Science Solves a Mystery” through April 27 [2014] at the Art Institute.

I first wrote about Van Duyne’s technique in my wiki, The NanoTech Mysteries. From the Scientists get artful page (Note: A footnote was removed),

Richard Van Duyne, then a chemist at Northwestern University, developed the technique in 1977. Van Duyne’s technology, based on Raman spectroscopy which has been around since the 1920s, is called surface-enhanced Raman spectroscopy’ or SERS “[and] uses laser light and nanoparticles of precious metals to interact with molecules to show the chemical make-up of a particular dye.”

This next item is about forgery detection. A March 5, 2014 news release on EurekAlert describes the latest developments,

Gallery owners, private collectors, conservators, museums and art dealers face many problems in protecting and evaluating their collections such as determining origin, authenticity and discovery of forgery, as well as conservation issues. Today these problems are more accurately addressed through the application of modern, non-destructive, “hi-tech” techniques.

Dmitry Gavrilov, a PhD student in the Department of Physics at the University of Windsor (Windsor, Canada), along with Dr. Roman Gr. Maev, the Department of Physics Professor at the University of Windsor (Windsor, Canada) and Professor Dr. Darryl Almond of the University of Bath (Bath, UK) have been busy applying modern techniques to this age-old field. Infrared imaging, thermography, spectroscopy, UV fluorescence analysis, and acoustic microscopy are among the innovative approaches they are using to conduct pre-restoration analysis of works of art. Some fascinating results from their applications are published today in the Canadian Journal of Physics.

Since the early 1900s, using infrared imaging in various wave bands, scientists have been able to see what parts of artworks have been retouched or altered and sometimes even reveal the artist’s original sketches beneath layers of the paint. Thermography is a relatively new approach in art analysis that allows for deep subsurface investigation to find defects and past reparations. To a conservator these new methods are key in saving priceless works from further damage.

Gavrilov explains, “We applied new approaches in processing thermographic data, materials spectra data, and also the technique referred to as craquelure pattern analysis. The latter is based on advanced morphological processing of images of surface cracks. These cracks, caused by a number of factors such as structure of canvas, paints and binders used, can uncover important clues on the origins of a painting.”

“Air-coupled acoustic imaging and acoustic microscopy are other innovative approaches which have been developed and introduced into art analysis by our team under supervision of Dr. Roman Gr. Maev. The technique has proven to be extremely sensitive to small layer detachments and allows for the detection of early stages of degradation. It is based on the same principles as medical and industrial ultrasound, namely, the sending a sound wave to the sample and receiving it back. ”

Spectroscopy is a technique that has been useful in the fight against art fraud. It can determine chemical composition of pigments and binders, which is essential information in the hands of an art specialist in revealing fakes. As described in the paper, “…according to the FBI, the value of art fraud, forgery and theft is up to $6 billion per year, which makes it the third most lucrative crime in the world after drug trafficking and the illegal weapons trade.”

One might wonder how these modern applications can be safe for delicate works of art when even flash photography is banned in art galleries. The authors discuss this and other safety concerns, describing both historic and modern-day implications of flash bulbs and exhibit illumination and scientific methods. As the paper concludes, the authors suggest that we can expect that the number of “hi-tech” techniques will only increase. In the future, art experts will likely have a variety of tools to help them solve many of the mysteries hiding beneath the layers.

Here’s a link to and a citation for the paper,

A review of imaging methods in analysis of works of art: Thermographic imaging method in art analysis by D. Gavrilov, R.Gr. Maev, and D.P. Almond. Canadian Journal of Physics, 10.1139/cjp-2013-0128

This paper is open access.

Bejweled and bedazzled but not bewitched, bothered, or bewildered at Northwestern University

When discussing DNA (deoxyribonucleic acid) one doesn’t usually expect to encounter gems as one does in a Nov. 28, 2013 news item on Azonano,

Nature builds flawless diamonds, sapphires and other gems. Now a Northwestern University [located in Chicago, Illinois, US] research team is the first to build near-perfect single crystals out of nanoparticles and DNA, using the same structure favored by nature.

The Nov. 27, 2013 Northwestern University news release by Megan Fellman (also on EurekAlert), which originated the news item,, explains why single crystals are of such interest,

“Single crystals are the backbone of many things we rely on — diamonds for beauty as well as industrial applications, sapphires for lasers and silicon for electronics,” said nanoscientist Chad A. Mirkin. “The precise placement of atoms within a well-defined lattice defines these high-quality crystals.

“Now we can do the same with nanomaterials and DNA, the blueprint of life,” Mirkin said. “Our method could lead to novel technologies and even enable new industries, much as the ability to grow silicon in perfect crystalline arrangements made possible the multibillion-dollar semiconductor industry.”

His research group developed the “recipe” for using nanomaterials as atoms, DNA as bonds and a little heat to form tiny crystals. This single-crystal recipe builds on superlattice techniques Mirkin’s lab has been developing for nearly two decades.

(I wrote about Mirkin’s nanoparticle DNA work in the context of his proposed periodic table of modified nucleic acid nanoparticles in a July 5, 2013 posting.) The news release goes on to describe Mirkin’s most recent work,

In this recent work, Mirkin, an experimentalist, teamed up with Monica Olvera de la Cruz, a theoretician, to evaluate the new technique and develop an understanding of it. Given a set of nanoparticles and a specific type of DNA, Olvera de la Cruz showed they can accurately predict the 3-D structure, or crystal shape, into which the disordered components will self-assemble.

The general set of instructions gives researchers unprecedented control over the type and shape of crystals they can build. The Northwestern team worked with gold nanoparticles, but the recipe can be applied to a variety of materials, with potential applications in the fields of materials science, photonics, electronics and catalysis.

A single crystal has order: its crystal lattice is continuous and unbroken throughout. The absence of defects in the material can give these crystals unique mechanical, optical and electrical properties, making them very desirable.

In the Northwestern study, strands of complementary DNA act as bonds between disordered gold nanoparticles, transforming them into an orderly crystal. The researchers determined that the ratio of the DNA linker’s length to the size of the nanoparticle is critical.

“If you get the right ratio it makes a perfect crystal — isn’t that fun?” said Olvera de la Cruz, who also is a professor of chemistry in the Weinberg College of Arts and Sciences. “That’s the fascinating thing, that you have to have the right ratio. We are learning so many rules for calculating things that other people cannot compute in atoms, in atomic crystals.”

The ratio affects the energy of the faces of the crystals, which determines the final crystal shape. Ratios that don’t follow the recipe lead to large fluctuations in energy and result in a sphere, not a faceted crystal, she explained. With the correct ratio, the energies fluctuate less and result in a crystal every time.

“Imagine having a million balls of two colors, some red, some blue, in a container, and you try shaking them until you get alternating red and blue balls,” Mirkin explained. “It will never happen.

“But if you attach DNA that is complementary to nanoparticles — the red has one kind of DNA, say, the blue its complement — and now you shake, or in our case, just stir in water, all the particles will find one another and link together,” he said. “They beautifully assemble into a three-dimensional crystal that we predicted computationally and realized experimentally.”

To achieve a self-assembling single crystal in the lab, the research team reports taking two sets of gold nanoparticles outfitted with complementary DNA linker strands. Working with approximately 1 million nanoparticles in water, they heated the solution to a temperature just above the DNA linkers’ melting point and then slowly cooled the solution to room temperature, which took two or three days.

The very slow cooling process encouraged the single-stranded DNA to find its complement, resulting in a high-quality single crystal approximately three microns wide. “The process gives the system enough time and energy for all the particles to arrange themselves and find the spots they should be in,” Mirkin said.

The researchers determined that the length of DNA connected to each gold nanoparticle can’t be much longer than the size of the nanoparticle. In the study, the gold nanoparticles varied from five to 20 nanometers in diameter; for each, the DNA length that led to crystal formation was about 18 base pairs and six single-base “sticky ends.”

“There’s no reason we can’t grow extraordinarily large single crystals in the future using modifications of our technique,” said Mirkin, who also is a professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering and director of Northwestern’s International Institute for Nanotechnology.

Here’s a link to and a citation for the published paper,

DNA-mediated nanoparticle crystallization into Wulff polyhedra by Evelyn Auyeung, Ting I. N. G. Li, Andrew J. Senesi, Abrin L. Schmucker, Bridget C. Pals, Monica Olvera de la Cruz, & Chad A. Mirkin. Nature (2013) doi:10.1038/nature12739 Published online 27 November 2013

This article is behind a paywall.

Points to anyone who recognized the song title (Bewitched, Bothered and Bewildered) embedded in the head for this posting.

Chad Mirkin’s periodic table of modified nucleic acid nanoparticles

Chad Mirkin has been pushing his idea for a new periodic table of ‘nanoparticles’ since at least Feb. 2013 (I wrote about this and some of Mirkin’s other work in my Feb. 19, 2013 posting) when he presented it at the 2013 American Association for the Advancement of Science (AAAS) annual meeting in Boston, Massachusetts. From a Feb. 17, 2013 news item on ScienceDaily,

Northwestern University’s Chad A. Mirkin, a leader in nanotechnology research and its application, has developed a completely new set of building blocks that is based on nanoparticles and DNA. Using these tools, scientists will be able to build — from the bottom up, just as nature does — new and useful structures.

Mirkin will discuss his research in a session titled “Nucleic Acid-Modified Nanostructures as Programmable Atom Equivalents: Forging a New Periodic Table” at the American Association for the Advancement of Science (AAAS) annual meeting in Boston.

“We have a new set of building blocks,” Mirkin said. “Instead of taking what nature gives you, we can control every property of the new material we make. [emphasis mine] We’ve always had this vision of building matter and controlling architecture from the bottom up, and now we’ve shown it can be done.”

Mirkin seems a trifle grandiose; I’m hoping he doesn’t have any grand creation projects that require seven days.

Getting back to the new periodic table, the Feb. 13, 2013 Northwestern University news release by Megan Fellman, which originated the news item,  provides a few more details,

Using nanoparticles and DNA, Mirkin has built more than 200 different crystal structures with 17 different particle arrangements. Some of the lattice types can be found in nature, but he also has built new structures that have no naturally occurring mineral counterpart.
….
Mirkin can make new materials and arrangements of particles by controlling the size, shape, type and location of nanoparticles within a given particle lattice. He has developed a set of design rules that allow him to control almost every property of a material.

New materials developed using his method could help improve the efficiency of optics, electronics and energy storage technologies. “These same nanoparticle building blocks have already found wide-spread commercial utility in biology and medicine as diagnostic probes for markers of disease,” Mirkin added.

With this present advance, Mirkin uses nanoparticles as “atoms” and DNA as “bonds.” He starts with a nanoparticle, which could be gold, silver, platinum or a quantum dot, for example. The core material is selected depending on what physical properties the final structure should have.

He then attaches hundreds of strands of DNA (oligonucleotides) to the particle. The oligonucleotide’s DNA sequence and length determine how bonds form between nanoparticles and guide the formation of specific crystal lattices.

“This constitutes a completely new class of building blocks in materials science that gives you a type of programmability that is extraordinarily versatile and powerful,” Mirkin said. “It provides nanotechnologists for the first time the ability to tailor properties of materials in a highly programmable way from the bottom up.”

Mirkin and his colleagues have since published a paper about this new periodic table in Angewandte Chemie (May 2013). And, earlier today (July 5, 2013) Philip Ball writing (A self-assembled periodic table) for the Royal Society of Chemistry provided a critique of the idea while supporting it in principle,

Mirkin and his colleagues perceive the pairing of [DNA] strands as somewhat analogous to the covalent pairing of electrons and call their DNA-tagged nanoparticles programmable atom equivalents (PAEs). These PAEs may bind to one another according to particular combinatorial rules and Mirkin proposes a kind of periodic table of PAEs that systematises their possible interactions and permutations.
Well, it’s not hard to start enumerating ways in which PAEs are unlike atoms. Most fundamentally, perhaps, the bonding propensity of a PAE need bear no real relation to the ‘atom’ (the nanoparticle) with which it is associated: a given nanoparticle might be paired with any other, and there’s nothing periodic about those tendencies.

I recommend reading Ball’s piece for the way he analyzes the weaknesses and for why he thinks the effort to organize PAEs conceptually is worthwhile.

For the curious, here’s a link to and a citation for the researchers’ published paper,

Nucleic Acid-Modified Nanostructures as Programmable Atom Equivalents: Forging a New “Table of Elements by Robert J. Macfarlane, Matthew N. O’Brien, Dr. Sarah Hurst Petrosko, and Prof. Chad A. Mirkin. Angewandte Chemie International Edition Volume 52, Issue 22, pages 5688–5698, May 27, 2013. Article first published online: 2 MAY 2013 DOI: 10.1002/anie.201209336

Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.

One final comment, this is not the first ‘nanoparticle table of elements’.  Larry Bell mentioned one in his Dec. 7, 2010 NISENet (Nanoscale Informal Science Education Network) blog posting,

The focus of today’s sessions at NSF’s [US National Science Foundation] meeting of nanoscale science and engineering grantees focuses on putting the science to practical use. First up this morning is nanomanufacturing. Mark Tuonimen from the University of Massachusetts at Amherst gave a talk about the Nanoscale Manufacturing Network and one of his images caught my imagination. This image, which comes from the draft Nano2 vision document on the next decade of nanoscale research, illustrates and idea that is sometimes referred to as a periodic table of nanoparticles.

[downloaded from http://www.nisenet.org/blogs/observations_insights/periodic_table_nanoparticles]

[downloaded from http://www.nisenet.org/blogs/observations_insights/periodic_table_nanoparticles]

Bell goes on to describe one way in which a nanoparticle table of elements would have to differ from the traditional chemistry table.