Tag Archives: Michael F. Hochella Jr.

Burning coal produces harmful titanium dioxide nanoparticles

It turns out that Canada has the fifth largest reserve of coal in the world, according to the Coal in Canada Wikipedia entry (Note: Links have been removed),

Coal reserves in Canada rank fifth largest in the world (following the former Soviet Union, the United States, the People’s Republic of China and Australia) at approximately 10 billion tons, 10% of the world total.[1] This represents more energy than all of the oil and gas in the country combined. The coal industry generates CDN$5 billion annually.[2] Most of Canada’s coal mining occurs in the West of the country.[3] British Columbia operates 10 coal mines, Alberta 9, Saskatchewan 3 and New Brunswick one. Nova Scotia operates several small-scale mines, Westray having closed following the 1992 disaster there.[4]

So, this news from Virginia holds more than the usual interest for me (I’m in British Columbia). From an Aug. 8, 2017 Virginia Tech news release (also on EurekAlert),

Environmental scientists led by the Virginia Tech College of Science have discovered that the burning of coal produces incredibly small particles of a highly unusual form of titanium oxide.

When inhaled, these nanoparticles can enter the lungs and potentially the bloodstream.

The particulates — known as titanium suboxide nanoparticles — are unintentionally produced as coal is burned, creating these tiniest of particles, as small as 100 millionths of a meter [emphasis mine], said the Virginia Tech-led team. When the particles are introduced into the air — unless captured by high-tech particle traps — they can float away from power plant stacks and travel on air currents locally, regionally, and even globally.

As an example of this, these nanoparticles were found on city streets, sidewalks, and in standing water in Shanghai, China.

The findings are published in the latest issue of Nature Communications under team leader Michael F. Hochella Jr., University Distinguished Professor of Geosciences with the College of Science, and Yi Yang, a professor at East China Normal University in Shanghai. Other study participants include Duke University, the University of Kentucky, and Laurentian University in Canada.

“The problem with these nanoparticles is that there is no easy or practical way to prevent their formation during coal burning,” Hochella said, adding that in nations with strong environmental regulations, such as the United States, most of the nanoparticles would be caught by particle traps. Not so in Africa [a continent not a nation], China, or India, where regulations are lax or nonexistent, with coal ash and smoke entering the open air.

“Due to advanced technology used at U.S.-based coal burning power plants, mandated by the Clean Air Act and the Environmental Protection Agency, most of these nanoparticles and other tiny particles are removed before the final emission of the plant’s exhaust gases,” Hochella said. “But in countries where the particles from the coal burning are not nearly so efficiently removed, or removed at all, these titanium suboxide nanoparticles and many other particle types are emitted into the atmosphere, in part resulting in hazy skies that plague many countries, especially in China and India.”

Hochella and his team found these previously unknown nanoparticles not only in coal ash from around the world and in the gaseous waste emissions of coal plants, but on city streets, in soils and storm water ponds, and at wastewater treatment plants.

“I could not believe what I have found at the beginning, because they had been reported so extremely rarely in the natural environment,” said Yang, who once worked as a visiting professor in Virginia Tech’s Department of Geosciences with Hochella. “It took me several months to confirm their occurrence in coal ash samples.”

The newly found titanium suboxide — called Magnéli phases — was once thought rare, found only sparingly on Earth in some meteorites, from a small area of rock formations in western Greenland, and occasionally in moon rocks. The findings by Hochella and his team indicate that these nanoparticles are in fact widespread globally. They are only now being studied for the first time in natural environments using powerful electron microscopes.

Why did the discovery occur now? According to the report, nearly all coal contains traces of the minerals rutile and/or anatase, both “normal,” naturally occurring, and relatively inert titanium oxides, especially in the absence of light. When those minerals are burned in the presence of coal, research found they easily and quickly converted to these unusual titanium suboxide nanoparticles. The nanoparticles then become entrained in the gases that leave the power plant.

When inhaled, the nanoparticles enter deep into the lungs, potentially all the way into the air sacs that move oxygen into our bloodstream during the normal breathing process. While human lung toxicity of these particles is not yet known, a preliminary biotoxicity test by Hochella and Richard Di Giulio, professor of environmental toxicology, and Jessica Brandt, a doctoral candidate, both at Duke University, indicates that the particles do indeed have toxicity potential.

According to the team, further study is clearly needed, especially biotoxicity testing directly relevant to the human lung. Partnering with coal-power plants either in the United States or China would be ideal, said Yang.

More troubling, the study shows that titanium suboxide nanoparticles are biologically active in the dark, making the particles highly suspect. Exact human health effects are yet unknown.

“Future studies will need to very carefully investigate and access the toxicity of titanium suboxide nanoparticles in the human lung, and this could take years, a sobering thought considering its potential danger,” Hochella said.

As the titanium suboxide nanoparticle itself is produced incidentally, Hochella and his team came across the nanoparticle by accident while studying a 2014 coal ash spill in the Dan River, North Carolina. During the study of the downstream movement of toxic metals in the ash in the Dan River, the team discovered and recognized the presence of small amounts of the highly unusual titanium suboxide.

The group later produced the titanium suboxide nanoparticles when burning coal in a lab simulation.

This new potential air pollution health hazard builds on already established findings from the World Health Organization. It estimates that 3.3 million premature deaths occur worldwide per year due to polluted air, Hochella said. In China, 1.6 million premature deaths are estimated annually due to cardiovascular and respiratory injury from air pollution. Most Chinese megacities top 100 severely hazy days each year with particle concentrations two to four times higher than WHO guidelines, Yang said.

Direct health effects on humans is only one factor. Findings of thousands of scientists have determined that the biggest driver of warming of the planet and the resulting climate change is industrial-scale coal burning. The impact of titanium suboxide nanoparticles found in the atmosphere, in addition to greenhouse gases, on animals, water, and plants is not yet known.

They’ve used an unusual unit of measurement, “100 millionths of a meter,” nanoparticles are usually described in nanometers.

Here’s a link to and a citation for the paper,

Discovery and ramifications of incidental Magnéli phase generation and release from industrial coal-burning by Yi Yang, Bo Chen, James Hower, Michael Schindler, Christopher Winkler, Jessica Brandt, Richard Di Giulio, Jianping Ge, Min Liu, Yuhao Fu, Lijun Zhang, Yuru Chen, Shashank Priya, & Michael F. Hochella Jr. Nature Communications 8, Article number: 194 (2017) doi:10.1038/s41467-017-00276-2 Published online: 08 August 2017

This paper is behind a paywall.

This put me in mind of the famous London smog, which one doesn’t hear about much anymore. For anyone not familiar with that phenomenon, here’s more from the Great Smog of London Wikipedia entry (Note: Links have been removed),

The Great Smog of London, or Great Smog of 1952 sometimes called the Big Smoke,[1] was a severe air-pollution event [emphasis mine] that affected the British capital of London in December 1952. A period of cold weather, combined with an anticyclone and windless conditions, collected airborne pollutants – mostly arising from the use of coal [emphasis mine]– to form a thick layer of smog over the city. It lasted from Friday, 5 December to Tuesday, 9 December 1952 and then dispersed quickly when the weather changed.

It caused major disruption by reducing visibility and even penetrating indoor areas, far more severe than previous smog events experienced in the past, called “pea-soupers”. Government medical reports in the following weeks, however, estimated that up until 8 December, 4,000 people had died as a direct result of the smog and 100,000 more were made ill by the smog’s effects on the human respiratory tract. More recent research suggests that the total number of fatalities was considerably greater, about 12,000.[2]

London had suffered since the 1200s from poor air quality,[3] which worsened in the 1600s,[4][5] but the Great Smog is known to be the worst air-pollution event in the history of the United Kingdom,[6] and the most significant in terms of its effect on environmental research, government regulation, and public awareness of the relationship between air quality and health.[2][4] It led to several changes in practices and regulations, including the Clean Air Act 1956. …

Silver nanoparticles, water, the environment, and toxicity

I am contrasting two very different studies on silver nanoparticles in water and their effect on the environment to highlight the complex nature of determining the risks and environmental effects associated with nanoparticles in general. One piece of research suggests that silver nanoparticles are less dangerous than other commonly used forms of silver while the other piece raises some serious concerns.

A Feb. 28, 2013 news item on Nanowerk features research about the effects that silver nanoparticles have on aquatic ecosystems (Note: A link has been removed),

According to Finnish-Estonian joint research with data obtained on two crustacean species, there is apparently no reason to consider silver nanoparticles more dangerous for aquatic ecosystems than silver ions.

The results were reported in the journal Environmental Science and Pollution Research late last year (“Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus”). Jukka Niskanen has utilised the same polymerisation and coupling reactions in his doctoral dissertation studying several hybrid nanomaterials, i.e. combinations of synthetic polymers and inorganic (gold, silver and montmorillonite) nanoparticles. Niskanen will defend his doctoral thesis at the University of Helsinki in April.

The University of Helsikinki Feb. 28, 2013 press release written by Minna Merilainen and which originated the new item provides details about the research,

“Due to the fact that silver in nanoparticle form is bactericidal and also fungicidal and also prevents the reproduction of those organisms, it is now used in various consumer goods ranging from wound dressing products to sportswear,” says Jukka Niskanen from the Laboratory of Polymer Chemistry at the University of Helsinki, Finland.A joint study from the University of Helsinki and the National Institute of Chemical Physics and Biophysics (Tallinn, Estonia), Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus, shows that silver nanoparticles are apparently no more hazardous to aquatic ecosystems than a water-soluble silver salt. The study compared the ecotoxicity of silver nanoparticles and a water-soluble silver salt.

“Our conclusion was that the environmental risks caused by silver nanoparticles are seemingly not higher than those caused by a silver salt. However, more research is required to reach a clear understanding of the safety of silver-containing particles,” Niskanen says.

Indeed, silver nanoparticles were found to be ten times less toxic than the soluble silver nitrate - a soluble silver salt used for the comparison.

The bioavailability of silver varies in different test media

To explain this phenomenon, the researchers refer to the variance in the bioavailability of silver to crustaceans in different tested media.

University lecturer Olli-Pekka Penttinen from the Department of Environmental Sciences of the University of Helsinki goes on to note that the inorganic and organic compounds dissolved in natural waters (such as humus), water hardness and sulfides have a definite impact on the bioavailability of silver. Due to this, the toxicity of both types of tested nanoparticles and the silver nitrate measured in the course of the study was lower in natural water than in artificial fresh water.

The toxicity of silver nanoparticles and silver ions was studied using two aquatic crustaceans, a water flea (Daphnia magna) and a fairy shrimp ( Thamnocephalus platyurus). Commercially available protein-stabilised particles and particles coated with a water-soluble, non-toxic polymer, specifically synthesised for the purpose, were used in the study. First, the polymers were produced utilising a controlled radical polymerization method. Synthetic polymer-grafted silver particles were then produced by attaching the water-soluble polymer to the surface of the silver with a sulfur bond.

Jukka Niskanen has utilised such polymerisation and coupling reactions in his doctoral dissertation. Polymeric and hybrid materials: polymers on particle surfaces and air-water interfaces, studying several hybrid nanomaterials , i.e., combinations of synthetic polymers and inorganic (gold, silver and montmorillonite) nanoparticles....

It was previously known from other studies and research results that silver changes the functioning of proteins and enzymes. It has also been shown that silver ions can prevent the replication of DNA. Concerning silver nanoparticles, tests conducted on various species of bacteria and fungi have indicated that their toxicity varies. For example, gram-negative bacteria such as Escherichia coli are more sensitive to silver nanoparticles than gram-positive ones (such as Staphylococcus aureus). The difference in sensitivity is caused by the structural differences of the cell membranes of the bacteria. The cellular toxicity of silver nanoparticles in mammals has been studied as well. It has been suggested that silver nanoparticles enter cells via endocytosis and then function in the same manner as in bacterial cells, damaging DNA and hindering cell respiration. Electron microscope studies have shown that human skin is permeable to silver nanoparticles and that the permeability of damaged skin is up to four times higher than that of healthy skin.

While this Finnish-Estonian study suggests that silver nanoparticles do not have a negative impact on the tested crustaceans in an aquatic environment, there’s a study from Duke University suggests that silver nanoparticles in wastewater which is later put to agricultural use may cause problems. From the Feb. 27, 2013 news release on EurekAlert,

In experiments mimicking a natural environment, Duke University researchers have demonstrated that the silver nanoparticles used in many consumer products can have an adverse effect on plants and microorganisms.

The main route by which these particles enter the environment is as a by-product of water and sewage treatment plants. [emphasis] The nanoparticles are too small to be filtered out, so they and other materials end up in the resulting “sludge,” which is then spread on the land surface as a fertilizer.

The researchers found that one of the plants studied, a common annual grass known as Microstegium vimeneum, had 32 percent less biomass in the mesocosms treated with the nanoparticles. Microbes were also affected by the nanoparticles, Colman [Benjamin Colman, a post-doctoral fellow in Duke’s biology department and a member of the Center for the Environmental Implications of Nanotechnology (CEINT)] said. One enzyme associated with helping microbes deal with external stresses was 52 percent less active, while another enzyme that helps regulate processes within the cell was 27 percent less active. The overall biomass of the microbes was also 35 percent lower, he said.

“Our field studies show adverse responses of plants and microorganisms following a single low dose of silver nanoparticles applied by a sewage biosolid,” Colman said. “An estimated 60 percent of the average 5.6 million tons of biosolids produced each year is applied to the land for various reasons, and this practice represents an important and understudied route of exposure of natural ecosystems to engineered nanoparticles.”

“Our results show that silver nanoparticles in the biosolids, added at concentrations that would be expected, caused ecosystem-level impacts,” Colman said. “Specifically, the nanoparticles led to an increase in nitrous oxide fluxes, changes in microbial community composition, biomass, and extracellular enzyme activity, as well as species-specific effects on the above-ground vegetation.”

As previously noted, these two studies show just how complex the questions of risk and nanoparticles can become.  You can find out more about the Finish-Estonian study,

Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus by  Irina Blinova, Jukka Niskanen, Paula Kajankari, Liina Kanarbik, Aleksandr Käkinen, Heikki Tenhu, Olli-Pekka Penttinen, and Anne Kahru. Environmental Science and Pollution Research published November 11, 2012 online

The publisher offers an interesting option for this article. While it is behind a paywall, access is permitted through a temporary window if you want to preview a portion of the article that lies beyond the abstract.

Meanwhile here’s the article by the Duke researchers,

Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Responses under Realistic Field Scenario by Benjamin P. Colman, Christina L. Arnaout, Sarah Anciaux, Claudia K. Gunsch, Michael F. Hochella Jr, Bojeong Kim, Gregory V. Lowry,  Bonnie M. McGill, Brian C. Reinsch, Curtis J. Richardson, Jason M. Unrine, Justin P. Wright, Liyan Yin, and Emily S. Bernhardt. PLoS ONE 2013; 8 (2): e57189 DOI: 10.1371/journal.pone.0057189

This article is open access as are all articles published by the Public Library of Science (PLoS) journals.

For anyone interested in the Duke University/CEINT mesocosm project, I made mention of it in an Aug. 15, 2011 posting.