Tag Archives: Michel L. Trudeau

Hydro-Québec, lithium-ion batteries, and silicate-based nanoboxes

Hydro-Québec (Canada) is making a bit of a splash these days (this is the third mention within less than a week) on my blog, if nowhere else. The latest development was announced in a Feb. 24, 2015 news item on Nanowerk (Note: A link has been removed),

Researchers from Singapore’s Institute of Bioengineering and Nanotechnology (IBN) of A*STAR and Quebec’s IREQ (Hydro-Québec’s research institute) have synthesized silicate-based nanoboxes that could more than double the energy capacity of lithium-ion batteries as compared to conventional phosphate-based cathodes (“Synthesis of Phase-Pure Li2MnSiO4@C Porous Nanoboxes for High-Capacity Li-Ion Battery Cathodes”). This breakthrough could hold the key to longer-lasting rechargeable batteries for electric vehicles and mobile devices.

A Feb. 24, 2015 Hydro-Québec press release (also on Canadian News Wire), which originated the news item, describe the research and the relationship between the two institutions,

“IBN researchers have successfully achieved simultaneous control of the phase purity and nanostructure of Li2MnSiO4 for the first time,” said Professor Jackie Y. Ying, IBN Executive Director. “This novel synthetic approach would allow us to move closer to attaining the ultrahigh theoretical capacity of silicate-based cathodes for battery applications.”

“We are delighted to collaborate with IBN on this project. IBN’s expertise in synthetic chemistry and nanotechnology allows us to explore new synthetic approaches and nanostructure design to achieve complex materials that pave the way for breakthroughs in battery technology, especially regarding transportation electrification,” said Dr. Karim Zaghib, Director – Energy Storage and Conservation at Hydro-Québec.

Lithium-ion batteries are widely used to power many electronic devices, including smart phones, medical devices and electric vehicles. Their high energy density, excellent durability and lightness make them a popular choice for energy storage. Due to a growing demand for long-lasting, rechargeable lithium-ion batteries for various applications, significant efforts have been devoted to improving the capacity of these batteries. In particular, there is great interest in developing new compounds that may increase energy storage capacity, stability and lifespan compared to conventional lithium phosphate batteries.

The five-year research collaboration between IBN and Hydro-Québec was established in 2011. The researchers plan to further enhance their new cathode materials to create high-capacity lithium-ion batteries for commercialization.

Here’s a link to and a citation for the paper,

Synthesis of phase-pure Li2MnSiO4@C porous nanoboxes for high-capacity Li-ion battery cathodes by Xian-Feng Yang, Jin-Hua Yang, Karim Zaghib, Michel L. Trudeau, and Jackie Y. Ying. Nano Energy Volume 12, March 2015, Pages 305–313 doi:10.1016/j.nanoen.2014.12.021

This paper is behind a paywall.

Here are my two most recent mentions of Hydro-Québec and lithium-ion batteries (both Grafoid and NanoXplore have deals with Hydro-Québec),

Investment in graphene (Grafoid), the Canadian government, and a 2015 federal election (Feb. 23, 2015)

NanoXplore: graphene and graphite in Québec (Canada) (Feb. 20, 2015)