Tag Archives: Mustafa Suleyman

AI safety talks at Bletchley Park in November 2023

There’s a very good article about the upcoming AI (artificial intelligence) safety talks on the British Broadcasting Corporation (BBC) news website (plus some juicy perhaps even gossipy news about who may not be attending the event) but first, here’s the August 24, 2023 UK government press release making the announcement,

Iconic Bletchley Park to host UK AI Safety Summit in early November [2023]

Major global event to take place on the 1st and 2nd of November.[2023]

– UK to host world first summit on artificial intelligence safety in November

– Talks will explore and build consensus on rapid, international action to advance safety at the frontier of AI technology

– Bletchley Park, one of the birthplaces of computer science, to host the summit

International governments, leading AI companies and experts in research will unite for crucial talks in November on the safe development and use of frontier AI technology, as the UK Government announces Bletchley Park as the location for the UK summit.

The major global event will take place on the 1st and 2nd November to consider the risks of AI, especially at the frontier of development, and discuss how they can be mitigated through internationally coordinated action. Frontier AI models hold enormous potential to power economic growth, drive scientific progress and wider public benefits, while also posing potential safety risks if not developed responsibly.

To be hosted at Bletchley Park in Buckinghamshire, a significant location in the history of computer science development and once the home of British Enigma codebreaking – it will see coordinated action to agree a set of rapid, targeted measures for furthering safety in global AI use.

Preparations for the summit are already in full flow, with Matt Clifford and Jonathan Black recently appointed as the Prime Minister’s Representatives. Together they’ll spearhead talks and negotiations, as they rally leading AI nations and experts over the next three months to ensure the summit provides a platform for countries to work together on further developing a shared approach to agree the safety measures needed to mitigate the risks of AI.

Prime Minister Rishi Sunak said:

“The UK has long been home to the transformative technologies of the future, so there is no better place to host the first ever global AI safety summit than at Bletchley Park this November.

To fully embrace the extraordinary opportunities of artificial intelligence, we must grip and tackle the risks to ensure it develops safely in the years ahead.

With the combined strength of our international partners, thriving AI industry and expert academic community, we can secure the rapid international action we need for the safe and responsible development of AI around the world.”

Technology Secretary Michelle Donelan said:

“International collaboration is the cornerstone of our approach to AI regulation, and we want the summit to result in leading nations and experts agreeing on a shared approach to its safe use.

The UK is consistently recognised as a world leader in AI and we are well placed to lead these discussions. The location of Bletchley Park as the backdrop will reaffirm our historic leadership in overseeing the development of new technologies.

AI is already improving lives from new innovations in healthcare to supporting efforts to tackle climate change, and November’s summit will make sure we can all realise the technology’s huge benefits safely and securely for decades to come.”

The summit will also build on ongoing work at international forums including the OECD, Global Partnership on AI, Council of Europe, and the UN and standards-development organisations, as well as the recently agreed G7 Hiroshima AI Process.

The UK boasts strong credentials as a world leader in AI. The technology employs over 50,000 people, directly supports one of the Prime Minister’s five priorities by contributing £3.7 billion to the economy, and is the birthplace of leading AI companies such as Google DeepMind. It has also invested more on AI safety research than any other nation, backing the creation of the Foundation Model Taskforce with an initial £100 million.

Foreign Secretary James Cleverly said:

“No country will be untouched by AI, and no country alone will solve the challenges posed by this technology. In our interconnected world, we must have an international approach.

The origins of modern AI can be traced back to Bletchley Park. Now, it will also be home to the global effort to shape the responsible use of AI.”

Bletchley Park’s role in hosting the summit reflects the UK’s proud tradition of being at the frontier of new technology advancements. Since Alan Turing’s celebrated work some eight decades ago, computing and computer science have become fundamental pillars of life both in the UK and across the globe.

Iain Standen, CEO of the Bletchley Park Trust, said:

“Bletchley Park Trust is immensely privileged to have been chosen as the venue for the first major international summit on AI safety this November, and we look forward to welcoming the world to our historic site.

It is fitting that the very spot where leading minds harnessed emerging technologies to influence the successful outcome of World War 2 will, once again, be the crucible for international co-ordinated action.

We are incredibly excited to be providing the stage for discussions on global safety standards, which will help everyone manage and monitor the risks of artificial intelligence.”

The roots of AI can be traced back to the leading minds who worked at Bletchley during World War 2, with codebreakers Jack Good and Donald Michie among those who went on to write extensive works on the technology. In November [2023], it will once again take centre stage as the international community comes together to agree on important guardrails which ensure the opportunities of AI can be realised, and its risks safely managed.

The announcement follows the UK government allocating £13 million to revolutionise healthcare research through AI, unveiled last week. The funding supports a raft of new projects including transformations to brain tumour surgeries, new approaches to treating chronic nerve pain, and a system to predict a patient’s risk of developing future health problems based on existing conditions.

Tom Gerken’s August 24, 2023 BBC news article (an analysis by Zoe Kleinman follows as part of the article) fills in a few blanks, Note: Links have been removed,

World leaders will meet with AI companies and experts on 1 and 2 November for the discussions.

The global talks aim to build an international consensus on the future of AI.

The summit will take place at Bletchley Park, where Alan Turing, one of the pioneers of modern computing, worked during World War Two.

It is unknown which world leaders will be invited to the event, with a particular question mark over whether the Chinese government or tech giant Baidu will be in attendance.

The BBC has approached the government for comment.

The summit will address how the technology can be safely developed through “internationally co-ordinated action” but there has been no confirmation of more detailed topics.

It comes after US tech firm Palantir rejected calls to pause the development of AI in June, with its boss Alex Karp saying it was only those with “no products” who wanted a pause.

And in July [2023], children’s charity the Internet Watch Foundation called on Mr Sunak to tackle AI-generated child sexual abuse imagery, which it says is on the rise.

Kleinman’s analysis includes this, Note: A link has been removed,

Will China be represented? Currently there is a distinct east/west divide in the AI world but several experts argue this is a tech that transcends geopolitics. Some say a UN-style regulator would be a better alternative to individual territories coming up with their own rules.

If the government can get enough of the right people around the table in early November [2023], this is perhaps a good subject for debate.

Three US AI giants – OpenAI, Anthropic and Palantir – have all committed to opening London headquarters.

But there are others going in the opposite direction – British DeepMind co-founder Mustafa Suleyman chose to locate his new AI company InflectionAI in California. He told the BBC the UK needed to cultivate a more risk-taking culture in order to truly become an AI superpower.

Many of those who worked at Bletchley Park decoding messages during WW2 went on to write and speak about AI in later years, including codebreakers Irving John “Jack” Good and Donald Michie.

Soon after the War, [Alan] Turing proposed the imitation game – later dubbed the “Turing test” – which seeks to identify whether a machine can behave in a way indistinguishable from a human.

There is a Bletchley Park website, which sells tickets for tours.

Insight into political jockeying (i.e., some juicy news bits)

This has recently been reported by BBC, from an October 17 (?). 2023 news article by Jessica Parker & Zoe Kleinman on BBC news online,

German Chancellor Olaf Scholz may turn down his invitation to a major UK summit on artificial intelligence, the BBC understands.

While no guest list has been published of an expected 100 participants, some within the sector say it’s unclear if the event will attract top leaders.

A government source insisted the summit is garnering “a lot of attention” at home and overseas.

The two-day meeting is due to bring together leading politicians as well as independent experts and senior execs from the tech giants, who are mainly US based.

The first day will bring together tech companies and academics for a discussion chaired by the Secretary of State for Science, Innovation and Technology, Michelle Donelan.

The second day is set to see a “small group” of people, including international government figures, in meetings run by PM Rishi Sunak.

Though no final decision has been made, it is now seen as unlikely that the German Chancellor will attend.

That could spark concerns of a “domino effect” with other world leaders, such as the French President Emmanuel Macron, also unconfirmed.

Government sources say there are heads of state who have signalled a clear intention to turn up, and the BBC understands that high-level representatives from many US-based tech giants are going.

The foreign secretary confirmed in September [2023] that a Chinese representative has been invited, despite controversy.

Some MPs within the UK’s ruling Conservative Party believe China should be cut out of the conference after a series of security rows.

It is not known whether there has been a response to the invitation.

China is home to a huge AI sector and has already created its own set of rules to govern responsible use of the tech within the country.

The US, a major player in the sector and the world’s largest economy, will be represented by Vice-President Kamala Harris.

Britain is hoping to position itself as a key broker as the world wrestles with the potential pitfalls and risks of AI.

However, Berlin is thought to want to avoid any messy overlap with G7 efforts, after the group of leading democratic countries agreed to create an international code of conduct.

Germany is also the biggest economy in the EU – which is itself aiming to finalise its own landmark AI Act by the end of this year.

It includes grading AI tools depending on how significant they are, so for example an email filter would be less tightly regulated than a medical diagnosis system.

The European Commission President Ursula von der Leyen is expected at next month’s summit, while it is possible Berlin could send a senior government figure such as its vice chancellor, Robert Habeck.

A source from the Department for Science, Innovation and Technology said: “This is the first time an international summit has focused on frontier AI risks and it is garnering a lot of attention at home and overseas.

“It is usual not to confirm senior attendance at major international events until nearer the time, for security reasons.”

Fascinating, eh?

Robot radiologists (artificially intelligent doctors)

Mutaz Musa, a physician at New York Presbyterian Hospital/Weill Cornell (Department of Emergency Medicine) and software developer in New York City, has penned an eyeopening opinion piece about artificial intelligence (or robots if you prefer) and the field of radiology. From a June 25, 2018 opinion piece for The Scientist (Note: Links have been removed),

Although artificial intelligence has raised fears of job loss for many, we doctors have thus far enjoyed a smug sense of security. There are signs, however, that the first wave of AI-driven redundancies among doctors is fast approaching. And radiologists seem to be first on the chopping block.

Andrew Ng, founder of online learning platform Coursera and former CTO of “China’s Google,” Baidu, recently announced the development of CheXNet, a convolutional neural net capable of recognizing pneumonia and other thoracic pathologies on chest X-rays better than human radiologists. Earlier this year, a Hungarian group developed a similar system for detecting and classifying features of breast cancer in mammograms. In 2017, Adelaide University researchers published details of a bot capable of matching human radiologist performance in detecting hip fractures. And, of course, Google achieved superhuman proficiency in detecting diabetic retinopathy in fundus photographs, a task outside the scope of most radiologists.

Beyond single, two-dimensional radiographs, a team at Oxford University developed a system for detecting spinal disease from MRI data with a performance equivalent to a human radiologist. Meanwhile, researchers at the University of California, Los Angeles, reported detecting pathology on head CT scans with an error rate more than 20 times lower than a human radiologist.

Although these particular projects are still in the research phase and far from perfect—for instance, often pitting their machines against a limited number of radiologists—the pace of progress alone is telling.

Others have already taken their algorithms out of the lab and into the marketplace. Enlitic, founded by Aussie serial entrepreneur and University of San Francisco researcher Jeremy Howard, is a Bay-Area startup that offers automated X-ray and chest CAT scan interpretation services. Enlitic’s systems putatively can judge the malignancy of nodules up to 50 percent more accurately than a panel of radiologists and identify fractures so small they’d typically be missed by the human eye. One of Enlitic’s largest investors, Capitol Health, owns a network of diagnostic imaging centers throughout Australia, anticipating the broad rollout of this technology. Another Bay-Area startup, Arterys, offers cloud-based medical imaging diagnostics. Arterys’s services extend beyond plain films to cardiac MRIs and CAT scans of the chest and abdomen. And there are many others.

Musa has offered a compelling argument with lots of links to supporting evidence.

[downloaded from https://www.the-scientist.com/news-opinion/opinion–rise-of-the-robot-radiologists-64356]

And evidence keeps mounting, I just stumbled across this June 30, 2018 news item on Xinhuanet.com,

An artificial intelligence (AI) system scored 2:0 against elite human physicians Saturday in two rounds of competitions in diagnosing brain tumors and predicting hematoma expansion in Beijing.

The BioMind AI system, developed by the Artificial Intelligence Research Centre for Neurological Disorders at the Beijing Tiantan Hospital and a research team from the Capital Medical University, made correct diagnoses in 87 percent of 225 cases in about 15 minutes, while a team of 15 senior doctors only achieved 66-percent accuracy.

The AI also gave correct predictions in 83 percent of brain hematoma expansion cases, outperforming the 63-percent accuracy among a group of physicians from renowned hospitals across the country.

The outcomes for human physicians were quite normal and even better than the average accuracy in ordinary hospitals, said Gao Peiyi, head of the radiology department at Tiantan Hospital, a leading institution on neurology and neurosurgery.

To train the AI, developers fed it tens of thousands of images of nervous system-related diseases that the Tiantan Hospital has archived over the past 10 years, making it capable of diagnosing common neurological diseases such as meningioma and glioma with an accuracy rate of over 90 percent, comparable to that of a senior doctor.

All the cases were real and contributed by the hospital, but never used as training material for the AI, according to the organizer.

Wang Yongjun, executive vice president of the Tiantan Hospital, said that he personally did not care very much about who won, because the contest was never intended to pit humans against technology but to help doctors learn and improve [emphasis mine] through interactions with technology.

“I hope through this competition, doctors can experience the power of artificial intelligence. This is especially so for some doctors who are skeptical about artificial intelligence. I hope they can further understand AI and eliminate their fears toward it,” said Wang.

Dr. Lin Yi who participated and lost in the second round, said that she welcomes AI, as it is not a threat but a “friend.” [emphasis mine]

AI will not only reduce the workload but also push doctors to keep learning and improve their skills, said Lin.

Bian Xiuwu, an academician with the Chinese Academy of Science and a member of the competition’s jury, said there has never been an absolute standard correct answer in diagnosing developing diseases, and the AI would only serve as an assistant to doctors in giving preliminary results. [emphasis mine]

Dr. Paul Parizel, former president of the European Society of Radiology and another member of the jury, also agreed that AI will not replace doctors, but will instead function similar to how GPS does for drivers. [emphasis mine]

Dr. Gauden Galea, representative of the World Health Organization in China, said AI is an exciting tool for healthcare but still in the primitive stages.

Based on the size of its population and the huge volume of accessible digital medical data, China has a unique advantage in developing medical AI, according to Galea.

China has introduced a series of plans in developing AI applications in recent years.

In 2017, the State Council issued a development plan on the new generation of Artificial Intelligence and the Ministry of Industry and Information Technology also issued the “Three-Year Action Plan for Promoting the Development of a New Generation of Artificial Intelligence (2018-2020).”

The Action Plan proposed developing medical image-assisted diagnostic systems to support medicine in various fields.

I note the reference to cars and global positioning systems (GPS) and their role as ‘helpers’;, it seems no one at the ‘AI and radiology’ competition has heard of driverless cars. Here’s Musa on those reassuring comments abut how the technology won’t replace experts but rather augment their skills,

To be sure, these services frame themselves as “support products” that “make doctors faster,” rather than replacements that make doctors redundant. This language may reflect a reserved view of the technology, though it likely also represents a marketing strategy keen to avoid threatening or antagonizing incumbents. After all, many of the customers themselves, for now, are radiologists.

Radiology isn’t the only area where experts might find themselves displaced.

Eye experts

It seems inroads have been made by artificial intelligence systems (AI) into the diagnosis of eye diseases. It got the ‘Fast Company’ treatment (exciting new tech, learn all about it) as can be seen further down in this posting. First, here’s a more restrained announcement, from an August 14, 2018 news item on phys.org (Note: A link has been removed),

An artificial intelligence (AI) system, which can recommend the correct referral decision for more than 50 eye diseases, as accurately as experts has been developed by Moorfields Eye Hospital NHS Foundation Trust, DeepMind Health and UCL [University College London].

The breakthrough research, published online by Nature Medicine, describes how machine-learning technology has been successfully trained on thousands of historic de-personalised eye scans to identify features of eye disease and recommend how patients should be referred for care.

Researchers hope the technology could one day transform the way professionals carry out eye tests, allowing them to spot conditions earlier and prioritise patients with the most serious eye diseases before irreversible damage sets in.

An August 13, 2018 UCL press release, which originated the news item, describes the research and the reasons behind it in more detail,

More than 285 million people worldwide live with some form of sight loss, including more than two million people in the UK. Eye diseases remain one of the biggest causes of sight loss, and many can be prevented with early detection and treatment.

Dr Pearse Keane, NIHR Clinician Scientist at the UCL Institute of Ophthalmology and consultant ophthalmologist at Moorfields Eye Hospital NHS Foundation Trust said: “The number of eye scans we’re performing is growing at a pace much faster than human experts are able to interpret them. There is a risk that this may cause delays in the diagnosis and treatment of sight-threatening diseases, which can be devastating for patients.”

“The AI technology we’re developing is designed to prioritise patients who need to be seen and treated urgently by a doctor or eye care professional. If we can diagnose and treat eye conditions early, it gives us the best chance of saving people’s sight. With further research it could lead to greater consistency and quality of care for patients with eye problems in the future.”

The study, launched in 2016, brought together leading NHS eye health professionals and scientists from UCL and the National Institute for Health Research (NIHR) with some of the UK’s top technologists at DeepMind to investigate whether AI technology could help improve the care of patients with sight-threatening diseases, such as age-related macular degeneration and diabetic eye disease.

Using two types of neural network – mathematical systems for identifying patterns in images or data – the AI system quickly learnt to identify 10 features of eye disease from highly complex optical coherence tomography (OCT) scans. The system was then able to recommend a referral decision based on the most urgent conditions detected.

To establish whether the AI system was making correct referrals, clinicians also viewed the same OCT scans and made their own referral decisions. The study concluded that AI was able to make the right referral recommendation more than 94% of the time, matching the performance of expert clinicians.

The AI has been developed with two unique features which maximise its potential use in eye care. Firstly, the system can provide information that helps explain to eye care professionals how it arrives at its recommendations. This information includes visuals of the features of eye disease it has identified on the OCT scan and the level of confidence the system has in its recommendations, in the form of a percentage. This functionality is crucial in helping clinicians scrutinise the technology’s recommendations and check its accuracy before deciding the type of care and treatment a patient receives.

Secondly, the AI system can be easily applied to different types of eye scanner, not just the specific model on which it was trained. This could significantly increase the number of people who benefit from this technology and future-proof it, so it can still be used even as OCT scanners are upgraded or replaced over time.

The next step is for the research to go through clinical trials to explore how this technology might improve patient care in practice, and regulatory approval before it can be used in hospitals and other clinical settings.

If clinical trials are successful in demonstrating that the technology can be used safely and effectively, Moorfields will be able to use an eventual, regulatory-approved product for free, across all 30 of their UK hospitals and community clinics, for an initial period of five years.

The work that has gone into this project will also help accelerate wider NHS research for many years to come. For example, DeepMind has invested significant resources to clean, curate and label Moorfields’ de-identified research dataset to create one of the most advanced eye research databases in the world.

Moorfields owns this database as a non-commercial public asset, which is already forming the basis of nine separate medical research studies. In addition, Moorfields can also use DeepMind’s trained AI model for future non-commercial research efforts, which could help advance medical research even further.

Mustafa Suleyman, Co-founder and Head of Applied AI at DeepMind Health, said: “We set up DeepMind Health because we believe artificial intelligence can help solve some of society’s biggest health challenges, like avoidable sight loss, which affects millions of people across the globe. These incredibly exciting results take us one step closer to that goal and could, in time, transform the diagnosis, treatment and management of patients with sight threatening eye conditions, not just at Moorfields, but around the world.”

Professor Sir Peng Tee Khaw, director of the NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology said: “The results of this pioneering research with DeepMind are very exciting and demonstrate the potential sight-saving impact AI could have for patients. I am in no doubt that AI has a vital role to play in the future of healthcare, particularly when it comes to training and helping medical professionals so that patients benefit from vital treatment earlier than might previously have been possible. This shows the transformative research than can be carried out in the UK combining world leading industry and NIHR/NHS hospital/university partnerships.”

Matt Hancock, Health and Social Care Secretary, said: “This is hugely exciting and exactly the type of technology which will benefit the NHS in the long term and improve patient care – that’s why we fund over a billion pounds a year in health research as part of our long term plan for the NHS.”

Here’s a link to and a citation for the study,

Clinically applicable deep learning for diagnosis and referral in retinal disease by Jeffrey De Fauw, Joseph R. Ledsam, Bernardino Romera-Paredes, Stanislav Nikolov, Nenad Tomasev, Sam Blackwell, Harry Askham, Xavier Glorot, Brendan O’Donoghue, Daniel Visentin, George van den Driessche, Balaji Lakshminarayanan, Clemens Meyer, Faith Mackinder, Simon Bouton, Kareem Ayoub, Reena Chopra, Dominic King, Alan Karthikesalingam, Cían O. Hughes, Rosalind Raine, Julian Hughes, Dawn A. Sim, Catherine Egan, Adnan Tufail, Hugh Montgomery, Demis Hassabis, Geraint Rees, Trevor Back, Peng T. Khaw, Mustafa Suleyman, Julien Cornebise, Pearse A. Keane, & Olaf Ronneberger. Nature Medicine (2018) DOI: https://doi.org/10.1038/s41591-018-0107-6 Published 13 August 2018

This paper is behind a paywall.

And now, Melissa Locker’s August 15, 2018 article for Fast Company (Note: Links have been removed),

In a paper published in Nature Medicine on Monday, Google’s DeepMind subsidiary, UCL, and researchers at Moorfields Eye Hospital showed off their new AI system. The researchers used deep learning to create algorithm-driven software that can identify common patterns in data culled from dozens of common eye diseases from 3D scans. The result is an AI that can identify more than 50 diseases with incredible accuracy and can then refer patients to a specialist. Even more important, though, is that the AI can explain why a diagnosis was made, indicating which part of the scan prompted the outcome. It’s an important step in both medicine and in making AIs slightly more human

The editor or writer has even highlighted the sentence about the system’s accuracy—not just good but incredible!

I will be publishing something soon [my August 21, 2018 posting] which highlights some of the questions one might want to ask about AI and medicine before diving headfirst into this brave new world of medicine.