Tag Archives: muscles

Bionanomotors for bio-inspired robots on the battlefield

An October 9, 2019 news item on ScienceDaily provides some insight into the latest US Army research into robots,

In an effort to make robots more effective and versatile teammates for Soldiers in combat, Army researchers are on a mission to understand the value of the molecular living functionality of muscle, and the fundamental mechanics that would need to be replicated in order to artificially achieve the capabilities arising from the proteins responsible for muscle contraction.

Caption: Army researchers are on a mission to understand the value of the molecular ‘living’ functionality of muscle, and the fundamental mechanics that would need to be replicated in order to artificially achieve the capabilities arising from the proteins responsible for muscle contraction. Credit: US Army-Shutterstock

An October 8, 2019 US Army Research Laboratory news release (also on EurekAlert but published on October 9, 2019), which originated the news item, delves further into the research,

Bionanomotors, like myosins that move along actin networks, are responsible for most methods of motion in all life forms. Thus, the development of artificial nanomotors could be game-changing in the field of robotics research.

Researchers from the U.S. Army Combat Capabilities Development Command’s [CCDC] Army Research Laboratory [ARL] have been looking to identify a design that would allow the artificial nanomotor to take advantage of Brownian motion, the property of particles to agitatedly move simply because they are warm.

The CCDC ARL researchers believe understanding and developing these fundamental mechanics are a necessary foundational step toward making informed decisions on the viability of new directions in robotics involving the blending of synthetic biology, robotics, and dynamics and controls engineering.

“By controlling the stiffness of different geometrical features of a simple lever-arm design, we found that we could use Brownian motion to make the nanomotor more capable of reaching desirable positions for creating linear motion,” said Dean Culver, a researcher in CCDC ARL’s Vehicle Technology Directorate. “This nano-scale feature translates to more energetically efficient actuation at a macro scale, meaning robots that can do more for the warfighter over a longer amount of time.”

According to Culver, the descriptions of protein interactions in muscle contraction are typically fairly high-level. More specifically, rather than describing the forces that act on an individual protein to seek its counterpart, prescribed or empirical rate functions that dictate the conditions under which a binding or a release event occurs have been used by the research community to replicate this biomechanical process.

“These widely accepted muscle contraction models are akin to a black-box understanding of a car engine,” Culver said. “More gas, more power. It weighs this much and takes up this much space. Combustion is involved. But, you can’t design a car engine with that kind of surface-level information. You need to understand how the pistons work, and how finely injection needs to be tuned. That’s a component-level understanding of the engine. We dive into the component-level mechanics of the built-up protein system and show the design and control value of living functionality as well as a clearer understanding of design parameters that would be key to synthetically reproducing such living functionality.”

Culver stated that the capacity for Brownian motion to kick a tethered particle from a disadvantageous elastic position to an advantageous one, in terms of energy production for a molecular motor, has been illustrated by ARL at a component level, a crucial step in the design of artificial nanomotors that offer the same performance capabilities as biological ones.

“This research adds a key piece of the puzzle for fast, versatile robots that can perform autonomous tactical maneuver and reconnaissance functions,” Culver said. “These models will be integral to the design of distributed actuators that are silent, low thermal signature and efficient – features that will make these robots more impactful in the field.”

Culver noted that they are silent because the muscles don’t make a lot of noise when they actuate, especially compared to motors or servos, cold because the amount of heat generation in a muscle is far less than a comparable motor, and efficient because of the advantages of the distributed chemical energy model and potential escape via Brownian motion.

According to Culver, the breadth of applications for actuators inspired by the biomolecular machines in animal muscles is still unknown, but many of the existing application spaces have clear Army applications such as bio-inspired robotics, nanomachines and energy harvesting.

“Fundamental and exploratory research in this area is therefore a wise investment for our future warfighter capabilities,” Culver said.

Moving forward, there are two primary extensions of this research.

“First, we need to better understand how molecules, like the tethered particle discussed in our paper, interact with each other in more complicated environments,” Culver said. “In the paper, we see how a tethered particle can usefully harness Brownian motion to benefit the contraction of the muscle overall, but the particle in this first model is in an idealized environment. In our bodies, it’s submerged in a fluid carrying many different ions and energy-bearing molecules in solution. That’s the last piece of the puzzle for the single-motor, nano-scale models of molecular motors.”

The second extension, stated Culver, is to repeat this study with a full 3-D model, paving the way to scaling up to practical designs.

Also notable is the fact that because this research is so young, ARL researchers used this project to establish relationships with other investigators in the academic community.

“Leaning on their expertise will be critical in the years to come, and we’ve done a great job of reaching out to faculty members and researchers from places like the University of Washington, Duke University and Carnegie Mellon University,” Culver said.

According to Culver, taking this research project into the next steps with help from collaborative partners will lead to tremendous capabilities for future Soldiers in combat, a critical requirement considering the nature of the ever-changing battlefield.

Here’s a link to and a citation for the paper,

A Dynamic Escape Problem of Molecular Motors by Dean Culver, Bryan Glaz, Samuel Stanton. J Biomech Eng. Paper No: BIO-18-1527 https://doi.org/10.1115/1.4044580 Published Online: August 1, 2019

This paper is behind a paywall.

Medusa, jellyfish, and tissue engineering

The ‘Medusoid’ is a reverse- tissue-engineered jellyfish designed by a collaborative team of researchers based, respectively, at the California Institute of Technology (Caltech) and Harvard University. From the July 22, 2012 news item on ScienceDaily,

When one observes a colorful jellyfish pulsating through the ocean, Greek mythology probably doesn’t immediately come to mind. But the animal once was known as the medusa, after the snake-haired mythological creature its tentacles resemble. The mythological Medusa’s gaze turned people into stone, and now, thanks to recent advances in bio-inspired engineering, a team led by researchers at the California Institute of Technology (Caltech) and Harvard University have flipped that fable on its head: turning a solid element—silicon—and muscle cells into a freely swimming “jellyfish.”

“A big goal of our study was to advance tissue engineering,” says Janna Nawroth, a doctoral student in biology at Caltech and lead author of the study. “In many ways, it is still a very qualitative art [emphasis mine], with people trying to copy a tissue or organ just based on what they think is important or what they see as the major components—without necessarily understanding if those components are relevant to the desired function or without analyzing first how different materials could be used.” Because a particular function—swimming, say—doesn’t necessarily emerge just from copying every single element of a swimming organism into a design, “our idea,” she says, “was that we would make jellyfish functions—swimming and creating feeding currents—as our target and then build a structure based on that information.”

Oops! I’m not sure why Nawroth uses the word ‘qualitative’ here. It’s certainly inappropriate given my understanding of the word. Here’s my rough definition, if anyone has anything better or can explain why Nawroth used ‘qualitative’  in that context, please do comment. I’m going to start by contrasting qualitative with quantitative, both of which I’m going to hugely oversimplify. Quantitative data offers numbers, e.g. 50,000 people committed suicide last year. Qualitative data helps offer insight into why. Researchers can obtain the quantitative data from police records, vital statistics, surveys, etc. where qualitative data is gathered from ‘story-oriented’ or highly detailed personal interviews. ( I would have used ‘hit or miss,’ ‘guesswork,’ or simply used the word art without qualifying it  in this context.)

The originating July 22, 2012 news release from Caltech goes on to describe why jellyfish were selected and how the collaboration between Harvard and Caltech came about,

Jellyfish are believed to be the oldest multi-organ animals in the world, possibly existing on Earth for the past 500 million years. Because they use a muscle to pump their way through the water, their function—on a very basic level—is similar to that of a human heart, which makes the animal a good biological system to analyze for use in tissue engineering.

“It occurred to me in 2007 that we might have failed to understand the fundamental laws of muscular pumps,” says Kevin Kit Parker, Tarr Family Professor of Bioengineering and Applied Physics at Harvard and a coauthor of the study. “I started looking at marine organisms that pump to survive. Then I saw a jellyfish at the New England Aquarium, and I immediately noted both similarities and differences between how the jellyfish pumps and the human heart. The similarities help reveal what you need to do to design a bio-inspired pump.”

Parker contacted John Dabiri, professor of aeronautics and bioengineering at Caltech—and Nawroth’s advisor—and a partnership was born. Together, the two groups worked for years to understand the key factors that contribute to jellyfish propulsion, including the arrangement of their muscles, how their bodies contract and recoil, and how fluid-dynamic effects help or hinder their movements. Once these functions were well understood, the researchers began to design the artificial jellyfish.

Here’s how they created the ‘Medusoid’ (artificial jellyfish, from the July 22, 2012 Harvard University news release on EurekAlert,

To reverse engineer a medusa jellyfish, the investigators used analysis tools borrowed from the fields of law enforcement biometrics and crystallography to make maps of the alignment of subcellular protein networks within all of the muscle cells within the animal. They then conducted studies to understand the electrophysiological triggering of jellyfish propulsion and the biomechanics of the propulsive stroke itself.

Based on such understanding, it turned out that a sheet of cultured rat heart muscle tissue that would contract when electrically stimulated in a liquid environment was the perfect raw material to create an ersatz jellyfish. The team then incorporated a silicone polymer that fashions the body of the artificial creature into a thin membrane that resembles a small jellyfish, with eight arm-like appendages.

Using the same analysis tools, the investigators were able to quantitatively match the subcellular, cellular, and supracellular architecture of the jellyfish musculature with the rat heart muscle cells.

The artificial construct was placed in container of ocean-like salt water and shocked into swimming with synchronized muscle contractions that mimic those of real jellyfish. (In fact, the muscle cells started to contract a bit on their own even before the electrical current was applied.)

“I was surprised that with relatively few components—a silicone base and cells that we arranged—we were able to reproduce some pretty complex swimming and feeding behaviors that you see in biological jellyfish,” says Dabiri.

Their design strategy, they say, will be broadly applicable to the reverse engineering of muscular organs in humans.

For future research direction I’ve excerpted this from the Caltech news release,

The team’s next goal is to design a completely self-contained system that is able to sense and actuate on its own using internal signals, as human hearts do. Nawroth and Dabiri would also like for the Medusoid to be able to go out and gather food on its own. Then, researchers could think about systems that could live in the human body for years at a time without having to worry about batteries because the system would be able to fend for itself. For example, these systems could be the basis for a pacemaker made with biological elements.

“We’re reimagining how much we can do in terms of synthetic biology,” says Dabiri. “A lot of work these days is done to engineer molecules, but there is much less effort to engineer organisms. I think this is a good glimpse into the future of re-engineering entire organisms for the purposes of advancing biomedical technology. We may also be able to engineer applications where these biological systems give us the opportunity to do things more efficiently, with less energy usage.”

I think this excerpt from the Harvard news release provides some insight into at least some of the motivations behind this work,

In addition to advancing the field of tissue engineering, Parker adds that he took on the challenge of building a creature to challenge the traditional view of synthetic biology which is “focused on genetic manipulations of cells.” Instead of building just a cell, he sought to “build a beast.”

A little competitive, eh?

For anyone who’s interested in reading the research (which is behind a paywall), from the ScienceDaily news item,

Janna C Nawroth, Hyungsuk Lee, Adam W Feinberg, Crystal M Ripplinger, Megan L McCain, Anna Grosberg, John O Dabiri & Kevin Kit Parker. A tissue-engineered jellyfish with biomimetic propulsion. Nature Biotechnology, 22 July 2012 DOI: 10.1038/nbt.2269

Andrew Maynard weighs in on the matter with his July 22, 2012 posting titled, We took a rat apart and rebuilt it as a jellyfish, on the 2020Science blog (Note: I have removed links),

 Sometimes you read a science article and it sends a tingle down your spine. That was my reaction this afternoon reading Ed Yong’s piece on a paper just published in Nature Biotechnology by Janna Nawroth, Kevin Kit Parker and colleagues.

The gist of the work is that Parker’s team have created a hybrid biological machine that “swims” like a jellyfish by growing rat heart muscle cells on a patterned sheet of polydimethylsiloxane.  The researchers are using the technique to explore muscular pumps, but the result opens the door to new technologies built around biological-non biological hybrids.

Ed Yong’s July 22, 2012 article for Nature (as mentioned by Andrew) offers a wider perspective on the work than is immediately evident in either of the news releases (Note: I have removed a footnote),

Bioengineers have made an artificial jellyfish using silicone and muscle cells from a rat’s heart. The synthetic creature, dubbed a medusoid, looks like a flower with eight petals. When placed in an electric field, it pulses and swims exactly like its living counterpart.

“Morphologically, we’ve built a jellyfish. Functionally, we’ve built a jellyfish. Genetically, this thing is a rat,” says Kit Parker, a biophysicist at Harvard University in Cambridge, Massachusetts, who led the work. The project is described today in Nature Biotechnology.

….

“I think that this is terrific,” says Joseph Vacanti, a tissue engineer at Massachusetts General Hospital in Boston. “It is a powerful demonstration of engineering chimaeric systems of living and non-living components.”

Here’s a video from the researchers demonstrating the artificial jellyfish in action,

There’s a lot of material for contemplation but what I’m going to note here is the difference in the messaging. The news releases from the ‘universities’ are very focused on the medical application where the discussion in the science community revolves primarily around the synthetic biology/bioengineering elements. It seems to me that this strategy can lead to future problems with a population that is largely unprepared to deal with the notion of mixing and recombining  genetic material or demonstrations of “of engineering chimaeric systems of living and non-living components.”

Biomimicry, proteins, muscles, and the University of British Columbia’s Dr. Hongbin Li

This morning, I was excited to receive a news release about Dr. Hongbin Li’s recent work which has been published in Nature magazine. A Canada Research Chair in Molecular Nanoscience  and Protein Engineering at the University of British Columbia (Canada), Dr. Li’s work has been featured here before. (Part 1 and Part 2 of the interviews where he patiently answered my uninformed questions about his 2008 work on proteins where he had them behave like shock absorbers.) This latest work builds on his 2008 discoveries and extends them as he considers muscle elasticity.

From the news release,

University of British Columbia researchers have cast artificial proteins into a new solid biomaterial that very closely mimics the elasticity of muscle.

The approach, detailed in the current issue of the journal Nature, opens new avenues to creating solid biomaterials from smaller engineered proteins, and has potential applications in material sciences and tissue engineering.

“There are obvious long-term implications for tissue engineers,” says Hongbin Li, associate professor in the Dept. of Chemistry. “But at a fundamental level, we’ve learned that the mechanical properties we engineer into the individual proteins that make up this biomaterial can be translated into useful mechanical properties at the larger scale.”

The work will be published tomorrow “Designed biomaterials to mimic the mechanical properties of muscles” by Shanshan Lv, Daniel M. Dudek, Yi Cao, M. M. Balamurali, John Gosline, Hongbin Li in Nature 465, 69-73 (6 May 2010) doi:10.1038/nature09024 Letter.

Again from the news release,

The mechanical properties of these biomaterials can be fine-tuned, providing the opportunity to develop biomaterials that exhibit a wide range of useful properties – including mimicking different types of muscles. The material is also fully hydrated and biodegradable.

I wonder where are these ‘muscles’ going to appear? On robots?

Congratulations to Dr. Hongbin Li and your colleagues, Shanshan Lv, Daniel M. Dudek, Yi Cao, M. M. Balamurali, and John Gosline.