Tag Archives: microwave

Using your microwave for DIY (do it yourself) solar panels?

The researchers at Oregon State University seem to think that their discovery will scale up to commercial levels for manufacturing solar panels that are cheaper and easier. Still, if all you need is a microwave, then I imagine some enterprising do-it-yourselfer will give this technique a try.

Microwave oven

This microwave oven technology is being used to produce solar cells with less energy, expense and environmental concerns. (Photo courtesy of Oregon State University Copied from: http://www.flickr.com/photos/oregonstateuniversity/7841150094/in/photostream)

From the Aug. 24, 2012 news item on Nanowerk,

The same type of microwave oven technology that most people use to heat up leftover food has found an important application in the solar energy industry, providing a new way to make thin-film photovoltaic products with less energy, expense and environmental concerns.

Engineers at Oregon State University have for the first time developed a way to use microwave heating in the synthesis of copper zinc tin sulfide, a promising solar cell compound that is less costly and toxic than some solar energy alternatives.

The Oregon State University Aug. 24, 2012 news release which originated the news item provides additional detail about the technology and future plans for commercializing it,

“All of the elements used in this new compound are benign and inexpensive, and should have good solar cell performance,” said Greg Herman, an associate professor in the School of Chemical, Biological and Environmental Engineering at OSU.

“Several companies are already moving in this direction as prices continue to rise for some alternative compounds that contain more expensive elements like indium,” he said. “With some improvements in its solar efficiency this new compound should become very commercially attractive.”

These thin-film photovoltaic technologies offer a low cost, high volume approach to manufacturing solar cells. A new approach is to create them as an ink composed of nanoparticles, which could be rolled or sprayed – by approaches such as old-fashioned inkjet printing – to create solar cells. [emphasis mine]

To further streamline that process, researchers have now succeeded in using microwave heating, instead of conventional heating, to reduce reaction times to minutes or seconds, and allow for great control over the production process. This “one-pot” synthesis is fast, cheap and uses less energy, researchers say, and has been utilized to successfully create nanoparticle inks that were used to fabricate a photovoltaic device.

From a do-it-yourself point of view, this technology sounds even more promising with the mention of an inkjet printer.

Replacing the lithographic process for semi-conductor chips with self-assemby; one step closer in Canada

A news release from Canada’s National Institute of Nanotechnoloy (NINT), their first this year,  about researchers at NINT and at the University of Alberta claiming that a,

Decrease in self-assembly processing time creates viable alternative to conventional lithography

Thanks to a microwave oven, the fundamental nanotechnology process of self assembly may soon replace the lithographic processing use to make the ubiquitous semi-conductor chips. By using microwaves, researchers at Canada’s National Institute for Nanotechnology (NINT) and the University of Alberta have dramatically decreased the cooking time for a specific molecular self-assembly process used to assemble block copolymers, and have now made it a viable alternative to the conventional lithography process for use in patterning semi-conductors. When the team of chemists and electrical engineering researchers replaced convective heat with a microwave oven, nano-sized particles were encouraged to organize themselves into very regular patterns extremely quickly – reducing the processing time from days to less than one minute. [emphasis mine]

The processing time is very important if this self-assembly process is to be introduced to industrial semi-conductor fabrication. In the International Technology Roadmap for Semiconductors, the promise of self-assembly to address the need to put more and more functionality onto chips was recognized. The block co-polymer method, which directs nanomaterials to create molds and then fills them in with a target material, was known to be capable of creating very detailed patterns many times smaller than current technology. But previously the time needed for molecules to organize themselves was too long to be useful for the industry. The change of the heat source has brought that processing time well under the suggested target of 4 minutes.

“This is one of the first examples of the self-assembly process being used to address a real world problem for the semi-conductor industry,” said Dr. Jillian Buriak “We’ve got the process; the next step is to exploit it to make something useful.”

The process for quicker assembly is outlined in new paper in the American Chemical Society’s ACS Nano, posted on-line October 21, 2010. http://pubs.acs.org/doi/abs/10.1021/nn102387c

The news release can be found Eureka Alert but is not yet available on NINT’s website.