Tag Archives: monkeys

Monkeys, mind control, robots, prosthetics, and the 2014 World Cup (soccer/football)

The idea that a monkey in the US could control a robot’s movements in Japan is stunning. Even more stunning is the fact that the research is four years old. It was discussed publicly in a Jan. 15, 2008 article by Sharon Gaudin for Computer World,

Scientists in the U.S. and Japan have successfully used a monkey’s brain activity to control a humanoid robot — over the Internet.

This research may only be a few years away from helping paralyzed people walk again by enabling them to use their thoughts to control exoskeletons attached to their bodies, according to Miguel Nicolelis, a professor of neurobiology at Duke University and lead researcher on the project.

“This is an attempt to restore mobility to people,” said Nicolelis. “We had the animal trained to walk on a treadmill. As it walked, we recorded its brain activity that generated its locomotion pattern. As the animal was walking and slowing down and changing his pattern, his brain activity was driving a robot in Japan in real time.”

This video clip features an animated monkey simulating control of  a real robot in Japan (the Computational Brain Project of the Japan Science and Technology Agency (JST) in Kyoto partnered with Duke University for this project),

I wonder if the Duke researchers or communications staff thought that the sight of real rhesus monkeys on treadmills might be too disturbing. While we’re on the topic of simulation, I wonder where the robot in the clip actually resides. Quibbles about the video clip aside, I have no doubt that the research took place.

There’s a more recent (Oct. 5, 2011) article, about the work being done in Nicolelis’ laboratory at Duke University, by Ed Yong for Discover Magazine (mentioned previously described in my Oct. 6, 2011 posting),

This is where we are now: at Duke University, a monkey controls a virtual arm using only its thoughts. Miguel Nicolelis had fitted the animal with a headset of electrodes that translates its brain activity into movements. It can grab virtual objects without using its arms. It can also feel the objects without its hands, because the headset stimulates its brain to create the sense of different textures. Monkey think, monkey do, monkey feel – all without moving a muscle.
And this is where  Nicolelis wants to be in three years: a young quadriplegic Brazilian man strolls confidently into a massive stadium. He controls his four prosthetic limbs with his thoughts, and they in turn send tactile information straight to his brain. The technology melds so fluidly with his mind that he confidently runs up and delivers the opening kick of the 2014 World Cup.

This sounds like a far-fetched dream, but Nicolelis – a big soccer fan – is talking to the Brazilian government to make it a reality.

According to Yong, Nicolelis has created an international consortium to support the Walk Again Project. From the project home page,

The Walk Again Project, an international consortium of leading research centers around the world represents a new paradigm for scientific collaboration among the world’s academic institutions, bringing together a global network of scientific and technological experts, distributed among all the continents, to achieve a key humanitarian goal.

The project’s central goal is to develop and implement the first BMI [brain-machine interface] capable of restoring full mobility to patients suffering from a severe degree of paralysis. This lofty goal will be achieved by building a neuroprosthetic device that uses a BMI as its core, allowing the patients to capture and use their own voluntary brain activity to control the movements of a full-body prosthetic device. This “wearable robot,” also known as an “exoskeleton,” will be designed to sustain and carry the patient’s body according to his or her mental will.

In addition to proposing to develop new technologies that aim at improving the quality of life of millions of people worldwide, the Walk Again Project also innovates by creating a complete new paradigm for global scientific collaboration among leading academic institutions worldwide. According to this model, a worldwide network of leading scientific and technological experts, distributed among all the continents, come together to participate in a major, non-profit effort to make a fellow human being walk again, based on their collective expertise. These world renowned scholars will contribute key intellectual assets as well as provide a base for continued fundraising capitalization of the project, setting clear goals to establish fundamental advances toward restoring full mobility for patients in need.

It’s the exoskeleton described on the Walk Again Project home page that Nicolelis is hoping will enable a young Brazilian quadriplegic to deliver the opening kick for the 2014 World Cup (soccer/football) in Brazil.

Advertising for the 21st Century: B-Reel, ‘storytelling’, and mind control

Erin Schulte at Fast Company introduced me to B-Reel, a digital production company, via her Sept. 30, 2011 posting,

Though Swedish hybrid production company B-Reel has been around since 1999, merging film, interactive, games, and mobile to create new methods of storytelling, it exploded into the broader consciousness with 2010’s “The Wilderness Downtown.”

The interactive short film dreamed up by Chris Milk and the band Arcade Fire for its song “We Used To Wait” is a Gen-Y paean of childhood nostalgia, where the singer pines for a simpler, not-so-far away yesteryear where people wrote love letters on paper and anxiously awaited the arrival of an envelope in return.

Here’s a description (followed by B-Reel’s promotiional video) of the Wilderness Downtown project, which was initiated by Google, from the company website,

Featuring Arcade Fire’s new single “We Used To Wait” from their latest album The Suburbs, The Wilderness Downtown is an interactive music video built in HTML 5, using Google Maps and Street-view for Google Chrome Experiments. The film takes an intimate approach by prompting users to input an address from their childhood which then places them at the center of the film’s narrative. Viewers see themselves in the film as they run through the streets of their old neighborhood and finally reach their childhood home. This is tied very closely to the song’s lyrics to make for a powerful emotional experience.

Here’s the video,

The making of the Wilderness Downtown. from B-Reel & B-Reel Films on Vimeo.

A subtle form of advertising for Google, this showcases some of the more innovative approaches that B-Reel takes to its work.

I did watch the Fast Company video interview with Anders Wahlquist, B-Reel Chief Executive Officer, which is included with Schulte’s posting, and he mentions that he founded the company with the intention of combining filmmaking, storytelling, and interactivity. It’s interesting how often the words storytelling and story are used  in the service of advertising and marketing but to replace those words, i.e., it’s no longer about advertising; it’s about telling your story or possibly it’s about mind control. From the July 21, 2011 posting on the B-Reel website,

From B-Reel’s secret laboratory comes a brain-bending experimental project utilising a number of cutting edge tech tools. B-Reel’s UK creative director Riccardo Giraldi led the development of the project, and you can view the explanatory video here, as well as some of the creative musings in a write up below.

The idea is quite simple.

What if you could run a slot car race using your brain?

We did a bit of research on this and it didn’t take long to realise we already have all we need to make these ideas come to life; we just needed to connect the dots and find an easier way to integrate different disciplines to make the magic happen.

These are the steps B-Reel went through:

– researched components and library we could have used

– procured a device that reads mind signals, a Scalextric, Arduino, some tools and electric components

– designed a small electronic circuit to connect Arduino to Scalextric

– wrote the Arduino script to control the Scalextric

– wrote a small Processing application to control the car with the computer mouse

– connected the brain reader device signal to the Scalextric

There are few commercial devices that claim to safely read your brain signals. We ended up choosing the Mindwave headset from Neurosky for this experiment because of its unobtrusive design and its affordable price.

Then we got a basic version Scalextric and started to play around with it. Slot cars are awesome. Digital is already the past – tangible is the future. The principle is straightforward: there are two cars on separate tracks that you can control with a handset. The more current you let pass through the handset, the faster the cars go.

Here’s the ‘mind control’ video,

B-Reel Performs Mind Tricks from B-Reel & B-Reel Films on Vimeo.

I wrote about rats with robotic brains and monkeys (at Duke University in the US) that control robots  in Japan with their thoughts in my Oct. 4, 2011 posting.  I find the resemblance between these projects disconcertingly close and I have to admit I would not have considered advertising applications at this stage of the technology development.

If you are interested in more about mind control projects, Ed Yong at his Not Exactly Rocket Science blog (on the Discover blog network) has written an Oct. 5, 2011 posting titled, Monkeys grab and feel virtual objects with thoughs alone (and what this means for the World Cup). Excerpted from the posting,

This is where we are now: at Duke University, a monkey controls a virtual arm using only its thoughts. Miguel Nicolelis had fitted the animal with a headset of electrodes that translates its brain activity into movements. It can grab virtual objects without using its arms. It can also feel the objects without its hands, because the headset stimulates its brain to create the sense of different textures. Monkey think, monkey do, monkey feel – all without moving a muscle.
And this is where  Nicolelis wants to be in three years: a young quadriplegic Brazilian man strolls confidently into a massive stadium. He controls his four prosthetic limbs with his thoughts, and they in turn send tactile information straight to his brain. The technology melds so fluidly with his mind that he confidently runs up and delivers the opening kick of the 2014 World Cup.

This sounds like a far-fetched dream, but Nicolelis – a big soccer fan – is talking to the Brazilian government to make it a reality. He has created an international consortium called the Walk Again Project, consisting of non-profit research institutions in the United States, Brazil, Germany and Switzerland. Their goal is to create a “high performance brain-controlled prosthetic device that enables patients to finally leave the wheelchair behind.”

I’m not sure what the* intention was in 1999 when the company name, B-Reel, was chosen but today the wordplay has a haunting quality. Especially when you consider that mind control doesn’t necessarily mean people are in control. After all there’s my Sept. 28, 2011 posting about full size vehicles titled Cars that read minds? If you notice, the researcher at B-Reel has to shift his brain function in order to exert control so who’s in charge the researcher or the model car? Extending that question, will you have to change your mind so the car can read it?

* ‘the’ added May 15, 2014.

Rats with robot brains

A robotic cerebellum has been implanted into a rat’s skull. From the Oct. 4, 2011 news item on Science Daily,

With new cutting-edge technology aimed at providing amputees with robotic limbs, a Tel Aviv University researcher has successfully implanted a robotic cerebellum into the skull of a rodent with brain damage, restoring its capacity for movement.

The cerebellum is responsible for co-ordinating movement, explains Prof. Matti Mintz of TAU’s [Tel Aviv University] Department of Psychology. When wired to the brain, his “robo-cerebellum” receives, interprets, and transmits sensory information from the brain stem, facilitating communication between the brain and the body. To test this robotic interface between body and brain, the researchers taught a brain-damaged rat to blink whenever they sounded a particular tone. The rat could only perform the behavior when its robotic cerebellum was functional.

This is the third item I’ve found in the last few weeks about computer chips being implanted in brains. I found the other two items in a discussion about extreme human enhancement on Slate.com (first mentioned in my Sept. 15, 2011 posting). One of the Brad Allenby [the other two discussants are Nicholas Agar and Kyle Munkittrick] entries (posted Sept. 16, 2011) featured these two references,

Experiments that began here at Arizona State University and have been continued at Duke and elsewhere have involved monkeys learning to move mechanical arms to which they are wirelessly connected as if they were part of themselves, using them effectively even when the arms (but not the monkey) are shifted up to MIT and elsewhere. More recently, monkeys with chips implanted in their brains [2008 according to the video on the website] at Duke University have kept a robot wirelessly connected to their chip running in Japan. Similar technologies are being explored to enable paraplegics and other injured people to interact with their environments and to communicate effectively, as well. The upshot is that “the body” is becoming more than just a spatial presence; rather, it becomes a designed extended cognitive network.

The projects are almost mirror images of each other. The rat can’t move without input from its robotic cerebellum while the monkeys control the robots’ movement with their thoughts. From the Oct. 3, 2011 news release on Eureka Alert,

According to the researcher, the chip is designed to mimic natural neuronal activity. “It’s a proof of the concept that we can record information from the brain, analyze it in a way similar to the biological network, and then return it to the brain,” says Prof. Mintz, who recently presented his research at the Strategies for Engineered Negligible Senescence meeting in Cambridge, UK.

In reading these items, I can’t help but remember that plastic surgery was a means of helping soldiers with horrendous wounds and it has now become part of the cosmetics industry. Given that history, it is possible to imagine (or to assume) that these brain ‘repairs’ could be used to augment or reshape our brains to increase intelligence, heighten senses, improve motor coordination, etc. In short. to accomplish very different goals than those originally set out.