What I find most exciting about this conference is the range of countries being represented. At first glance, I’ve found Argentina, Thailand, Senegal, Ivory Coast, Costa Rica and more in a science meeting being held in Canada. Thank you to the organizers and to the organization International Network for Government Science Advice (INGSA)
As I’ve noted many times here in discussing the science advice we (Canadians) get through the Council of Canadian Academies (CCA), there’s far too much dependence on the same old, same old countries for international expertise. Let’s hope this meeting changes things.
The conference (with the theme Build Back Wiser: Knowledge, Policy and Publics in Dialogue) started on Monday, August 30, 2021 and is set to run for four days in Montréal, Québec. and as an online event The Premier of Québec, François Legault, and Mayor of Montréal, Valérie Plante (along with Peter Gluckman, Chair of INGSA and Rémi Quirion, Chief Scientist of Québec; this is the only province with a chief scientist) are there to welcome those who are present in person.
You can find a PDF of the four day programme here or go to the INGSA 2021 website for the programme and more. Here’s a sample from the programme of what excited me, from Day 1 (August 30, 2021),
8:45 | Plenary | Roundtable: Reflections from Covid-19: Where to from here?
Moderator: Mona Nemer – Chief Science Advisor of Canada
Speakers: Joanne Liu – Professor, School of Population and Global Health, McGill University, Quebec, Canada Chor Pharn Lee – Principal Foresight Strategist at Centre for Strategic Futures, Prime Minister’s Office, Singapore Andrea Ammon – Director of the European Centre for Disease Prevention and Control, Sweden Rafael Radi – President of the National Academy of Sciences; Coordinator of Scientific Honorary Advisory Group to the President on Covid-19, Uruguay
9:45 | Panel: Science advice during COVID-19: What factors made the difference?
Moderator:
Romain Murenzi – Executive Director, The World Academy of Sciences (TWAS), Italy
Speakers:
Stephen Quest – Director-General, European Commission’s Joint Research Centre (JRC), Belgium Yuxi Zhang – Postdoctoral Research Fellow, Blavatnik School of Government, University of Oxford, United Kingdom Amadou Sall – Director, Pasteur Institute of Dakar, Senegal Inaya Rakhmani – Director, Asia Research Centre, Universitas Indonesia
One last excerpt, from Day 2 (August 31, 2021),
Studio Session | Panel: Science advice for complex risk assessment: dealing with complex, new, and interacting threats
Moderator: Eeva Hellström – Senior Lead, Strategy and Foresight, Finnish Innovation Fund Sitra, Finland
Speakers: Albert van Jaarsveld – Director General and Chief Executive Officer, International Institute for Applied Systems Analysis, Austria Abdoulaye Gounou – Head, Benin’s Office for the Evaluation of Public Policies and Analysis of Government Action Catherine Mei Ling Wong – Sociologist, LRF Institute for the Public Understanding of Risk, National University of Singapore Andria Grosvenor – Deputy Executive Director (Ag), Caribbean Disaster Emergency Management Agency, Barbados
…
Studio Session | Innovations in Science Advice – Science Diplomacy driving evidence for policymaking
Moderator: Mehrdad Hariri – CEO and President of the Canadian Science Policy Centre, Canada
Speakers: Primal Silva – Canadian Food Inspection Agency’s Chief Science Operating Officer, Canada Zakri bin Abdul Hamid – Chair of the South-East Asia Science Advice Network (SEA SAN); Pro-Chancellor of Multimedia University in Malaysia Christian Arnault Emini – Senior Economic Adviser to the Prime Minister’s Office in Cameroon Florence Gauzy Krieger and Sebastian Goers – RLS-Sciences Network [See more about RLS-Sciences below] Elke Dall and Angela Schindler-Daniels – European Union Science Diplomacy Alliance Alexis Roig – CEO, SciTech DiploHub – Barcelona Science and Technology Diplomacy Hub, Spain
RLS-Sciences works under the framework of the Regional Leaders Summit. The Regional Leaders Summit (RLS) is a forum comprising seven regional governments (state, federal state, or provincial), which together represent approximately one hundred eighty million people across five continents, and a collective GDP of three trillion USD. The regions are: Bavaria (Germany), Georgia (USA), Québec (Canada), São Paulo (Brazil), Shandong (China), Upper Austria (Austria), and Western Cape (South Africa). Since 2002, the heads of government for these regions have met every two years for a political summit. These summits offer the RLS regions an opportunity for political dialogue.
Getting back to the main topic of this post, INGSA has some satellite events on offer, including this on Open Science,
Open Science: Science for the 21st century |
Science ouverte : la science au XXIe siècle
Thursday September 9, 2021; 11am-2pm EST | Jeudi 9 septembre 2021, 11 h à 14 h (HNE).
This event will be in English and French (using simultaneous translation) | Cet événement se déroulera en anglais et en français (traduction simultanée)
In the past 18 months we have seen an unprecedented level of sharing as medical scientists worked collaboratively and shared data to find solutions to the COVID-19 pandemic. The pandemic has accelerated the ongoing cultural shift in research practices towards open science.
This acceleration of the discovery/research process presents opportunities for institutions and governments to develop infrastructure, tools, funding, policies, and training to support, promote, and reward open science efforts. It also presents new opportunities to accelerate progress towards the UN Agenda 2030 Sustainable Development Goals through international scientific cooperation.
At the same time, it presents new challenges: rapid developments in open science often outpace national open science policies, funding, and infrastructure frameworks. Moreover, the development of international standard setting instruments, such as the future UNESCO Recommendation on Open Science, requires international harmonization of national policies, the establishment of frameworks to ensure equitable participation, and education, training, and professional development.
This 3-hour satellite event brings together international and national policy makers, funders, and experts in open science infrastructure to discuss these issues.
…
The outcome of the satellite event will be a summary report with recommendations for open science policy alignment at institutional, national, and international levels.
The event will be hosted on an events platform, with simultaneous interpretation in English and French. Participants will be able to choose which concurrent session they participate in upon registration. Registration is free but will be closed when capacity is reached.
This satellite event takes place in time for an interesting anniversary. The Montreal Neurological Institute (MNI), also known as Montreal Neuro, declared itself as Open Science in 2016, the first academic research institute (as far as we know) to do so in the world (see my January 22, 2016 posting for details about their open science initiative and my December 19, 2016 posting for more about their open science and their decision to not pursue patents for a five year period).
Taking up from where I left off with my comments on Competing in a Global Innovation Economy: The Current State of R and D in Canada or as I prefer to call it the Third assessment of Canadas S&T (science and technology) and R&D (research and development). (Part 1 for anyone who missed it).
Is it possible to get past Hedy?
Interestingly (to me anyway), one of our R&D strengths, the visual and performing arts, features sectors where a preponderance of people are dedicated to creating culture in Canada and don’t spend a lot of time trying to make money so they can retire before the age of 40 as so many of our start-up founders do. (Retiring before the age of 40 just reminded me of Hollywood actresses {Hedy] who found and still do find that work was/is hard to come by after that age. You may be able but I’m not sure I can get past Hedy.) Perhaps our business people (start-up founders) could take a leaf out of the visual and performing arts handbook? Or, not. There is another question.
Does it matter if we continue to be a ‘branch plant’ economy? Somebody once posed that question to me when I was grumbling that our start-ups never led to larger businesses and acted more like incubators (which could describe our R&D as well),. He noted that Canadians have a pretty good standard of living and we’ve been running things this way for over a century and it seems to work for us. Is it that bad? I didn’t have an answer for him then and I don’t have one now but I think it’s a useful question to ask and no one on this (2018) expert panel or the previous expert panel (2013) seems to have asked.
I appreciate that the panel was constrained by the questions given by the government but given how they snuck in a few items that technically speaking were not part of their remit, I’m thinking they might have gone just a bit further. The problem with answering the questions as asked is that if you’ve got the wrong questions, your answers will be garbage (GIGO; garbage in, garbage out) or, as is said, where science is concerned, it’s the quality of your questions.
On that note, I would have liked to know more about the survey of top-cited researchers. I think looking at the questions could have been quite illuminating and I would have liked some information on from where (geographically and area of specialization) they got most of their answers. In keeping with past practice (2012 assessment published in 2013), there is no additional information offered about the survey questions or results. Still, there was this (from the report released April 10, 2018; Note: There may be some difference between the formatting seen here and that seen in the document),
3.1.2 International Perceptions of Canadian Research
As with the 2012 S&T report, the CCA commissioned a survey of top-cited researchers’ perceptions of Canada’s research strength in their field or subfield relative to that of other countries (Section 1.3.2). Researchers were asked to identify the top five countries in their field and subfield of expertise: 36% of respondents (compared with 37% in the 2012 survey) from across all fields of research rated Canada in the top five countries in their field (Figure B.1 and Table B.1 in the appendix). Canada ranks fourth out of all countries, behind the United States, United Kingdom, and Germany, and ahead of France. This represents a change of about 1 percentage point from the overall results of the 2012 S&T survey. There was a 4 percentage point decrease in how often France is ranked among the top five countries; the ordering of the top five countries, however, remains the same.
When asked to rate Canada’s research strength among other advanced countries in their field of expertise, 72% (4,005) of respondents rated Canadian research as “strong” (corresponding to a score of 5 or higher on a 7-point scale) compared with 68% in the 2012 S&T survey (Table 3.4). [pp. 40-41 Print; pp. 78-70 PDF]
Before I forget, there was mention of the international research scene,
Growth in research output, as estimated by number of publications, varies considerably for the 20 top countries. Brazil, China, India, Iran, and South Korea have had the most significant increases in publication output over the last 10 years. [emphases mine] In particular, the dramatic increase in China’s output means that it is closing the gap with the United States. In 2014, China’s output was 95% of that of the United States, compared with 26% in 2003. [emphasis mine]
Table 3.2 shows the Growth Index (GI), a measure of the rate at which the research output for a given country changed between 2003 and 2014, normalized by the world growth rate. If a country’s growth in research output is higher than the world average, the GI score is greater than 1.0. For example, between 2003 and 2014, China’s GI score was 1.50 (i.e., 50% greater than the world average) compared with 0.88 and 0.80 for Canada and the United States, respectively. Note that the dramatic increase in publication production of emerging economies such as China and India has had a negative impact on Canada’s rank and GI score (see CCA, 2016).
As long as I’ve been blogging (10 years), the international research community (in particular the US) has been looking over its shoulder at China.
Patents and intellectual property
As an inventor, Hedy got more than one patent. Much has been made of the fact that despite an agreement, the US Navy did not pay her or her partner (George Antheil) for work that would lead to significant military use (apparently, it was instrumental in the Bay of Pigs incident, for those familiar with that bit of history), GPS, WiFi, Bluetooth, and more.
Some comments about patents. They are meant to encourage more innovation by ensuring that creators/inventors get paid for their efforts .This is true for a set time period and when it’s over, other people get access and can innovate further. It’s not intended to be a lifelong (or inheritable) source of income. The issue in Lamarr’s case is that the navy developed the technology during the patent’s term without telling either her or her partner so, of course, they didn’t need to compensate them despite the original agreement. They really should have paid her and Antheil.
The current patent situation, particularly in the US, is vastly different from the original vision. These days patents are often used as weapons designed to halt innovation. One item that should be noted is that the Canadian federal budget indirectly addressed their misuse (from my March 16, 2018 posting),
Surprisingly, no one else seems to have mentioned a new (?) intellectual property strategy introduced in the document (from Chapter 2: Progress; scroll down about 80% of the way, Note: The formatting has been changed),
Budget 2018 proposes measures in support of a new Intellectual Property Strategy to help Canadian entrepreneurs better understand and protect intellectual property, and get better access to shared intellectual property.
What Is a Patent Collective?
A Patent Collective is a way for firms to share, generate, and license or purchase intellectual property. The collective approach is intended to help Canadian firms ensure a global “freedom to operate”, mitigate the risk of infringing a patent, and aid in the defence of a patent infringement suit.
Budget 2018 proposes to invest $85.3 million over five years, starting in 2018–19, with $10 million per year ongoing, in support of the strategy. The Minister of Innovation, Science and Economic Development will bring forward the full details of the strategy in the coming months, including the following initiatives to increase the intellectual property literacy of Canadian entrepreneurs, and to reduce costs and create incentives for Canadian businesses to leverage their intellectual property:
To better enable firms to access and share intellectual property, the Government proposes to provide $30 million in 2019–20 to pilot a Patent Collective. This collective will work with Canada’s entrepreneurs to pool patents, so that small and medium-sized firms have better access to the critical intellectual property they need to grow their businesses.
To support the development of intellectual property expertise and legal advice for Canada’s innovation community, the Government proposes to provide $21.5 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada. This funding will improve access for Canadian entrepreneurs to intellectual property legal clinics at universities. It will also enable the creation of a team in the federal government to work with Canadian entrepreneurs to help them develop tailored strategies for using their intellectual property and expanding into international markets.
To support strategic intellectual property tools that enable economic growth, Budget 2018 also proposes to provide $33.8 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada, including $4.5 million for the creation of an intellectual property marketplace. This marketplace will be a one-stop, online listing of public sector-owned intellectual property available for licensing or sale to reduce transaction costs for businesses and researchers, and to improve Canadian entrepreneurs’ access to public sector-owned intellectual property.
The Government will also consider further measures, including through legislation, in support of the new intellectual property strategy.
Helping All Canadians Harness Intellectual Property
Intellectual property is one of our most valuable resources, and every Canadian business owner should understand how to protect and use it.
To better understand what groups of Canadians are benefiting the most from intellectual property, Budget 2018 proposes to provide Statistics Canada with $2 million over three years to conduct an intellectual property awareness and use survey. This survey will help identify how Canadians understand and use intellectual property, including groups that have traditionally been less likely to use intellectual property, such as women and Indigenous entrepreneurs. The results of the survey should help the Government better meet the needs of these groups through education and awareness initiatives.
The Canadian Intellectual Property Office will also increase the number of education and awareness initiatives that are delivered in partnership with business, intermediaries and academia to ensure Canadians better understand, integrate and take advantage of intellectual property when building their business strategies. This will include targeted initiatives to support underrepresented groups.
Finally, Budget 2018 also proposes to invest $1 million over five years to enable representatives of Canada’s Indigenous Peoples to participate in discussions at the World Intellectual Property Organization related to traditional knowledge and traditional cultural expressions, an important form of intellectual property.
It’s not wholly clear what they mean by ‘intellectual property’. The focus seems to be on patents as they are the only intellectual property (as opposed to copyright and trademarks) singled out in the budget. As for how the ‘patent collective’ is going to meet all its objectives, this budget supplies no clarity on the matter. On the plus side, I’m glad to see that indigenous peoples’ knowledge is being acknowledged as “an important form of intellectual property” and I hope the discussions at the World Intellectual Property Organization are fruitful.
Over the past decade, the Canadian patent flow in all technical sectors has consistently decreased. Patent flow provides a partial picture of how patents in Canada are exploited. A negative flow represents a deficit of patented inventions owned by Canadian assignees versus the number of patented inventions created by Canadian inventors. The patent flow for all Canadian patents decreased from about −0.04 in 2003 to −0.26 in 2014 (Figure 4.7). This means that there is an overall deficit of 26% of patent ownership in Canada. In other words, fewer patents were owned by Canadian institutions than were invented in Canada.
This is a significant change from 2003 when the deficit was only 4%. The drop is consistent across all technical sectors in the past 10 years, with Mechanical Engineering falling the least, and Electrical Engineering the most (Figure 4.7). At the technical field level, the patent flow dropped significantly in Digital Communication and Telecommunications. For example, the Digital Communication patent flow fell from 0.6 in 2003 to −0.2 in 2014. This fall could be partially linked to Nortel’s US$4.5 billion patent sale [emphasis mine] to the Rockstar consortium (which included Apple, BlackBerry, Ericsson, Microsoft, and Sony) (Brickley, 2011). Food Chemistry and Microstructural [?] and Nanotechnology both also showed a significant drop in patent flow. [p. 83 Print; p. 121 PDF]
Despite a fall in the number of parents for ‘Digital Communication’, we’re still doing well according to statistics elsewhere in this report. Is it possible that patents aren’t that big a deal? Of course, it’s also possible that we are enjoying the benefits of past work and will miss out on future work. (Note: A video of the April 10, 2018 report presentation by Max Blouw features him saying something like that.)
One last note, Nortel died many years ago. Disconcertingly, this report, despite more than one reference to Nortel, never mentions the company’s demise.
Boxed text
While the expert panel wasn’t tasked to answer certain types of questions, as I’ve noted earlier they managed to sneak in a few items. One of the strategies they used was putting special inserts into text boxes including this (from the report released April 10, 2018),
Box 4.2
The FinTech Revolution
Financial services is a key industry in Canada. In 2015, the industry accounted for 4.4%
of Canadia jobs and about 7% of Canadian GDP (Burt, 2016). Toronto is the second largest financial services hub in North America and one of the most vibrant research hubs in FinTech. Since 2010, more than 100 start-up companies have been founded in Canada, attracting more than $1 billion in investment (Moffatt, 2016). In 2016 alone, venture-backed investment in Canadian financial technology companies grew by 35% to $137.7 million (Ho, 2017). The Toronto Financial Services Alliance estimates that there are approximately 40,000 ICT specialists working in financial services in Toronto alone.
AI, blockchain, [emphasis mine] and other results of ICT research provide the basis for several transformative FinTech innovations including, for example, decentralized transaction ledgers, cryptocurrencies (e.g., bitcoin), and AI-based risk assessment and fraud detection. These innovations offer opportunities to develop new markets for established financial services firms, but also provide entry points for technology firms to develop competing service offerings, increasing competition in the financial services industry. In response, many financial services companies are increasing their investments in FinTech companies (Breznitz et al., 2015). By their own account, the big five banks invest more than $1 billion annually in R&D of advanced software solutions, including AI-based innovations (J. Thompson, personal communication, 2016). The banks are also increasingly investing in university research and collaboration with start-up companies. For instance, together with several large insurance and financial management firms, all big five banks have invested in the Vector Institute for Artificial Intelligence (Kolm, 2017).
I’m glad to see the mention of blockchain while AI (artificial intelligence) is an area where we have innovated (from the report released April 10, 2018),
AI has attracted researchers and funding since the 1960s; however, there were periods of stagnation in the 1970s and 1980s, sometimes referred to as the “AI winter.” During this period, the Canadian Institute for Advanced Research (CIFAR), under the direction of Fraser Mustard, started supporting AI research with a decade-long program called Artificial Intelligence, Robotics and Society, [emphasis mine] which was active from 1983 to 1994. In 2004, a new program called Neural Computation and Adaptive Perception was initiated and renewed twice in 2008 and 2014 under the title, Learning in Machines and Brains. Through these programs, the government provided long-term, predictable support for high- risk research that propelled Canadian researchers to the forefront of global AI development. In the 1990s and early 2000s, Canadian research output and impact on AI were second only to that of the United States (CIFAR, 2016). NSERC has also been an early supporter of AI. According to its searchable grant database, NSERC has given funding to research projects on AI since at least 1991–1992 (the earliest searchable year) (NSERC, 2017a).
The University of Toronto, the University of Alberta, and the Université de Montréal have emerged as international centres for research in neural networks and deep learning, with leading experts such as Geoffrey Hinton and Yoshua Bengio. Recently, these locations have expanded into vibrant hubs for research in AI applications with a diverse mix of specialized research institutes, accelerators, and start-up companies, and growing investment by major international players in AI development, such as Microsoft, Google, and Facebook. Many highly influential AI researchers today are either from Canada or have at some point in their careers worked at a Canadian institution or with Canadian scholars.
…
As international opportunities in AI research and the ICT industry have grown, many of Canada’s AI pioneers have been drawn to research institutions and companies outside of Canada. According to the OECD, Canada’s share of patents in AI declined from 2.4% in 2000 to 2005 to 2% in 2010 to 2015. Although Canada is the sixth largest producer of top-cited scientific publications related to machine learning, firms headquartered in Canada accounted for only 0.9% of all AI-related inventions from 2012 to 2014 (OECD, 2017c). Canadian AI researchers, however, remain involved in the core nodes of an expanding international network of AI researchers, most of whom continue to maintain ties with their home institutions. Compared with their international peers, Canadian AI researchers are engaged in international collaborations far more often than would be expected by Canada’s level of research output, with Canada ranking fifth in collaboration. [p. 97-98 Print; p. 135-136 PDF]
The only mention of robotics seems to be here in this section and it’s only in passing. This is a bit surprising given its global importance. I wonder if robotics has been somehow hidden inside the term artificial intelligence, although sometimes it’s vice versa with robot being used to describe artificial intelligence. I’m noticing this trend of assuming the terms are synonymous or interchangeable not just in Canadian publications but elsewhere too. ’nuff said.
Getting back to the matter at hand, t he report does note that patenting (technometric data) is problematic (from the report released April 10, 2018),
The limitations of technometric data stem largely from their restricted applicability across areas of R&D. Patenting, as a strategy for IP management, is similarly limited in not being equally relevant across industries. Trends in patenting can also reflect commercial pressures unrelated to R&D activities, such as defensive or strategic patenting practices. Finally, taxonomies for assessing patents are not aligned with bibliometric taxonomies, though links can be drawn to research publications through the analysis of patent citations. [p. 105 Print; p. 143 PDF]
It’s interesting to me that they make reference to many of the same issues that I mention but they seem to forget and don’t use that information in their conclusions.
Box 6.3
Open Science: An Emerging Approach to Create New Linkages
Open Science is an umbrella term to describe collaborative and open approaches to
undertaking science, which can be powerful catalysts of innovation. This includes
the development of open collaborative networks among research performers, such
as the private sector, and the wider distribution of research that usually results when
restrictions on use are removed. Such an approach triggers faster translation of ideas
among research partners and moves the boundaries of pre-competitive research to
later, applied stages of research. With research results freely accessible, companies
can focus on developing new products and processes that can be commercialized.
Two Canadian organizations exemplify the development of such models. In June
2017, Genome Canada, the Ontario government, and pharmaceutical companies
invested $33 million in the Structural Genomics Consortium (SGC) (Genome Canada,
2017). Formed in 2004, the SGC is at the forefront of the Canadian open science
movement and has contributed to many key research advancements towards new
treatments (SGC, 2018). McGill University’s Montréal Neurological Institute and
Hospital has also embraced the principles of open science. Since 2016, it has been
sharing its research results with the scientific community without restriction, with
the objective of expanding “the impact of brain research and accelerat[ing] the
discovery of ground-breaking therapies to treat patients suffering from a wide range
of devastating neurological diseases” (neuro, n.d.).
This is exciting stuff and I’m happy the panel featured it. (I wrote about the Montréal Neurological Institute initiative in a Jan. 22, 2016 posting.)
More than once, the report notes the difficulties with using bibliometric and technometric data as measures of scientific achievement and progress and open science (along with its cousins, open data and open access) are contributing to the difficulties as James Somers notes in his April 5, 2018 article ‘The Scientific Paper is Obsolete’ for The Atlantic (Note: Links have been removed),
The scientific paper—the actual form of it—was one of the enabling inventions of modernity. Before it was developed in the 1600s, results were communicated privately in letters, ephemerally in lectures, or all at once in books. There was no public forum for incremental advances. By making room for reports of single experiments or minor technical advances, journals made the chaos of science accretive. Scientists from that point forward became like the social insects: They made their progress steadily, as a buzzing mass.
The earliest papers were in some ways more readable than papers are today. They were less specialized, more direct, shorter, and far less formal. Calculus had only just been invented. Entire data sets could fit in a table on a single page. What little “computation” contributed to the results was done by hand and could be verified in the same way.
The more sophisticated science becomes, the harder it is to communicate results. Papers today are longer than ever and full of jargon and symbols. They depend on chains of computer programs that generate data, and clean up data, and plot data, and run statistical models on data. These programs tend to be both so sloppily written and so central to the results that it’s [sic] contributed to a replication crisis, or put another way, a failure of the paper to perform its most basic task: to report what you’ve actually discovered, clearly enough that someone else can discover it for themselves.
Perhaps the paper itself is to blame. Scientific methods evolve now at the speed of software; the skill most in demand among physicists, biologists, chemists, geologists, even anthropologists and research psychologists, is facility with programming languages and “data science” packages. And yet the basic means of communicating scientific results hasn’t changed for 400 years. Papers may be posted online, but they’re still text and pictures on a page.
What would you get if you designed the scientific paper from scratch today? A little while ago I spoke to Bret Victor, a researcher who worked at Apple on early user-interface prototypes for the iPad and now runs his own lab in Oakland, California, that studies the future of computing. Victor has long been convinced that scientists haven’t yet taken full advantage of the computer. “It’s not that different than looking at the printing press, and the evolution of the book,” he said. After Gutenberg, the printing press was mostly used to mimic the calligraphy in bibles. It took nearly 100 years of technical and conceptual improvements to invent the modern book. “There was this entire period where they had the new technology of printing, but they were just using it to emulate the old media.”Victor gestured at what might be possible when he redesigned a journal article by Duncan Watts and Steven Strogatz, “Collective dynamics of ‘small-world’ networks.” He chose it both because it’s one of the most highly cited papers in all of science and because it’s a model of clear exposition. (Strogatz is best known for writing the beloved “Elements of Math” column for The New York Times.)
The Watts-Strogatz paper described its key findings the way most papers do, with text, pictures, and mathematical symbols. And like most papers, these findings were still hard to swallow, despite the lucid prose. The hardest parts were the ones that described procedures or algorithms, because these required the reader to “play computer” in their head, as Victor put it, that is, to strain to maintain a fragile mental picture of what was happening with each step of the algorithm.Victor’s redesign interleaved the explanatory text with little interactive diagrams that illustrated each step. In his version, you could see the algorithm at work on an example. You could even control it yourself….
For anyone interested in the evolution of how science is conducted and communicated, Somers’ article is a fascinating and in depth look at future possibilities.
Subregional R&D
I didn’t find this quite as compelling as the last time and that may be due to the fact that there’s less information and I think the 2012 report was the first to examine the Canadian R&D scene with a subregional (in their case, provinces) lens. On a high note, this report also covers cities (!) and regions, as well as, provinces.
Ontario leads Canada in R&D investment and performance. The province accounts for almost half of R&D investment and personnel, research publications and collaborations, and patents. R&D activity in Ontario produces high-quality publications in each of Canada’s five R&D strengths, reflecting both the quantity and quality of universities in the province. Quebec lags Ontario in total investment, publications, and patents, but performs as well (citations) or better (R&D intensity) by some measures. Much like Ontario, Quebec researchers produce impactful publications across most of Canada’s five R&D strengths. Although it invests an amount similar to that of Alberta, British Columbia does so at a significantly higher intensity. British Columbia also produces more highly cited publications and patents, and is involved in more international research collaborations. R&D in British Columbia and Alberta clusters around Vancouver and Calgary in areas such as physics and ICT and in clinical medicine and energy, respectively. [emphasis mine] Smaller but vibrant R&D communities exist in the Prairies and Atlantic Canada [also referred to as the Maritime provinces or Maritimes] (and, to a lesser extent, in the Territories) in natural resource industries.
Globally, as urban populations expand exponentially, cities are likely to drive innovation and wealth creation at an increasing rate in the future. In Canada, R&D activity clusters around five large cities: Toronto, Montréal, Vancouver, Ottawa, and Calgary. These five cities create patents and high-tech companies at nearly twice the rate of other Canadian cities. They also account for half of clusters in the services sector, and many in advanced manufacturing.
Many clusters relate to natural resources and long-standing areas of economic and research strength. Natural resource clusters have emerged around the location of resources, such as forestry in British Columbia, oil and gas in Alberta, agriculture in Ontario, mining in Quebec, and maritime resources in Atlantic Canada. The automotive, plastics, and steel industries have the most individual clusters as a result of their economic success in Windsor, Hamilton, and Oshawa. Advanced manufacturing industries tend to be more concentrated, often located near specialized research universities. Strong connections between academia and industry are often associated with these clusters. R&D activity is distributed across the country, varying both between and within regions. It is critical to avoid drawing the wrong conclusion from this fact. This distribution does not imply the existence of a problem that needs to be remedied. Rather, it signals the benefits of diverse innovation systems, with differentiation driven by the needs of and resources available in each province. [pp. 132-133 Print; pp. 170-171 PDF]
Intriguingly, there’s no mention that in British Columbia (BC), there are leading areas of research: Visual & Performing Arts, Psychology & Cognitive Sciences, and Clinical Medicine (according to the table on p. 117 Print, p. 153 PDF).
As I said and hinted earlier, we’ve got brains; they’re just not the kind of brains that command respect.
Final comments
My hat’s off to the expert panel and staff of the Council of Canadian Academies. Combining two previous reports into one could not have been easy. As well, kudos to their attempts to broaden the discussion by mentioning initiative such as open science and for emphasizing the problems with bibliometrics, technometrics, and other measures. I have covered only parts of this assessment, (Competing in a Global Innovation Economy: The Current State of R&D in Canada), there’s a lot more to it including a substantive list of reference materials (bibliography).
While I have argued that perhaps the situation isn’t quite as bad as the headlines and statistics may suggest, there are some concerning trends for Canadians but we have to acknowledge that many countries have stepped up their research game and that’s good for all of us. You don’t get better at anything unless you work with and play with others who are better than you are. For example, both India and Italy surpassed us in numbers of published research papers. We slipped from 7th place to 9th. Thank you, Italy and India. (And, Happy ‘Italian Research in the World Day’ on April 15, 2018, the day’s inaugural year. In Italian: Piano Straordinario “Vivere all’Italiana” – Giornata della ricerca Italiana nel mondo.)
Unfortunately, the reading is harder going than previous R&D assessments in the CCA catalogue. And in the end, I can’t help thinking we’re just a little bit like Hedy Lamarr. Not really appreciated in all of our complexities although the expert panel and staff did try from time to time. Perhaps the government needs to find better ways of asking the questions.
***ETA April 12, 2018 at 1500 PDT: Talking about missing the obvious! I’ve been ranting on about how research strength in visual and performing arts and in philosophy and theology, etc. is perfectly fine and could lead to ‘traditional’ science breakthroughs without underlining the point by noting that Antheil was a musician, Lamarr was as an actress and they set the foundation for work by electrical engineers (or people with that specialty) for their signature work leading to WiFi, etc.***
There is, by the way, a Hedy-Canada connection. In 1998, she sued Canadian software company Corel, for its unauthorized use of her image on their Corel Draw 8 product packaging. She won.
More stuff
For those who’d like to see and hear the April 10, 2017 launch for “Competing in a Global Innovation Economy: The Current State of R&D in Canada” or the Third Assessment as I think of it, go here.
For anyone curious about ‘Bombshell: The Hedy Lamarr Story’ to be broadcast on May 18, 2018 as part of PBS’s American Masters series, there’s this trailer,
For the curious, I did find out more about the Hedy Lamarr and Corel Draw. John Lettice’s December 2, 1998 article The Rgister describes the suit and her subsequent victory in less than admiring terms,
Our picture doesn’t show glamorous actress Hedy Lamarr, who yesterday [Dec. 1, 1998] came to a settlement with Corel over the use of her image on Corel’s packaging. But we suppose that following the settlement we could have used a picture of Corel’s packaging. Lamarr sued Corel earlier this year over its use of a CorelDraw image of her. The picture had been produced by John Corkery, who was 1996 Best of Show winner of the Corel World Design Contest. Corel now seems to have come to an undisclosed settlement with her, which includes a five-year exclusive (oops — maybe we can’t use the pack-shot then) licence to use “the lifelike vector illustration of Hedy Lamarr on Corel’s graphic software packaging”. Lamarr, bless ‘er, says she’s looking forward to the continued success of Corel Corporation, …
There’s this excerpt from a Sept. 21, 2015 posting (a pictorial essay of Lamarr’s life) by Shahebaz Khan on The Blaze Blog,
6. CorelDRAW:
For several years beginning in 1997, the boxes of Corel DRAW’s software suites were graced by a large Corel-drawn image of Lamarr. The picture won Corel DRAW’s yearly software suite cover design contest in 1996. Lamarr sued Corel for using the image without her permission. Corel countered that she did not own rights to the image. The parties reached an undisclosed settlement in 1998.
There’s also a Nov. 23, 1998 Corel Draw 8 product review by Mike Gorman on mymac.com, which includes a screenshot of the packaging that precipitated the lawsuit. Once they settled, it seems Corel used her image at least one more time.
One of the winners in Canada’s 2017 federal budget announcement of the Pan-Canadian Artificial Intelligence Strategy was Edmonton, Alberta. It’s a fact which sometimes goes unnoticed while Canadians marvel at the wonderfulness found in Toronto and Montréal where it seems new initiatives and monies are being announced on a weekly basis (I exaggerate) for their AI (artificial intelligence) efforts.
Intriguingly, it seems that Edmonton has higher aims than (an almost unnoticed) leadership in AI. Physicists at the University of Alberta have announced hopes to be just as successful as their AI brethren in a Nov. 27, 2017 article by Juris Graney for the Edmonton Journal,
Physicists at the University of Alberta [U of A] are hoping to emulate the success of their artificial intelligence studying counterparts in establishing the city and the province as the nucleus of quantum nanotechnology research in Canada and North America.
Google’s artificial intelligence research division DeepMind announced in July [2017] it had chosen Edmonton as its first international AI research lab, based on a long-running partnership with the U of A’s 10-person AI lab.
Retaining the brightest minds in the AI and machine-learning fields while enticing a global tech leader to Alberta was heralded as a coup for the province and the university.
It is something U of A physics professor John Davis believes the university’s new graduate program, Quanta, can help achieve in the world of quantum nanotechnology.
…
The field of quantum mechanics had long been a realm of theoretical science based on the theory that atomic and subatomic material like photons or electrons behave both as particles and waves.
“When you get right down to it, everything has both behaviours (particle and wave) and we can pick and choose certain scenarios which one of those properties we want to use,” he said.
But, Davis said, physicists and scientists are “now at the point where we understand quantum physics and are developing quantum technology to take to the marketplace.”
“Quantum computing used to be realm of science fiction, but now we’ve figured it out, it’s now a matter of engineering,” he said.
…
Quantum computing labs are being bought by large tech companies such as Google, IBM and Microsoft because they realize they are only a few years away from having this power, he said.
Those making the groundbreaking developments may want to commercialize their finds and take the technology to market and that is where Quanta comes in.
…
East vs. West—Again?
Ivan Semeniuk in his article, Quantum Supremacy, ignores any quantum research effort not located in either Waterloo, Ontario or metro Vancouver, British Columbia to describe a struggle between the East and the West (a standard Canadian trope). From Semeniuk’s Oct. 17, 2017 quantum article [link follows the excerpts] for the Globe and Mail’s October 2017 issue of the Report on Business (ROB),
Lazaridis [Mike], of course, has experienced lost advantage first-hand. As co-founder and former co-CEO of Research in Motion (RIM, now called Blackberry), he made the smartphone an indispensable feature of the modern world, only to watch rivals such as Apple and Samsung wrest away Blackberry’s dominance. Now, at 56, he is engaged in a high-stakes race that will determine who will lead the next technology revolution. In the rolling heartland of southwestern Ontario, he is laying the foundation for what he envisions as a new Silicon Valley—a commercial hub based on the promise of quantum technology.
Semeniuk skips over the story of how Blackberry lost its advantage. I came onto that story late in the game when Blackberry was already in serious trouble due to a failure to recognize that the field they helped to create was moving in a new direction. If memory serves, they were trying to keep their technology wholly proprietary which meant that developers couldn’t easily create apps to extend the phone’s features. Blackberry also fought a legal battle in the US with a patent troll draining company resources and energy in proved to be a futile effort.
Since then Lazaridis has invested heavily in quantum research. He gave the University of Waterloo a serious chunk of money as they named their Quantum Nano Centre (QNC) after him and his wife, Ophelia (you can read all about it in my Sept. 25, 2012 posting about the then new centre). The best details for Lazaridis’ investments in Canada’s quantum technology are to be found on the Quantum Valley Investments, About QVI, History webpage,
History has repeatedly demonstrated the power of research in physics to transform society. As a student of history and a believer in the power of physics, Mike Lazaridis set out in 2000 to make real his bold vision to establish the Region of Waterloo as a world leading centre for physics research. That is, a place where the best researchers in the world would come to do cutting-edge research and to collaborate with each other and in so doing, achieve transformative discoveries that would lead to the commercialization of breakthrough technologies.
Establishing a World Class Centre in Quantum Research:
The first step in this regard was the establishment of the Perimeter Institute for Theoretical Physics. Perimeter was established in 2000 as an independent theoretical physics research institute. Mike started Perimeter with an initial pledge of $100 million (which at the time was approximately one third of his net worth). Since that time, Mike and his family have donated a total of more than $170 million to the Perimeter Institute. In addition to this unprecedented monetary support, Mike also devotes his time and influence to help lead and support the organization in everything from the raising of funds with government and private donors to helping to attract the top researchers from around the globe to it. Mike’s efforts helped Perimeter achieve and grow its position as one of a handful of leading centres globally for theoretical research in fundamental physics.
Perimeter is located in a Governor-General award winning designed building in Waterloo. Success in recruiting and resulting space requirements led to an expansion of the Perimeter facility. A uniquely designed addition, which has been described as space-ship-like, was opened in 2011 as the Stephen Hawking Centre in recognition of one of the most famous physicists alive today who holds the position of Distinguished Visiting Research Chair at Perimeter and is a strong friend and supporter of the organization.
Recognizing the need for collaboration between theorists and experimentalists, in 2002, Mike applied his passion and his financial resources toward the establishment of The Institute for Quantum Computing at the University of Waterloo. IQC was established as an experimental research institute focusing on quantum information. Mike established IQC with an initial donation of $33.3 million. Since that time, Mike and his family have donated a total of more than $120 million to the University of Waterloo for IQC and other related science initiatives. As in the case of the Perimeter Institute, Mike devotes considerable time and influence to help lead and support IQC in fundraising and recruiting efforts. Mike’s efforts have helped IQC become one of the top experimental physics research institutes in the world.
Mike and Doug Fregin have been close friends since grade 5. They are also co-founders of BlackBerry (formerly Research In Motion Limited). Doug shares Mike’s passion for physics and supported Mike’s efforts at the Perimeter Institute with an initial gift of $10 million. Since that time Doug has donated a total of $30 million to Perimeter Institute. Separately, Doug helped establish the Waterloo Institute for Nanotechnology at the University of Waterloo with total gifts for $29 million. As suggested by its name, WIN is devoted to research in the area of nanotechnology. It has established as an area of primary focus the intersection of nanotechnology and quantum physics.
With a donation of $50 million from Mike which was matched by both the Government of Canada and the province of Ontario as well as a donation of $10 million from Doug, the University of Waterloo built the Mike & Ophelia Lazaridis Quantum-Nano Centre, a state of the art laboratory located on the main campus of the University of Waterloo that rivals the best facilities in the world. QNC was opened in September 2012 and houses researchers from both IQC and WIN.
Leading the Establishment of Commercialization Culture for Quantum Technologies in Canada:
For many years, theorists have been able to demonstrate the transformative powers of quantum mechanics on paper. That said, converting these theories to experimentally demonstrable discoveries has, putting it mildly, been a challenge. Many naysayers have suggested that achieving these discoveries was not possible and even the believers suggested that it could likely take decades to achieve these discoveries. Recently, a buzz has been developing globally as experimentalists have been able to achieve demonstrable success with respect to Quantum Information based discoveries. Local experimentalists are very much playing a leading role in this regard. It is believed by many that breakthrough discoveries that will lead to commercialization opportunities may be achieved in the next few years and certainly within the next decade.
Recognizing the unique challenges for the commercialization of quantum technologies (including risk associated with uncertainty of success, complexity of the underlying science and high capital / equipment costs) Mike and Doug have chosen to once again lead by example. The Quantum Valley Investment Fund will provide commercialization funding, expertise and support for researchers that develop breakthroughs in Quantum Information Science that can reasonably lead to new commercializable technologies and applications. Their goal in establishing this Fund is to lead in the development of a commercialization infrastructure and culture for Quantum discoveries in Canada and thereby enable such discoveries to remain here.
Semeniuk goes on to set the stage for Waterloo/Lazaridis vs. Vancouver (from Semeniuk’s 2017 ROB article),
… as happened with Blackberry, the world is once again catching up. While Canada’s funding of quantum technology ranks among the top five in the world, the European Union, China, and the US are all accelerating their investments in the field. Tech giants such as Google [also known as Alphabet], Microsoft and IBM are ramping up programs to develop companies and other technologies based on quantum principles. Meanwhile, even as Lazaridis works to establish Waterloo as the country’s quantum hub, a Vancouver-area company has emerged to challenge that claim. The two camps—one methodically focused on the long game, the other keen to stake an early commercial lead—have sparked an East-West rivalry that many observers of the Canadian quantum scene are at a loss to explain.
Is it possible that some of the rivalry might be due to an influential individual who has invested heavily in a ‘quantum valley’ and has a history of trying to ‘own’ a technology?
Getting back to D-Wave Systems, the Vancouver company, I have written about them a number of times (particularly in 2015; for the full list: input D-Wave into the blog search engine). This June 26, 2015 posting includes a reference to an article in The Economist magazine about D-Wave’s commercial opportunities while the bulk of the posting is focused on a technical breakthrough.
Semeniuk offers an overview of the D-Wave Systems story,
D-Wave was born in 1999, the same year Lazaridis began to fund quantum science in Waterloo. From the start, D-Wave had a more immediate goal: to develop a new computer technology to bring to market. “We didn’t have money or facilities,” says Geordie Rose, a physics PhD who co0founded the company and served in various executive roles. …
The group soon concluded that the kind of machine most scientists were pursing based on so-called gate-model architecture was decades away from being realized—if ever. …
Instead, D-Wave pursued another idea, based on a principle dubbed “quantum annealing.” This approach seemed more likely to produce a working system, even if the application that would run on it were more limited. “The only thing we cared about was building the machine,” says Rose. “Nobody else was trying to solve the same problem.”
D-Wave debuted its first prototype at an event in California in February 2007 running it through a few basic problems such as solving a Sudoku puzzle and finding the optimal seating plan for a wedding reception. … “They just assumed we were hucksters,” says Hilton [Jeremy Hilton, D.Wave senior vice-president of systems]. Federico Spedalieri, a computer scientist at the University of Southern California’s [USC} Information Sciences Institute who has worked with D-Wave’s system, says the limited information the company provided about the machine’s operation provoked outright hostility. “I think that played against them a lot in the following years,” he says.
It seems Lazaridis is not the only one who likes to hold company information tightly.
Back to Semeniuk and D-Wave,
Today [October 2017], the Los Alamos National Laboratory owns a D-Wave machine, which costs about $15million. Others pay to access D-Wave systems remotely. This year , for example, Volkswagen fed data from thousands of Beijing taxis into a machine located in Burnaby [one of the municipalities that make up metro Vancouver] to study ways to optimize traffic flow.
But the application for which D-Wave has the hights hope is artificial intelligence. Any AI program hings on the on the “training” through which a computer acquires automated competence, and the 2000Q [a D-Wave computer] appears well suited to this task. …
Yet, for all the buzz D-Wave has generated, with several research teams outside Canada investigating its quantum annealing approach, the company has elicited little interest from the Waterloo hub. As a result, what might seem like a natural development—the Institute for Quantum Computing acquiring access to a D-Wave machine to explore and potentially improve its value—has not occurred. …
I am particularly interested in this comment as it concerns public funding (from Semeniuk’s article),
Vern Brownell, a former Goldman Sachs executive who became CEO of D-Wave in 2009, calls the lack of collaboration with Waterloo’s research community “ridiculous,” adding that his company’s efforts to establish closer ties have proven futile, “I’ll be blunt: I don’t think our relationship is good enough,” he says. Brownell also point out that, while hundreds of millions in public funds have flowed into Waterloo’s ecosystem, little funding is available for Canadian scientists wishing to make the most of D-Wave’s hardware—despite the fact that it remains unclear which core quantum technology will prove the most profitable.
There’s a lot more to Semeniuk’s article but this is the last excerpt,
The world isn’t waiting for Canada’s quantum rivals to forge a united front. Google, Microsoft, IBM, and Intel are racing to develop a gate-model quantum computer—the sector’s ultimate goal. (Google’s researchers have said they will unveil a significant development early next year.) With the U.K., Australia and Japan pouring money into quantum, Canada, an early leader, is under pressure to keep up. The federal government is currently developing a strategy for supporting the country’s evolving quantum sector and, ultimately, getting a return on its approximately $1-billion investment over the past decade [emphasis mine].
I wonder where the “approximately $1-billion … ” figure came from. I ask because some years ago MP Peter Julian asked the government for information about how much Canadian federal money had been invested in nanotechnology. The government replied with sheets of paper (a pile approximately 2 inches high) that had funding disbursements from various ministries. Each ministry had its own method with different categories for listing disbursements and the titles for the research projects were not necessarily informative for anyone outside a narrow specialty. (Peter Julian’s assistant had kindly sent me a copy of the response they had received.) The bottom line is that it would have been close to impossible to determine the amount of federal funding devoted to nanotechnology using that data. So, where did the $1-billion figure come from?
In any event, it will be interesting to see how the Council of Canadian Academies assesses the ‘quantum’ situation in its more academically inclined, “The State of Science and Technology and Industrial Research and Development in Canada,” when it’s released later this year (2018).
Despite any doubts one might have about Lazaridis’ approach to research and technology, his tremendous investment and support cannot be denied. Without him, Canada’s quantum research efforts would be substantially less significant. As for the ‘cowboys’ in Vancouver, it takes a certain temperament to found a start-up company and it seems the D-Wave folks have more in common with Lazaridis than they might like to admit. As for the Quanta graduate programme, it’s early days yet and no one should ever count out Alberta.
Meanwhile, one can continue to hope that a more thoughtful approach to regional collaboration will be adopted so Canada can continue to blaze trails in the field of quantum research.
It seems there’s a push on to establish Canada as a centre for artificial intelligence research and, if the federal and provincial governments have their way, for commercialization of said research. As always, there seems to be a bit of competition between Toronto (Ontario) and Montréal (Québec) as to which will be the dominant hub for the Canadian effort if one is to take Braga’s word for the situation.
In any event, Toronto seemed to have a mild advantage over Montréal initially with the 2017 Canadian federal government budget announcement that the Canadian Institute for Advanced Research (CIFAR), based in Toronto, would launch a Pan-Canadian Artificial Intelligence Strategy and with an announcement from the University of Toronto shortly after (from my March 31, 2017 posting),
On the heels of the March 22, 2017 federal budget announcement of $125M for a Pan-Canadian Artificial Intelligence Strategy, the University of Toronto (U of T) has announced the inception of the Vector Institute for Artificial Intelligence in a March 28, 2017 news release by Jennifer Robinson (Note: Links have been removed),
A team of globally renowned researchers at the University of Toronto is driving the planning of a new institute staking Toronto’s and Canada’s claim as the global leader in AI.
Geoffrey Hinton, a University Professor Emeritus in computer science at U of T and vice-president engineering fellow at Google, will serve as the chief scientific adviser of the newly created Vector Institute based in downtown Toronto.
“The University of Toronto has long been considered a global leader in artificial intelligence research,” said U of T President Meric Gertler. “It’s wonderful to see that expertise act as an anchor to bring together researchers, government and private sector actors through the Vector Institute, enabling them to aim even higher in leading advancements in this fast-growing, critical field.”
As part of the Government of Canada’s Pan-Canadian Artificial Intelligence Strategy, Vector will share $125 million in federal funding with fellow institutes in Montreal and Edmonton. All three will conduct research and secure talent to cement Canada’s position as a world leader in AI.
However, Montréal and the province of Québec are no slouches when it comes to supporting to technology. From a June 14, 2017 article by Matthew Braga for CBC (Canadian Broadcasting Corporation) news online (Note: Links have been removed),
One of the most promising new hubs for artificial intelligence research in Canada is going international, thanks to a $135 million investment with contributions from some of the biggest names in tech.
The company, Montreal-based Element AI, was founded last October [2016] to help companies that might not have much experience in artificial intelligence start using the technology to change the way they do business.
It’s equal parts general research lab and startup incubator, with employees working to develop new and improved techniques in artificial intelligence that might not be fully realized for years, while also commercializing products and services that can be sold to clients today.
It was co-founded by Yoshua Bengio — one of the pioneers of a type of AI research called machine learning — along with entrepreneurs Jean-François Gagné and Nicolas Chapados, and the Canadian venture capital fund Real Ventures.
In an interview, Bengio and Gagné said the money from the company’s funding round will be used to hire 250 new employees by next January. A hundred will be based in Montreal, but an additional 100 employees will be hired for a new office in Toronto, and the remaining 50 for an Element AI office in Asia — its first international outpost.
They will join more than 100 employees who work for Element AI today, having left jobs at Amazon, Uber and Google, among others, to work at the company’s headquarters in Montreal.
The expansion is a big vote of confidence in Element AI’s strategy from some of the world’s biggest technology companies. Microsoft, Intel and Nvidia all contributed to the round, and each is a key player in AI research and development.
The company has some not unexpected plans and partners (from the Braga, article, Note: A link has been removed),
The Series A round was led by Data Collective, a Silicon Valley-based venture capital firm, and included participation by Fidelity Investments Canada, National Bank of Canada, and Real Ventures.
What will it help the company do? Scale, its founders say.
“We’re looking at domain experts, artificial intelligence experts,” Gagné said. “We already have quite a few, but we’re looking at people that are at the top of their game in their domains.
“And at this point, it’s no longer just pure artificial intelligence, but people who understand, extremely well, robotics, industrial manufacturing, cybersecurity, and financial services in general, which are all the areas we’re going after.”
…
Gagné says that Element AI has already delivered 10 projects to clients in those areas, and have many more in development. In one case, Element AI has been helping a Japanese semiconductor company better analyze the data collected by the assembly robots on its factory floor, in a bid to reduce manufacturing errors and improve the quality of the company’s products.
…
There’s more to investment in Québec’s AI sector than Element AI (from the Braga article; Note: Links have been removed),
Element AI isn’t the only organization in Canada that investors are interested in.
In September, the Canadian government announced $213 million in funding for a handful of Montreal universities, while both Google and Microsoft announced expansions of their Montreal AI research groups in recent months alongside investments in local initiatives. The province of Quebec has pledged $100 million for AI initiatives by 2022.
…
Braga goes on to note some other initiatives but at that point the article’s focus is exclusively Toronto.
For more insight into the AI situation in Québec, there’s Dan Delmar’s May 23, 2017 article for the Montreal Express (Note: Links have been removed),
Advocating for massive government spending with little restraint admittedly deviates from the tenor of these columns, but the AI business is unlike any other before it. [emphasis misn] Having leaders acting as fervent advocates for the industry is crucial; resisting the coming technological tide is, as the Borg would say, futile.
The roughly 250 AI researchers who call Montreal home are not simply part of a niche industry. Quebec’s francophone character and Montreal’s multilingual citizenry are certainly factors favouring the development of language technology, but there’s ample opportunity for more ambitious endeavours with broader applications.
AI isn’t simply a technological breakthrough; it is the technological revolution. [emphasis mine] In the coming decades, modern computing will transform all industries, eliminating human inefficiencies and maximizing opportunities for innovation and growth — regardless of the ethical dilemmas that will inevitably arise.
“By 2020, we’ll have computers that are powerful enough to simulate the human brain,” said (in 2009) futurist Ray Kurzweil, author of The Singularity Is Near, a seminal 2006 book that has inspired a generation of AI technologists. Kurzweil’s projections are not science fiction but perhaps conservative, as some forms of AI already effectively replace many human cognitive functions. “By 2045, we’ll have expanded the intelligence of our human-machine civilization a billion-fold. That will be the singularity.”
The singularity concept, borrowed from physicists describing event horizons bordering matter-swallowing black holes in the cosmos, is the point of no return where human and machine intelligence will have completed their convergence. That’s when the machines “take over,” so to speak, and accelerate the development of civilization beyond traditional human understanding and capability.
…
The claims I’ve highlighted in Delmar’s article have been made before for other technologies, “xxx is like no other business before’ and “it is a technological revolution.” Also if you keep scrolling down to the bottom of the article, you’ll find Delmar is a ‘public relations consultant’ which, if you look at his LinkedIn profile, you’ll find means he’s a managing partner in a PR firm known as Provocateur.
Bertrand Marotte’s May 20, 2017 article for the Montreal Gazette offers less hyperbole along with additional detail about the Montréal scene (Note: Links have been removed),
It might seem like an ambitious goal, but key players in Montreal’s rapidly growing artificial-intelligence sector are intent on transforming the city into a Silicon Valley of AI.
Certainly, the flurry of activity these days indicates that AI in the city is on a roll. Impressive amounts of cash have been flowing into academia, public-private partnerships, research labs and startups active in AI in the Montreal area.
…
…, researchers at Microsoft Corp. have successfully developed a computing system able to decipher conversational speech as accurately as humans do. The technology makes the same, or fewer, errors than professional transcribers and could be a huge boon to major users of transcription services like law firms and the courts.
Setting the goal of attaining the critical mass of a Silicon Valley is “a nice point of reference,” said tech entrepreneur Jean-François Gagné, co-founder and chief executive officer of Element AI, an artificial intelligence startup factory launched last year.
…
The idea is to create a “fluid, dynamic ecosystem” in Montreal where AI research, startup, investment and commercialization activities all mesh productively together, said Gagné, who founded Element with researcher Nicolas Chapados and Université de Montréal deep learning pioneer Yoshua Bengio.
“Artificial intelligence is seen now as a strategic asset to governments and to corporations. The fight for resources is global,” he said.
The rise of Montreal — and rival Toronto — as AI hubs owes a lot to provincial and federal government funding.
Ottawa promised $213 million last September to fund AI and big data research at four Montreal post-secondary institutions. Quebec has earmarked $100 million over the next five years for the development of an AI “super-cluster” in the Montreal region.
The provincial government also created a 12-member blue-chip committee to develop a strategic plan to make Quebec an AI hub, co-chaired by Claridge Investments Ltd. CEO Pierre Boivin and Université de Montréal rector Guy Breton.
But private-sector money has also been flowing in, particularly from some of the established tech giants competing in an intense AI race for innovative breakthroughs and the best brains in the business.
…
Montreal’s rich talent pool is a major reason Waterloo, Ont.-based language-recognition startup Maluuba decided to open a research lab in the city, said the company’s vice-president of product development, Mohamed Musbah.
“It’s been incredible so far. The work being done in this space is putting Montreal on a pedestal around the world,” he said.
Microsoft struck a deal this year to acquire Maluuba, which is working to crack one of the holy grails of deep learning: teaching machines to read like the human brain does. Among the company’s software developments are voice assistants for smartphones.
Maluuba has also partnered with an undisclosed auto manufacturer to develop speech recognition applications for vehicles. Voice recognition applied to cars can include such things as asking for a weather report or making remote requests for the vehicle to unlock itself.
Marotte’s Twitter profile describes him as a freelance writer, editor, and translator.
The latest iteration of the Science and You conference took place May 4 – 6, 2017 at McGill University (Montréal, Québec). That’s the sad news, the good news is that they have recorded and released the sessions onto YouTube. (This is the first time the conference has been held outside of Europe, in fact, it’s usually held in France.) Here’s why you might be interested (from the 2017 conference page),
The animator of the conference will be Véronique Morin:
Véronique Morin is science journalist and communicator, first president of the World Federation of Science Journalists (WFSJ) and serves as judge for science communication awards. She worked for a science program on Quebec’s public TV network, CBCRadio-Canada, TVOntario, and as a freelancer is also a contributor to -among others- The Canadian Medical Journal, University Affairs magazine, NewsDeeply, while pursuing documentary projects.
Let’s talk about S …
Holding the attention of an audience full of teenagers may seem impossible… particularly on topics that might be seen as boring, like sciences! Yet, it’s essential to demistify science in order to make it accessible, even appealing in the eyes of futur citizens.
How can we encourage young adults to ask themselves questions about the surrounding world, nature and science? How can we make them discover sciences with and without digital tools?
Find out tips and tricks used by our speakers Kristin Alford and Amanda Tyndall.
Kristin Alford
Dr Kristin Alford is a futurist and the inaugural Director of MOD., a futuristic museum of discovery at the University of South Australia. Her mind is presently occupied by the future of work and provoking young adults to ask questions about the role of science at the intersection of art and innovation.
Amanda Tyndall
Over 20 years of science communication experience with organisations such as Café Scientifique, The Royal Institution of Great Britain (and Australia’s Science Exchange), the Science Museum in London and now with the Edinburgh International Science Festival. Particularly interested in engaging new audiences through linkages with the arts and digital/creative industries.
Increasingly used by politicians, social media can reach thousand of people in few seconds. Relayed to infinity, the message seems truthful, but is it really? At a time of fake news and alternative facts, how can we, as a communicator or a journalist, take up the challenge of disinformation?
Discover the traps and tricks of disinformation in the age of digital technologies with our two fact-checking experts, Shawn Otto and Vanessa Schipani, who will offer concrete solutions to unravel the true from the false..
Shawn Otto
Shawn Otto was awarded the IEEE-USA (“I-Triple-E”) National Distinguished Public Service Award for his work elevating science in America’s national public dialogue. He is cofounder and producer of the US presidential science debates at ScienceDebate.org. He is also an award-winning screenwriter and novelist, best known for writing and co-producing the Academy Award-nominated movie House of Sand and Fog.
Vanessa Schipani
Vanessa is a science journalist at FactCheck.org, which monitors U.S. politicians’ claims for accuracy. Previously, she wrote for outlets in the U.S., Europe and Japan, covering topics from quantum mechanics to neuroscience. She has bachelor’s degrees in zoology and philosophy and a master’s in the history and philosophy of science.
Sharing living from a space station, ship or submarine. The examples of social media use in extreme conditions are multiplying and the public is asking for more. How to use public tools to highlight practices and discoveries? How to manage the use of social networks of a large organisation? What pitfalls to avoid? What does this mean for citizens and researchers?
Find out with Phillipe Archambault and Leslie Elliott experts in extrem conditions.
Philippe Archambault
Professor Philippe Archambault is a marine ecologist at Laval University, the director of the Notre Golfe network and president of the 4th World Conference on Marine Biodiversity. His research on the influence of global changes on biodiversity and the functioning of ecosystems has led him to work in all four corners of our oceans from the Arctic to the Antarctic, through Papua New Guinea and the French Polynesia.
Leslie Elliott leads a team of communicators at Ocean Networks Canada in Victoria, British Columbia, home to Canada’s world-leading ocean observatories in the Pacific and Arctic Oceans. Audiences can join robots equipped with high definition cameras via #livedive to discover more about our ocean.
Science and humor are two disciplines that might seem incompatible … and yet, like the ig-Nobels, humour can prove to be an excellent way to communicate a scientific message. This, however, can prove to be quite challenging since one needs to ensure they employ the right tone and language to both captivate the audience while simultaneously communicating complex topics.
Patrick Baud and Brian Malow, both well-renowned scientific communicators, will give you with the tools you need to capture your audience and also convey a proper scientific message. You will be surprised how, even in Science, a good dose of humour can make you laugh and think.
Patrick Baud
Patrick Baud is a French author who was born on June 30, 1979, in Avignon. He has been sharing for many years his passion for tales of fantasy, and the marvels and curiosities of the world, through different media: radio, web, novels, comic strips, conferences, and videos. His YouTube channel “Axolot”, was created in 2013, and now has over 420,000 followers.
Brian Malow
Brian Malow is Earth’s Premier Science Comedian (self-proclaimed). Brian has made science videos for Time Magazine and contributed to Neil deGrasse Tyson’s radio show. He worked in science communications at a museum, blogged for Scientific American, and trains scientists to be better communicators.
I don’t think they’ve managed to get everything up on YouTube yet but the material I’ve found has been subtitled (into French or English, depending on which language the speaker used).
Here are the opening day’s talks on YouTube with English subtitles or French subtitles when appropriate. You can also find some abstracts for the panel presentations here. I was particularly in this panel (S3 – The Importance of Reaching Out to Adults in Scientific Culture), Note: I have searched out the French language descriptions for those unavailable in English,
Organized by Coeur des sciences, Université du Québec à Montréal (UQAM)
Animator: Valérie Borde, Freelance Science Journalist
Anouk Gingras, Musée de la civilisation, Québec
Text not available in English
[La science au Musée de la civilisation c’est :
• Une cinquantaine d’expositions et espaces découvertes
• Des thèmes d’actualité, liés à des enjeux sociaux, pour des exposition souvent destinées aux adultes
• Un potentiel de nouveaux publics en lien avec les autres thématiques présentes au Musée (souvent non scientifiques)
L’exposition Nanotechnologies : l’invisible révolution :
• Un thème d’actualité suscitant une réflexion
• Un sujet sensible menant à la création d’un parcours d’exposition polarisé : choix entre « oui » ou « non » au développement des nanotechnologies pour l’avenir
• L’utilisation de divers éléments pour rapprocher le sujet du visiteur
Les nanotechnologies dans la science-fiction
Les objets du quotidien contenant des nanoparticules
Les objets anciens qui utilisant les nanotechnologies
Divers microscopes retraçant l’histoire des nanotechnologies
• Une forme d’interaction suscitant la réflexion du visiteur via un objet sympatique : le canard de plastique jaune, muni d’une puce RFID
Sept stations de consultation qui incitent le visiteur à se prononcer et à réfléchir sur des questions éthiques liées au développement des nanotechnologies
Une compilation des données en temps réel
Une livraison des résultats personnalisée
Une mesure des visiteurs dont l’opinion s’est modifiée à la suite de la visite de l’exposition
Résultats de fréquentation :
• Public de jeunes adultes rejoint (51%)
• Plus d’hommes que de femmes ont visité l’exposition
• Parcours avec canard: incite à la réflexion et augmente l’attention
• 3 visiteurs sur 4 prennent le canard; 92% font l’activité en entier]
Marie Lambert-Chan, Québec Science Capting the attention of adult readership : challenging mission, possible mission
Since 1962, Québec Science Magazine is the only science magazine aimed at an adult readership in Québec. Our mission : covering topical subjects related to science and technology, as well as social issues from a scientific point of view. Each year, we print eight issues, with a circulation of 22,000 copies. Furthermore, the magazine has received several awards and accolades. In 2017, Québec Science Magazine was honored by the Canadian Magazine Awards/Grands Prix du Magazine and was named Best Magazine in Science, Business and Politics category.
Although we have maintained a solid reputation among scientists and the media industry, our magazine is still relatively unknown to the general public. Why is that ? How is it that, through all those years, we haven’t found the right angle to engage a broader readership ?
We are still searching for definitive answers, but here are our observations :
Speaking science to adults is much more challenging than it is with children, who can marvel endlessly at the smallest things. Unfortunately, adults lose this capacity to marvel and wonder for various reasons : they have specific interests, they failed high-school science, they don’t feel competent enough to understand scientific phenomena. How do we bring the wonder back ? This is our mission. Not impossible, and hopefully soon to be accomplished. One noticible example is the number of reknown scientists interviewed during the popular talk-show Tout le monde en parle, leading us to believe the general public may have an interest in science.
However, to accomplish our mission, we have to recount science. According to the Bulgarian writer and blogger Maria Popova, great science writing should explain, elucidate and enchant . To explain : to make the information clear and comprehensible. To elucidate : to reveal all the interconnections between the pieces of information. To enchant : to go beyond the scientific terms and information and tell a story, thus giving a kaleidoscopic vision of the subject. This is how we intend to capture our readership’s attention.
Our team aims to accomplish this challenge. Although, to be perfectly honest, it would be much easier if we had more resources, financial-wise or human-wise. However, we don’t lack ideas. We dream of major scientific investigations, conferences organized around themes from the magazine’s issues, Web documentaries, podcasts… Such initiatives would give us the visibility we desperately crave.
That said, even in the best conditions, would be have more subscribers ? Perhaps. But it isn’t assured. Even if our magazine is aimed at adult readership, we are convinced that childhood and science go hand in hand, and is even decisive for the children’s future. At the moment, school programs are not in place for continuous scientific development. It is possible to develop an interest for scientific culture as adults, but it is much easier to achieve this level of curiosity if it was previously fostered.
Robert Lamontagne, Université de Montréal
Since the beginning of my career as an astrophysicist, I have been interested in scientific communication to non-specialist audiences. I have presented hundreds of lectures describing the phenomena of the cosmos. Initially, these were mainly offered in amateur astronomers’ clubs or in high-schools and Cégeps. Over the last few years, I have migrated to more general adult audiences in the context of cultural activities such as the “Festival des Laurentides”, the Arts, Culture and Society activities in Repentigny and, the Université du troisième âge (UTA) or Senior’s University.
The Quebec branch of the UTA, sponsored by the Université de Sherbrooke (UdeS), exists since 1976. Seniors universities, created in Toulouse, France, are part of a worldwide movement. The UdeS and its senior’s university antennas are members of the International Association of the Universities of the Third Age (AIUTA). The UTA is made up of 28 antennas located in 10 regions and reaches more than 10,000 people per year. Antenna volunteers prepare educational programming by drawing on a catalog of courses, seminars and lectures, covering a diverse range of subjects ranging from history and politics to health, science, or the environment.
The UTA is aimed at people aged 50 and over who wish to continue their training and learn throughout their lives. It is an attentive, inquisitive, educated public and, given the demographics in Canada, its number is growing rapidly. This segment of the population is often well off and very involved in society.
I usually use a two-prong approach.
• While remaining rigorous, the content is articulated around a few ideas, avoiding analytical expressions in favor of a qualitative description.
• The narrative framework, the story, which allows to contextualize the scientific content and to forge links with the audience.
Sophie Malavoy, Coeur des sciences – UQAM
Many obstacles need to be overcome in order to reach out to adults, especially those who aren’t in principle interested in science.
• Competing against cultural activities such as theater, movies, etc.
• The idea that science is complex and dull
• A feeling of incompetence. « I’ve always been bad in math and physics»
• Funding shortfall for activities which target adults
How to reach out to those adults?
• To put science into perspective. To bring its relevance out by making links with current events and big issues (economic, heath, environment, politic). To promote a transdisciplinary approach which includes humanities and social sciences.
• To stake on originality by offering uncommon and ludic experiences (scientific walks in the city, street performances, etc.)
• To bridge between science and popular activities to the public (science/music; science/dance; science/theater; science/sports; science/gastronomy; science/literature)
• To reach people with emotions without sensationalism. To boost their curiosity and ability to wonder.
• To put a human face on science, by insisting not only on the results of a research but on its process. To share the adventure lived by researchers.
• To liven up people’s feeling of competence. To insist on the scientific method.
• To invite non-scientists (citizens groups, communities, consumers, etc.) to the reflections on science issues (debate, etc.). To move from dissemination of science to dialog
Didier Pourquery, The Conversation France
Text not available in English
[Depuis son lancement en septembre 2015 la plateforme The Conversation France (2 millions de pages vues par mois) n’a cessé de faire progresser son audience. Selon une étude menée un an après le lancement, la structure de lectorat était la suivante
Pour accrocher les adultes et les ainés deux axes sont intéressants ; nous les utilisons autant sur notre site que sur notre newsletter quotidienne – 26.000 abonnés- ou notre page Facebook (11500 suiveurs):
1/ expliquer l’actualité : donner les clefs pour comprendre les débats scientifiques qui animent la société ; mettre de la science dans les discussions (la mission du site est de « nourrir le débat citoyen avec de l’expertise universitaire et de la recherche »). L’idée est de poser des questions de compréhension simple au moment où elles apparaissent dans le débat (en période électorale par exemple : qu’est-ce que le populisme ? Expliqué par des chercheurs de Sciences Po incontestables.)
Exemples : comprendre les conférences climat -COP21, COP22 – ; comprendre les débats de société (Gestation pour autrui); comprendre l’économie (revenu universel); comprendre les maladies neurodégénératives (Alzheimer) etc.
2/ piquer la curiosité : utiliser les formules classiques (le saviez-vous ?) appliquées à des sujets surprenants (par exemple : « Que voit un chien quand il regarde la télé ? » a eu 96.000 pages vues) ; puis jouer avec ces articles sur les réseaux sociaux. Poser des questions simples et surprenantes. Par exemple : ressemblez-vous à votre prénom ? Cet article académique très sérieux a comptabilisé 95.000 pages vues en français et 171.000 en anglais.
3/ Susciter l’engagement : faire de la science participative simple et utile. Par exemple : appeler nos lecteurs à surveiller l’invasion de moustiques tigres partout sur le territoire. Cet article a eu 112.000 pages vues et a été republié largement sur d’autres sites. Autre exemple : appeler les lecteurs à photographier les punaises de leur environnement.]
Here are my very brief and very rough translations. (1) Anouk Gingras is focused largely on a nanotechnology exhibit and whether or not visitors went through it and participated in various activities. She doesn’t seem specifically focused on science communication for adults but they are doing some very interesting and related work at Québec’s Museum of Civilization. (2) Didier Pourquery is describing an online initiative known as ‘The Conversation France’ (strange—why not La conversation France?). Moving on, there’s a website with a daily newsletter (blog?) and a Facebook page. They have two main projects, one is a discussion of current science issues in society, which is informed with and by experts but is not exclusive to experts, and more curiosity-based science questions and discussion such as What does a dog see when it watches television?
Serendipity! I hadn’t stumbled across this conference when I posted my May 12, 2017 piece on the ‘insanity’ of science outreach in Canada. It’s good to see I’m not the only one focused on science outreach for adults and that there is some action, although seems to be a Québec-only effort.
Ingenious: An Evening of Canadian Innovation
Thursday, June 1, 2017 (6:30 pm – 8:00 pm)
Central Branch
Description
Gov. Gen. David Johnston and OpenText Corp. chair Tom Jenkins discuss Canadian innovation and their book Ingenious: How Canadian Innovators Made the World Smarter, Smaller, Kinder, Safer, Healthier, Wealthier and Happier.
To celebrate Canada’s 150th birthday, Governor General David Johnston and Tom Jenkins have crafted a richly illustrated volume of brilliant Canadian innovations whose widespread adoption has made the world a better place. From Bovril to BlackBerrys, lightbulbs to liquid helium, peanut butter to Pablum, this is a surprising and incredibly varied collection to make Canadians proud, and to our unique entrepreneurial spirit.
Successful innovation is always inspired by at least one of three forces — insight, necessity, and simple luck. Ingenious moves through history to explore what circumstances, incidents, coincidences, and collaborations motivated each great Canadian idea, and what twist of fate then brought that idea into public acceptance. Above all, the book explores what goes on in the mind of an innovator, and maps the incredible spectrum of personalities that have struggled to improve the lot of their neighbours, their fellow citizens, and their species.
From the marvels of aboriginal invention such as the canoe, snowshoe, igloo, dogsled, lifejacket, and bunk bed to the latest pioneering advances in medicine, education, philanthropy, science, engineering, community development, business, the arts, and the media, Canadians have improvised and collaborated their way to international admiration. …
Then, there’s this April 5, 2017 item on Canadian Broadcasting Corporation’s (CBC) news online,
From peanut butter to the electric wheelchair, the stories behind numerous life-changing Canadian innovations are detailed in a new book.
Gov. Gen. David Johnston and Tom Jenkins, chair of the National Research Council and former CEO of OpenText, are the authors of Ingenious: How Canadian Innovators Made the World Smarter, Smaller, Kinder, Safer, Healthier, Wealthier and Happier. The authors hope their book reinforces and extends the culture of innovation in Canada.
“We started wanting to tell 50 stories of Canadian innovators, and what has amazed Tom and myself is how many there are,” Johnston toldThe Homestretch on Wednesday. The duo ultimately chronicled 297 innovations in the book, including the pacemaker, life jacket and chocolate bars.
“Innovations are not just technological, not just business, but they’re social innovations as well,” Johnston said.
Many of those innovations, and the stories behind them, are not well known.
“We’re sort of a humble people,” Jenkins said. “We’re pretty quiet. We don’t brag, we don’t talk about ourselves very much, and so we then lead ourselves to believe as a culture that we’re not really good inventors, the Americans are. And yet we knew that Canadians were actually great inventors and innovators.”
‘Opportunities and challenges’
For Johnston, his favourite story in the book is on the light bulb.
“It’s such a symbol of both our opportunities and challenges,” he said. “The light bulb was invented in Canada, not the United States. It was two inventors back in the 1870s that realized that if you passed an electric current through a resistant metal it would glow, and they patented that, but then they didn’t have the money to commercialize it.”
American inventor Thomas Edison went on to purchase that patent and made changes to the original design.
Johnston and Jenkins are also inviting readers to share their own innovation stories, on the book’s website.
I’m looking forward to the talk and wondering if they’ve included the botox and cellulose nanocrystal (CNC) stories to the book. BTW, Tom Jenkins was the chair of a panel examining Canadian research and development and lead author of the panel’s report (Innovation Canada: A Call to Action) for the then Conservative government (it’s also known as the Jenkins report). You can find out more about in my Oct. 21, 2011 posting.
(3) Made in Canada (Vancouver)
This is either fortuitous or there’s some very high level planning involved in the ‘Made in Canada; Inspiring Creativity and Innovation’ show which runs from April 21 – Sept. 4, 2017 at Vancouver’s Science World (also known as the Telus World of Science). From the Made in Canada; Inspiring Creativity and Innovation exhibition page,
Celebrate Canadian creativity and innovation, with Science World’s original exhibition, Made in Canada, presented by YVR [Vancouver International Airport] — where you drive the creative process! Get hands-on and build the fastest bobsled, construct a stunning piece of Vancouver architecture and create your own Canadian sound mashup, to share with friends.
Vote for your favourite Canadian inventions and test fly a plane of your design. Discover famous (and not-so-famous, but super neat) Canadian inventions. Learn about amazing, local innovations like robots that teach themselves, one-person electric cars and a computer that uses parallel universes.
One quick question, why would Vancouver International Airport be presenting this show? I asked that question of Science World’s Communications Coordinator, Jason Bosher, and received this response,
YVR is the presenting sponsor. They donated money to the exhibition and they also contributed an exhibit for the “We Move” themed zone in the Made in Canada exhibition. The YVR exhibit details the history of the YVR airport, it’s geographic advantage and some of the planes they have seen there.
I also asked if there was any connection between this show and the ‘Ingenious’ book launch,
Some folks here are aware of the book launch. It has to do with the Canada 150 initiative and nothing to do with the Made in Canada exhibition, which was developed here at Science World. It is our own original exhibition.
So there you have it.
(4) Robotics, AI, and the future of work (Ottawa)
I’m glad to finally stumble across a Canadian event focusing on the topic of artificial intelligence (AI), robotics and the future of work. Sadly (for me), this is taking place in Ottawa. Here are more details from the May 25, 2017 notice (received via email) from the Canadian Science Policy Centre (CSPC),
CSPC is Partnering with CIFAR {Canadian Institute for Advanced Research]
The Second Annual David Dodge Lecture
…
Join CIFAR and Senior Fellow Daron Acemoglu for
the Second Annual David Dodge CIFAR Lecture in Ottawa on June 13. June 13, 2017 | 12 – 2 PM [emphasis mine]
Fairmont Château Laurier, Drawing Room | 1 Rideau St, Ottawa, ON
Along with the backlash against globalization and the outsourcing of jobs, concern is also growing about the effect that robotics and artificial intelligence will have on the labour force in advanced industrial nations. World-renowned economist Acemoglu, author of the best-selling book Why Nations Fail, will discuss how technology is changing the face of work and the composition of labour markets. Drawing on decades of data, Acemoglu explores the effects of widespread automation on manufacturing jobs, the changes we can expect from artificial intelligence technologies, and what responses to these changes might look like. This timely discussion will provide valuable insights for current and future leaders across government, civil society, and the private sector.
Daron Acemoglu is a Senior Fellow in CIFAR’s Insitutions, Organizations & Growth program, and the Elizabeth and James Killian Professor of Economics at the Massachusetts Institute of Technology.
Tickets: $15 (A light lunch will be served.)
You can find a registration link here. Also, if you’re interested in the Canadian efforts in the field of artificial intelligence you can find more in my March 24, 2017 posting (scroll down about 25% of the way and then about 40% of the way) on the 2017 Canadian federal budget and science where I first noted the $93.7M allocated to CIFAR for launching a Pan-Canadian Artificial Intelligence Strategy.
(5) June 2017 edition of the Curiosity Collider Café (Vancouver)
This is an art/science (also known called art/sci and SciArt) that has taken place in Vancouver every few months since April 2015. Here’s more about the June 2017 edition (from the Curiosity Collider events page),
Collider Cafe
When
8:00pm on Wednesday, June 21st, 2017. Door opens at 7:30pm.
Cost
$5.00-10.00 cover at the door (sliding scale). Proceeds will be used to cover the cost of running this event, and to fund future Curiosity Collider events. Curiosity Collider is a registered BC non-profit organization.
***
#ColliderCafe is a space for artists, scientists, makers, and anyone interested in art+science. Meet, discover, connect, create. How do you explore curiosity in your life? Join us and discover how our speakers explore their own curiosity at the intersection of art & science.
The event will start promptly at 8pm (doors open at 7:30pm). $5.00-10.00 (sliding scale) cover at the door. Proceeds will be used to cover the cost of running this event, and to fund future Curiosity Collider events. Curiosity Collider is a registered BC non-profit organization.
Enjoy!
*I changed ‘three’ events to ‘five’ events and added a number to each event for greater reading ease on May 31, 2017.
On the heels of the March 22, 2017 federal budget announcement of $125M for a Pan-Canadian Artificial Intelligence Strategy, the University of Toronto (U of T) has announced the inception of the Vector Institute for Artificial Intelligence in a March 28, 2017 news release by Jennifer Robinson (Note: Links have been removed),
A team of globally renowned researchers at the University of Toronto is driving the planning of a new institute staking Toronto’s and Canada’s claim as the global leader in AI.
Geoffrey Hinton, a University Professor Emeritus in computer science at U of T and vice-president engineering fellow at Google, will serve as the chief scientific adviser of the newly created Vector Institute based in downtown Toronto.
“The University of Toronto has long been considered a global leader in artificial intelligence research,” said U of T President Meric Gertler. “It’s wonderful to see that expertise act as an anchor to bring together researchers, government and private sector actors through the Vector Institute, enabling them to aim even higher in leading advancements in this fast-growing, critical field.”
As part of the Government of Canada’s Pan-Canadian Artificial Intelligence Strategy, Vector will share $125 million in federal funding with fellow institutes in Montreal and Edmonton. All three will conduct research and secure talent to cement Canada’s position as a world leader in AI.
In addition, Vector is expected to receive funding from the Province of Ontario and more than 30 top Canadian and global companies eager to tap this pool of talent to grow their businesses. The institute will also work closely with other Ontario universities with AI talent.
(See my March 24, 2017 posting; scroll down about 25% for the science part, including the Pan-Canadian Artificial Intelligence Strategy of the budget.)
Not obvious in last week’s coverage of the Pan-Canadian Artificial Intelligence Strategy is that the much lauded Hinton has been living in the US and working for Google. These latest announcements (Pan-Canadian AI Strategy and Vector Institute) mean that he’s moving back.
A March 28, 2017 article by Kate Allen for TorontoStar.com provides more details about the Vector Institute, Hinton, and the Canadian ‘brain drain’ as it applies to artificial intelligence, (Note: A link has been removed)
Toronto will host a new institute devoted to artificial intelligence, a major gambit to bolster a field of research pioneered in Canada but consistently drained of talent by major U.S. technology companies like Google, Facebook and Microsoft.
The Vector Institute, an independent non-profit affiliated with the University of Toronto, will hire about 25 new faculty and research scientists. It will be backed by more than $150 million in public and corporate funding in an unusual hybridization of pure research and business-minded commercial goals.
The province will spend $50 million over five years, while the federal government, which announced a $125-million Pan-Canadian Artificial Intelligence Strategy in last week’s budget, is providing at least $40 million, backers say. More than two dozen companies have committed millions more over 10 years, including $5 million each from sponsors including Google, Air Canada, Loblaws, and Canada’s five biggest banks [Bank of Montreal (BMO). Canadian Imperial Bank of Commerce ({CIBC} President’s Choice Financial}, Royal Bank of Canada (RBC), Scotiabank (Tangerine), Toronto-Dominion Bank (TD Canada Trust)].
The mode of artificial intelligence that the Vector Institute will focus on, deep learning, has seen remarkable results in recent years, particularly in image and speech recognition. Geoffrey Hinton, considered the “godfather” of deep learning for the breakthroughs he made while a professor at U of T, has worked for Google since 2013 in California and Toronto.
Hinton will move back to Canada to lead a research team based at the tech giant’s Toronto offices and act as chief scientific adviser of the new institute.
…
Researchers trained in Canadian artificial intelligence labs fill the ranks of major technology companies, working on tools like instant language translation, facial recognition, and recommendation services. Academic institutions and startups in Toronto, Waterloo, Montreal and Edmonton boast leaders in the field, but other researchers have left for U.S. universities and corporate labs.
The goals of the Vector Institute are to retain, repatriate and attract AI talent, to create more trained experts, and to feed that expertise into existing Canadian companies and startups.
…
Hospitals are expected to be a major partner, since health care is an intriguing application for AI. Last month, researchers from Stanford University announced they had trained a deep learning algorithm to identify potentially cancerous skin lesions with accuracy comparable to human dermatologists. The Toronto company Deep Genomics is using deep learning to read genomes and identify mutations that may lead to disease, among other things.
Intelligent algorithms can also be applied to tasks that might seem less virtuous, like reading private data to better target advertising. Zemel [Richard Zemel, the institute’s research director and a professor of computer science at U of T] says the centre is creating an ethics working group [emphasis mine] and maintaining ties with organizations that promote fairness and transparency in machine learning. As for privacy concerns, “that’s something we are well aware of. We don’t have a well-formed policy yet but we will fairly soon.”
The institute’s annual funding pales in comparison to the revenues of the American tech giants, which are measured in tens of billions. The risk the institute’s backers are taking is simply creating an even more robust machine learning PhD mill for the U.S.
“They obviously won’t all stay in Canada, but Toronto industry is very keen to get them,” Hinton said. “I think Trump might help there.” Two researchers on Hinton’s new Toronto-based team are Iranian, one of the countries targeted by U.S. President Donald Trump’s travel bans.
Ethics do seem to be a bit of an afterthought. Presumably the Vector Institute’s ‘ethics working group’ won’t include any regular folks. Is there any thought to what the rest of us think about these developments? As there will also be some collaboration with other proposed AI institutes including ones at the University of Montreal (Université de Montréal) and the University of Alberta (Kate McGillivray’s article coming up shortly mentions them), might the ethics group be centered in either Edmonton or Montreal? Interestingly, two Canadians (Timothy Caulfield at the University of Alberta and Eric Racine at Université de Montréa) testified at the US Commission for the Study of Bioethical Issues Feb. 10 – 11, 2014 meeting, the Brain research, ethics, and nanotechnology. Still speculating here but I imagine Caulfield and/or Racine could be persuaded to extend their expertise in ethics and the human brain to AI and its neural networks.
Getting back to the topic at hand the ‘AI sceneCanada’, Allen’s article is worth reading in its entirety if you have the time.
Kate McGillivray’s March 29, 2017 article for the Canadian Broadcasting Corporation’s (CBC) news online provides more details about the Canadian AI situation and the new strategies,
With artificial intelligence set to transform our world, a new institute is putting Toronto to the front of the line to lead the charge.
The Vector Institute for Artificial Intelligence, made possible by funding from the federal government revealed in the 2017 budget, will move into new digs in the MaRS Discovery District by the end of the year.
…
Vector’s funding comes partially from a $125 million investment announced in last Wednesday’s federal budget to launch a pan-Canadian artificial intelligence strategy, with similar institutes being established in Montreal and Edmonton.
“[A.I.] cuts across pretty well every sector of the economy,” said Dr. Alan Bernstein, CEO and president of the Canadian Institute for Advanced Research, the organization tasked with administering the federal program.
“Silicon Valley and England and other places really jumped on it, so we kind of lost the lead a little bit. I think the Canadian federal government has now realized that,” he said.
Stopping up the brain drain
Critical to the strategy’s success is building a homegrown base of A.I. experts and innovators — a problem in the last decade, despite pioneering work on so-called “Deep Learning” by Canadian scholars such as Yoshua Bengio and Geoffrey Hinton, a former University of Toronto professor who will now serve as Vector’s chief scientific advisor.
With few university faculty positions in Canada and with many innovative companies headquartered elsewhere, it has been tough to keep the few graduates specializing in A.I. in town.
“We were paying to educate people and shipping them south,” explained Ed Clark, chair of the Vector Institute and business advisor to Ontario Premier Kathleen Wynne.
…
The existence of that “fantastic science” will lean heavily on how much buy-in Vector and Canada’s other two A.I. centres get.
Toronto’s portion of the $125 million is a “great start,” said Bernstein, but taken alone, “it’s not enough money.”
“My estimate of the right amount of money to make a difference is a half a billion or so, and I think we will get there,” he said.
Jessica Murphy’s March 29, 2017 article for the British Broadcasting Corporation’s (BBC) news online offers some intriguing detail about the Canadian AI scene,
Canadian researchers have been behind some recent major breakthroughs in artificial intelligence. Now, the country is betting on becoming a big player in one of the hottest fields in technology, with help from the likes of Google and RBC [Royal Bank of Canada].
In an unassuming building on the University of Toronto’s downtown campus, Geoff Hinton laboured for years on the “lunatic fringe” of academia and artificial intelligence, pursuing research in an area of AI called neural networks.
Also known as “deep learning”, neural networks are computer programs that learn in similar way to human brains. The field showed early promise in the 1980s, but the tech sector turned its attention to other AI methods after that promise seemed slow to develop.
“The approaches that I thought were silly were in the ascendancy and the approach that I thought was the right approach was regarded as silly,” says the British-born [emphasis mine] professor, who splits his time between the university and Google, where he is a vice-president of engineering fellow.
…
Neural networks are used by the likes of Netflix to recommend what you should binge watch and smartphones with voice assistance tools. Google DeepMind’s AlphaGo AI used them to win against a human in the ancient game of Go in 2016.
…
Foteini Agrafioti, who heads up the new RBC Research in Machine Learning lab at the University of Toronto, said those recent innovations made AI attractive to researchers and the tech industry.
“Anything that’s powering Google’s engines right now is powered by deep learning,” she says.
Developments in the field helped jumpstart innovation and paved the way for the technology’s commercialisation. They also captured the attention of Google, IBM and Microsoft, and kicked off a hiring race in the field.
The renewed focus on neural networks has boosted the careers of early Canadian AI machine learning pioneers like Hinton, the University of Montreal’s Yoshua Bengio, and University of Alberta’s Richard Sutton.
Money from big tech is coming north, along with investments by domestic corporations like banking multinational RBC and auto parts giant Magna, and millions of dollars in government funding.
…
Former banking executive Ed Clark will head the institute, and says the goal is to make Toronto, which has the largest concentration of AI-related industries in Canada, one of the top five places in the world for AI innovation and business.
The founders also want it to serve as a magnet and retention tool for top talent aggressively head-hunted by US firms.
Clark says they want to “wake up” Canadian industry to the possibilities of AI, which is expected to have a massive impact on fields like healthcare, banking, manufacturing and transportation.
…
Google invested C$4.5m (US$3.4m/£2.7m) last November [2016] in the University of Montreal’s Montreal Institute for Learning Algorithms.
Microsoft is funding a Montreal startup, Element AI. The Seattle-based company also announced it would acquire Montreal-based Maluuba and help fund AI research at the University of Montreal and McGill University.
Thomson Reuters and General Motors both recently moved AI labs to Toronto.
…
RBC is also investing in the future of AI in Canada, including opening a machine learning lab headed by Agrafioti, co-funding a program to bring global AI talent and entrepreneurs to Toronto, and collaborating with Sutton and the University of Alberta’s Machine Intelligence Institute.
…
Canadian tech also sees the travel uncertainty created by the Trump administration in the US as making Canada more attractive to foreign talent. (One of Clark’s the selling points is that Toronto as an “open and diverse” city).
…
This may reverse the ‘brain drain’ but it appears Canada’s role as a ‘branch plant economy’ for foreign (usually US) companies could become an important discussion once more. From the ‘Foreign ownership of companies of Canada’ Wikipedia entry (Note: Links have been removed),
Historically, foreign ownership was a political issue in Canada in the late 1960s and early 1970s, when it was believed by some that U.S. investment had reached new heights (though its levels had actually remained stable for decades), and then in the 1980s, during debates over the Free Trade Agreement.
But the situation has changed, since in the interim period Canada itself became a major investor and owner of foreign corporations. Since the 1980s, Canada’s levels of investment and ownership in foreign companies have been larger than foreign investment and ownership in Canada. In some smaller countries, such as Montenegro, Canadian investment is sizable enough to make up a major portion of the economy. In Northern Ireland, for example, Canada is the largest foreign investor. By becoming foreign owners themselves, Canadians have become far less politically concerned about investment within Canada.
Of note is that Canada’s largest companies by value, and largest employers, tend to be foreign-owned in a way that is more typical of a developing nation than a G8 member. The best example is the automotive sector, one of Canada’s most important industries. It is dominated by American, German, and Japanese giants. Although this situation is not unique to Canada in the global context, it is unique among G-8 nations, and many other relatively small nations also have national automotive companies.
It’s interesting to note that sometimes Canadian companies are the big investors but that doesn’t change our basic position. And, as I’ve noted in other postings (including the March 24, 2017 posting), these government investments in science and technology won’t necessarily lead to a move away from our ‘branch plant economy’ towards an innovative Canada.
BTW, I noted that reference to Hinton as ‘British-born’ in the BBC article. He was educated in the UK and subsidized by UK taxpayers (from his Wikipedia entry; Note: Links have been removed),
Hinton was educated at King’s College, Cambridge graduating in 1970, with a Bachelor of Arts in experimental psychology.[1] He continued his study at the University of Edinburgh where he was awarded a PhD in artificial intelligence in 1977 for research supervised by H. Christopher Longuet-Higgins.[3][12]
It seems Canadians are not the only ones to experience ‘brain drains’.
Finally, I wrote at length about a recent initiative taking place between the University of British Columbia (Vancouver, Canada) and the University of Washington (Seattle, Washington), the Cascadia Urban Analytics Cooperative in a Feb. 28, 2017 posting noting that the initiative is being funded by Microsoft to the tune $1M and is part of a larger cooperative effort between the province of British Columbia and the state of Washington. Artificial intelligence is not the only area where US technology companies are hedging their bets (against Trump’s administration which seems determined to terrify people from crossing US borders) by investing in Canada.
The June 27, 2015 news item on Nanotechnology Now includes two pieces of business news (I am more interested in the second),
Knight Therapeutics Inc. (TSX:GUD) (“Knight” or the “Company”), a leading Canadian specialty pharmaceutical company, announced today that it has (1) extended a secured loan of US$15 million to Pro Bono Bio PLC (“Pro Bono Bio”), the world’s leading healthcare nanotechnology company, and (2) entered into an exclusive distribution agreement with Pro Bono Bio to commercialize its wide range of nanotechnology products, medical devices and drug delivery technologies in select territories.
The secured loan of US$15 million, which matures on June 25, 2018, will bear interest at 12% per annum plus other additional consideration. The interest rate will decrease to 10% if Pro Bono Bio meets certain equity-fundraising targets. The loan is secured by a charge over the assets of Pro Bono Bio and its affiliates which includes but is not limited to Flexiseq™, an innovative topical pain product that has sales of more than 3 million units since its U.K. launch last year.
As part of the license agreement, Knight obtained the exclusive Quebec and Israeli distribution rights to Pro Bono Bio’s innovative Flexiseq™ range of pain relief products and its promising SEQuaderma™ derma-cosmetic range of products, both of which are expected to launch in Quebec within the next 12 months. In addition, Knight obtained the exclusive Canadian and Israeli rights to two earlier stage product groups: blood factor products for the treatment of Hemophiliacs, and diagnostic devices designed for the automated detection of peripheral arterial disease. [emphasis mine]
John Mayo, Chairman and CEO of Pro Bono Bio, said, “We worked night and day to find a good distribution and strategic partner to help our North American team launch our existing products and drive growth. We welcome the good Knight on our quest to deliver to Canadian and American consumers’ best-in-class, drug-free nanotechnology products that are safe, effective and of the highest quality: truly the holy grail!”
“When you donate to charity, you always receive back more than you give. I hope this truism also holds true for this Pro Bono world!” said Jonathan Ross Goodman, President and CEO of Knight. “We look forward to the late 2015 launch of Flexiseq™ and SEQuaderma™ in La Belle Province.”
The news release also provides a description of the drugs and the companies, along with a disclaimer,
About Flexiseq™
Flexiseq™ is a topically applied drug-free gel which is clinically proven to safely relieve the pain and improve the joint stiffness associated with osteoarthritis (OA). Flexiseq™ is unique – it lubricates your joints to address joint damage. Pain is relieved and joint function improved because it lubricates away the friction and associated wear and tear on a user’s joints.
About SEQuaderma™
SEQuaderma™ Dermatology Products are a unique range of active dermatology solutions specifically designed to address the symptoms and, in some cases, the causes of the targeted conditions, leading to reduced recurrence. SEQuaderma™ Dermatology Products are suitable for long term use and can be used on their own or in between drug treatments to reduce exposure to adverse events; they will not compromise any other medication and are suitable for those with multiple conditions.
About Pro Bono Bio PLC
Pro Bono Bio PLC is the world’s leading healthcare nanotechnology company offering health and lifestyle products, headquartered in London with presence in Europe, Africa and Asia and due to launch in North America. [emphasis mine]
About Knight Therapeutics Inc.
Knight Therapeutics Inc., headquartered in Montreal, Canada, is a specialty pharmaceutical company focused on acquiring or in-licensing innovative pharmaceutical products for the Canadian and select international markets. Knight’s shares trade on TSX under the symbol GUD. For more information about Knight Therapeutics Inc., please visit the Company’s web site at www.gud-knight.com or www.sedar.com.
Forward-Looking Statement [disclaimer]
This document contains forward-looking statements for the Company and its subsidiaries. These forward looking statements, by their nature, necessarily involve risks and uncertainties that could cause actual results to differ materially from those contemplated by the forward-looking statements. The Company considers the assumptions on which these forward-looking statements are based to be reasonable at the time they were prepared, but cautions the reader that these assumptions regarding future events, many of which are beyond the control of the Company and its subsidiaries, may ultimately prove to be incorrect. Factors and risks, which could cause actual results to differ materially from current expectations are discussed in the Company’s Annual Report and in the Company’s Annual Information Form for the year ended December 31, 2014. The Company disclaims any intention or obligation to update or revise any forward-looking statements whether as a result of new information or future events, except as required by law.
Pro Bono Bio, an international pharmaceutical company, develops and commercializes new medicines in the Russian Federation. Its products include FLEXISEQ, a pain relieving gel containing absorbing nanostructures (Sequessomes) for the treatment of pain associated with osteoarthritis; EXOSEQ, which delivers Sequessomes to the upper dermal layers of the skin for the treatment of inflammatory conditions, such as eczema and seborrhoeic dermatitis; and ROSSOSEQ, which distributes Sequessome vesicles into lower dermal tissues in the skin to treat psoriasis and atopic eczema conditions. The company also develops blood products, CV diagnostics, anti-infectives, and biological drugs. Pro Bono Bio was …
Detailed Description
Moscow,
Russia
Founded in 2011
www.probonobio.com
Key Executives for Pro Bono Bio
Mr. John Mayo
Chief Executive Officer
Mr. Michael Earl
Chief Operating Officer
Compensation as of Fiscal Year 2014.
Pro Bono Bio Key Developments
Pro Bono Bio Appoints Jason Flowerday as CEO of North American Operations
Jun 26 15
Pro Bono Bio launched its North American operations with headquarters based in Toronto, Canada and secured USD 15 million in funding to accelerate the global launches of FLEXISEQ and SEQUADERMA as well as help fund its ambitious research and development programs that continue to place Pro Bono Bio at the forefront of nanotechnology healthcare development. Pro Bono Bio has recently appointed a North American CEO, Jason Flowerday, to build-out the North American operations and set its strategy for entering both the Canadian and US markets over the next three quarters.
Pro Bono Bio Launches its North American Operations
Jun 26 15
These are interesting developments for both Montréal (Québec) and Toronto (Ontario). As for whether or not Pro Bono Bio is Russian or British, I imagine the legal entity which is the company is Russian while the operations (headquarters as previously noted) are based in the UK.
Thanks to David Bruggeman’s July 16, 2014 ‘musical science’ posting on his Pasco Phronesis blog for information about another Canadian ‘science musician’. Tim Blais has been producing science music videos for almost two years now. His first video, posted on YouTube, in August 2012 featured an Adele tune ‘Rolling in the deep’ sung to lyrics featuring the Higgs Boson (‘Rolling in the Higgs’),
There’s a collider under Geneva
Reaching new energies that we’ve never achieved before
Finally we can see with this machine
A brand new data peak at 125 GeV
See how gluons and vector bosons fuse
Muons and gamma rays emerge from something new
There’s a collider under Geneva
Making one particle that we’ve never seen before
The complex scalar
Elusive boson
Escaped detection by the LEP and Tevatron
The complex scalar
What is its purpose?
It’s got me thinking
Chorus:
We could have had a model (Particle breakthrough, at the LHC)
Without a scalar field (5-sigma result, could it be the Higgs)
But symmetry requires no mass (Particle breakthrough, at the LHC)
So we break it, with the Higgs (5-sigma result, could it be the Higgs)
Baby I have a theory to be told
The standard model used to discover our quantum world
SU(3), U(1), SU(2)’s our gauge
Make a transform and the equations shouldn’t change
The particles then must all be massless
Cause mass terms vary under gauge transformation
The one solution is spontaneous
Symmetry breaking
Roll your vacuum to minimum potential
Break your SU(2) down to massless modes
Into mass terms of gauge bosons they go
Fermions sink in like skiers into snow
Lyrics and arrangement by Tim Blais and A Capella Science
Original music by Adele
In a Sept. 17, 2012 article by Ethan Yang for The McGill Daily (University of McGill, Montréal, Québec) Blais describes his background and inspiration,
How does a master’s physics student create a Higgs boson-based parody of Adele’s “Rolling in the Deep” that goes viral and gets featured in popular science magazines and blogs? We sat down with Tim Blais to learn more about the personal experiences leading to his musical and scientific project, “A Capella Science”.
McGill Daily: Could you tell us a little bit about yourself: where you’re from, your childhood, and other experiences that in hindsight you think might have led you to where you are now? Tim Blais: I grew up in a family of five in the little town of Hudson, Quebec, twenty minutes west of the island of Montreal. My childhood was pretty full of music; I started experimenting with the piano, figuring out songs my older siblings were playing, when I was about four, and soon got actual piano lessons. My mom also ran, and continues to run, our local church choir, so from the time I was three I was singing in front of people as well. Also at about three or four a kid in my preschool introduced me to Bill Nye the Science Guy, which became the only TV I watched for about six years. After kindergarten I didn’t go to school until Grade 10, but was homeschooled by my parents. We had a very multifaceted way of learning […] that I think allowed me to see the big picture of things without getting bogged down in the horrible little details that are often the stumbling block when you start learning something. That gave me a fascination with science that’s essentially carried me through a science DEC and one-and-a-half university degrees. But my parents have always been super cool about not pressuring us kids to be anything in particular, and now to show for it they’ve got an emerging rock star – my brother, Tom; a dedicated speech pathologist – my sister, Mary-Jane; and me, researcher in incomprehensible physics and recently popular internet fool. I think they did alright.
Since 2012, Blais has graduated with a masters in physics and is now devoted to a life as a musician (from a 2013 [?] posting on redefineschool.com),
Blais has just finished up his master’s degree program at McGill, and he says he’s putting academia aside for a while. “I’ve been in school all my life so I’m switching gears and being a musician this year!” he tweeted. And that career choice is just fine by McGill theoretical physicist Alex Maloney, Blais’ faculty adviser.
To bring us up-to-date with Blais, David has featured the latest A Capella Science music video titled: ‘Eminemium (Choose Yourself)’ in his July 16, 2014 ‘musical science’ posting on the Pasco Phronesis blog.
One last tidbit, Blais will be appearing at Calgary’s (Alberta) Beakerhead ‘festival’ (Sept. 10 – 14, 2014). Specifically, he will be at (from the TELUS Sept. 11, 2014 event page):
TELUS Spark Adults Only Night
September 11 [2014] @ 6:00 pm – 10:00 pm
[TELUS Spark Adults Only Night]
Mark your calendar for this special Beakerhead-themed adult night at TELUS Spark Science Centre. Meet the Festo Automation folks from Germany and see their mind-boggling biomechanical creatures up close. Are you also a fan of the internet sensation A Capella Science Bohemian Gravity? Meet the maker, Tim Blais, here in Calgary for Beakerhead.
This event is included with Admission and Membership. TOP TIP: Skip the queue with advance tickets. [go to TELUS event page to buy tickets]
Materials Science & Technology (M S & T ’13) 2013 is being held in Montréal, Quebec from Oct. 27 – 31, 2013. From the home page,
The MS&T partnership of ACerS [American Ceramic Society], AIST [Association for Iron and Steel Technology], ASM [formerly American Society of Metals now ASM International/Materials Information Society], MetSoc [Metallurgical Society {Canada}] and TMS [The Minerals, Metals & Materials Society {US}]brings together scientists, engineers, students, suppliers and more to discuss current research and technical applications, and to shape the future of materials science and technology. NACE International [The Corrosion Society] will co-sponsor MS&T’13.
Apparently, you can save money if you sign up by Sept. 27, 2013.
This year’s summit is made special by a gala for the 100th anniversary of ASM International (from the Aug. 26, 2013 news release),
ASM International to Commemorate Centennial Anniversary with Celebratory Gala
MATERIALS PARK, OHIO – AUG. 26, 2013 – ASM International (ASM), the Materials Information Society, will commemorate its 100th anniversary with a celebratory gala from 5:30-9 p.m. on Oct. 27 in Montreal, Quebec, Canada. The anniversary gala will be held during the Society’s annual Materials Science & Technology Summit (MS&T), also in Montreal.
The Society, recognized for its ASM Handbook series, technical journals, conferences as well as other educational offerings, has a legacy of publishing high-quality materials content by and for the member community. Founded in 1913, the organization began as the Steel Treaters Club in Detroit, Michigan, with fewer than 20 members. Today, ASM International is a thriving society with more than 30,000 members and nearly 100 worldwide chapters.
ASM International’s headquarters, complete with its acclaimed geodesic dome, is located in Materials Park, Ohio.
The anniversary gala will feature a nostalgic review of ASM’s impressive past and a look toward the future during the cocktail reception, dinner, historical tributes and live entertainment. The gala will also feature a keynote speech by Dr. Peter Diamandis, chairman and CEO of the X Prize Foundation and the New York Times Bestselling author of Abundance – The Future is Better Than You Think.
“ASM International has been serving the materials community for over 100 years now….because of and through our members, countless contributions have been made to industry, government, academia and the general public,” said Thom Passek, Managing Director of ASM International. “We can’t wait to reminisce about the organization and celebrate its future with our lifelong society friends this October.”
Celebrating its 100th Anniversary this year, ASM International is proud to continue to serve the materials engineering community and over 30,000 members from all around the globe. The society provides high-quality, solution-focused materials information through publications, events, databases, training, and an international network of local chapters.
They’ve been going hot and heavy at Canada’s national museums in Ottawa this last few months. First, there was a brouhaha over corporate patronage and energy in January 2012 and, again, in April 2012 and now, it’s all about sex. While I’m dying to get started on the sex, this piece is going to follow the chronology.
The CBC (Canadian Broadcasting Corporation) website has a Jan. 23, 2012 posting which notes the active role Imperial Oil played in a November 2011 energy exhibit (part of a multi-year, interactive national initiative, Let’s Talk Energy) at the Canada Science and Technology Museum (from the CBC Jan. 23, 2012 posting),
Imperial Oil, a sponsor of the Museum of Science and Technology’s exhibition “Energy: Power to Choose,” was actively involved in the message presented to the public, according to emails obtained by CBC News.
The Ottawa museum unveiled the exhibition last year despite criticism from environmental groups like the Sierra Club, which questioned why it was partly funded by the Imperial Oil Foundation, which contributed $600,000 over six years.
Apparently, CBC reporters got their hands on some emails where the Imperial Oil Foundation president, Susan Swan, made a number of suggestions,
In an Oct. 3 [2011] interview on CBC Ottawa’s All in a Day, host Alan Neal asked exhibit curator Anna Adamek whose idea it was to include in the exhibit a reference that says oilsands account for one-tenth of one percent of global emissions.
“This fact comes from research reports that are available at the museum, that were commissioned by the museum,” Adamek told Neal.
…
But earlier emails from Imperial Oil Foundation president Susan Swan obtained by Radio-Canada through an Access to Information request show she had recommended that information be included back in May [2011?].
Swan, who also served as chair of the advisory committee to the project, also asked that information be included that the oilsands are expected to add $1.7 trillion to the Canadian economy over the next 25 years.
Not all of Swan’s requests made it into the final exhibit: in one point, she asked that an illustration for Polar Oil and Gas Reserves be changed from red to blue, arguing red “has a negative connotation” bringing to mind “blood oil.” The change was not made.
Personally, I love Swan’s semiotic analysis of the colour ‘red’. I wonder how many graphic designers have been driven mad by someone who sat through a lecture or part of a television programme on colour and/or semiotics and is now an expert.
If you’re curious, you can see the emails from the Imperial Oil Foundation in the CBC Jan. 23, 2012 posting.
A few months later, Barrick Gold (a mining corporation) donated $1M to have a room at the Canadian Museum of Nature renamed, from the April 24, 2012 posting on the CBC website,
Environmental groups are upset over a decision to rename a room at the Canadian Museum of Nature after corporate mining giant Barrick Gold.
Barrick Gold Corp., based out of Toronto, purchased the room’s naming rights for about $1 million. The new “Barrick Salon” is the museum’s premier rental space featuring a circular room with glass windows from floor to ceiling.
The decision had activists protest at the museum Tuesday, a few hours before the official naming reception that includes Barrick Gold executives.
…
“It’s definitely not a partnership, it’s a sponsorship,” said Elizabeth McCrea, the museum’s director of communications. “We’re always looking at increasing self-generated revenue and this is one way that we’re doing it.” [emphasis mine]
Monarchs and wealthy people have been funding and attempting to influence cultural institutions for millenia. These days, we get to include corporations on that list but it’s nothing new. People or institutions with power and money always want history or facts * presented in ways that further or flatter their interests (“history is written by the victors”). They aren’t always successful but they will keep trying.
It’s time now to add sex to the mix. Canada’s Science and Technology Museum is currently hosting SEX: A Tell-all Exhibition, which has caused some consternation in our country’s capital (Ottawa), from the May 16, 2012 article by Althia Raj for the *Huffington Post (Canada),
Canada’s Science and Technology Museum has abruptly raised the age limit for a controversial sex exhibit after Heritage Minister James Moore’s office raised concerns and more than 50 individuals complained.
Moore’s office called museum president Denise Amyot to complain that Sex: A Tell-All Exhibition [sic] is completely inappropriate.
“The purpose of the Museum of Science and Technology is to foster scientific and technological literacy throughout Canada,” said Moore’s spokesperson James Maunder.
“It is clear this exhibit does not fit within that mandate. This content cannot be defended, and is insulting to taxpayers,” he said.
This show had already been run in Montréal (where it was developed by the Montréal Science Centre for children 12 years and older) and in Regina (Saskatachewan), without significant distress or insult.
Since the show opened in Ottawa, the National Post has run a couple of opinion pieces (against [Barbara Kay] and for [Sarah Elton]). Here’s Barbara Kay in her June 12, 2012 piece decrying the ‘porn exhibit’,
In On Liberty, the Ur-text for many free speech libertarians, John Stuart Mill argues that the demands of liberty and authority will always struggle, because the one cannot exist without the other. And so “some rules of conduct, therefore, must be imposed — by law in the first place, and by opinion on many things which are not fit subjects for the operation of law.”
Many of Mill’s devotees would be surprised to learn how much weight he gave to social opprobrium in matters that cause “offence” to the public. By “good manners,” Mill was clearly thinking, at least in part, about community standards of decency. Which brings us to the recent controversy over “Sex: a Tell-All Exhibition” at Ottawa’s Museum of Science and Technology.
…
But in truth my deeper concern is the exhibition’s indecency, and the harm it will likely do by titillating children’s imaginations in a way that runs counter to a natural sense of personal modesty.
I gather Kay is accustomed to being thought a ‘libertarian’. The problem with labels of these kinds is that you will find yourself in a corner because, at some point, the philosophy goes too far in a direction you’re not willing to follow. I’ve never met anyone who isn’t inconsistent on occasion and this is where Kay is inconsistent in her libertarian philosophy. She references a 19th century philosopher to justify her discomfort and her desire to censor information about sex.
Elton in her June 12, 2012 piece frames the discussion quite differently, almost as if she were the libertarian,
When a publicly funded museum censors an exhibit after the minister who funds museums in Canada questions its content, it is an attack on our democracy. What we talk about in our museums — the stories we tell each other in these public forums — helps to determine who we are as a country.
The Canada Museum of Science and Technology receives most of its funding from the government, as do most other museums in Canada. It is not a stretch to believe that this could be the dawn of a content chill here, as curators in the months ahead question their decisions about which exhibits to mount and what to put in them.
Given the issues with corporate and other patronage that museums and other cultural institutions routinely encounter, Elton’s comments seem a little naïve to me. However, both she and Kay raise points that bear examination and I think the National Post should be recognized for the decision to present these viewpoints. Thank you.
As for James Moore, Minister of Canadian Heritage and Official Languages, he’s from my neck of the woods, (Conservative Member of Parliament representing Port Moody – Westwood – Port Coquitlam, British Columbia). While I’m not in his constituency, I would like to note publicly that neither he nor his spokesperson, James Maunder, represent my view. I’m neither insulted nor do I believe that the SEX: A Tell-all Exhibition is outside the museum’s mandate.
The Museum’s mandate, to study the “Transformation of Canada,” can be broken into sub-themes:
Canadian Context:
Context shapes the evolution of science and technology. Canadian achievements reflect the challenges overcome and the choices made in developing the nation in light of vast geographical distances, a harsh physical environment and limited resources in terms of skilled workers and available capital.
Finding New Ways:
The search for new knowledge and new ways of doing things is basic to human nature. Science and technology have played key roles in efforts to find new ways of living, learning and working.
How “Things” Work:
Developing an understanding of how “things” work can make people more aware of factors that have contributed to the transformation of Canada, such as scientific principles and physical properties. At the most basic level, taking apart an object, process or system (both physically and conceptually) provides important insight into the world we live in.
People, Science and Technology:
People have a dynamic relationship with science and technology. Domestic and work lives are shaped and influenced by scientific and technological change. At the same time, people shape the evolution of science and technology individually and collectively through their decisions and actions. However, our ability to direct and control scientific and technological advancements is not absolute; choices and trade-offs often have to be made with the consequences in mind.
That seems like a very broad mandate to me and one where sex would fit into at least three of the categories, Canadian Context, Finding New Ways, and People, Science, and Technology with technology that has affected sex greatly, birth control. Actually, I can make an argument for the How “Things” work category too.
Interestingly, Moore has no problem celebrating war. In a Friday, Oct. 21, 2011 article by Randy Boswell for the Vancouver Sun,
This decade will see the Canadian government spearhead an unprecedented anniversarypalooza, with recent announcements about a $28-million fund for War of 1812 commemorations, just the first of a host of planned federal investments to mark a range of milestones.
Those include Queen Elizabeth’s diamond jubilee next year, the centennial of the important but ill-fated Canadian Arctic Expedition in 2013, the 100th anniversary of the start of the First World War in 2014 and – above all – Canada’s 150th birthday bash in 2017. [emphases mine]
I have overstated it somewhat. There are other celebrations planned although why the beginning of World War I would be included in this “anniversarypalooza” is a mystery to me. It does seem curious though that war can be celebrated without insult. As more than one commentator has noted, society in general seems to have less trouble with depictions of violence than it has with depictions of sex.
In any event, I’m thrilled to see so much interest in Canada’s ‘science’ museums. May the conversation continue.
* Correction: Huggington changed to Huffington, July 17, 2013.