Tag Archives: nacre

The nanoscale precision of pearls

An October 21, 2021 news item on phys.org features a quote about nothingness and symmetry (Note: A link has been removed),

In research that could inform future high-performance nanomaterials, a University of Michigan-led team has uncovered for the first time how mollusks build ultradurable structures with a level of symmetry that outstrips everything else in the natural world, with the exception of individual atoms.

“We humans, with all our access to technology, can’t make something with a nanoscale architecture as intricate as a pearl,” said Robert Hovden, U-M assistant professor of materials science and engineering and an author on the paper. “So we can learn a lot by studying how pearls go from disordered nothingness to this remarkably symmetrical structure.” [emphasis mine]

The analysis was done in collaboration with researchers at the Australian National University, Lawrence Berkeley National Laboratory, Western Norway University [of Applied Sciences] and Cornell University.

a. A Keshi pearl that has been sliced into pieces for study. b. A magnified cross-section of the pearl shows its transition from its disorderly center to thousands of layers of finely matched nacre. c. A magnification of the nacre layers shows their self-correction—when one layer is thicker, the next is thinner to compensate, and vice-versa. d, e: Atomic scale images of the nacre layers. f, g, h, i: Microscopy images detail the transitions between the pearl’s layers. Credit: University of Michigan

An October 21, 2021 University of Michigan news release (also on EurekAlert), which originated the news item, reveals a surprise,

Published in the Proceedings of the National Academy of Sciences [PNAS], the study found that a pearl’s symmetry becomes more and more precise as it builds, answering centuries-old questions about how the disorder at its center becomes a sort of perfection. 

Layers of nacre, the iridescent and extremely durable organic-inorganic composite that also makes up the shells of oysters and other mollusks, build on a shard of aragonite that surrounds an organic center. The layers, which make up more than 90% of a pearl’s volume, become progressively thinner and more closely matched as they build outward from the center.

Perhaps the most surprising finding is that mollusks maintain the symmetry of their pearls by adjusting the thickness of each layer of nacre. If one layer is thicker, the next tends to be thinner, and vice versa. The pearl pictured in the study contains 2,615 finely matched layers of nacre, deposited over 548 days.

“These thin, smooth layers of nacre look a little like bed sheets, with organic matter in between,” Hovden said. “There’s interaction between each layer, and we hypothesize that that interaction is what enables the system to correct as it goes along.”

The team also uncovered details about how the interaction between layers works. A mathematical analysis of the pearl’s layers show that they follow a phenomenon known as “1/f noise,” where a series of events that seem to be random are connected, with each new event influenced by the one before it. 1/f noise has been shown to govern a wide variety of natural and human-made processes including seismic activity, economic markets, electricity, physics and even classical music.

“When you roll dice, for example, every roll is completely independent and disconnected from every other roll. But 1/f noise is different in that each event is linked,” Hovden said. “We can’t predict it, but we can see a structure in the chaos. And within that structure are complex mechanisms that enable a pearl’s thousands of layers of nacre to coalesce toward order and precision.”

The team found that pearls lack true long-range order—the kind of carefully planned symmetry that keeps the hundreds of layers in brick buildings consistent. Instead, pearls exhibit medium-range order, maintaining symmetry for around 20 layers at a time. This is enough to maintain consistency and durability over the thousands of layers that make up a pearl.

The team gathered their observations by studying Akoya “keshi” pearls, produced by the Pinctada imbricata fucata oyster near the Eastern shoreline of Australia. They selected these particular pearls, which measure around 50 millimeters in diameter, because they form naturally, as opposed to bead-cultured pearls, which have an artificial center. Each pearl was cut with a diamond wire saw into sections measuring three to five millimeters in diameter, then polished and examined under an electron microscope.

Hovden says the study’s findings could help inform next-generation materials with precisely layered nanoscale architecture.

“When we build something like a brick building, we can build in periodicity through careful planning and measuring and templating,” he said. “Mollusks can achieve similar results on the nanoscale by using a different strategy. So we have a lot to learn from them, and that knowledge could help us make stronger, lighter materials in the future.”

Here’s a link to and a citation for the paper,

The mesoscale order of nacreous pearls by Jiseok Gim, Alden Koch, Laura M. Otter, Benjamin H. Savitzky, Sveinung Erland, Lara A. Estroff, Dorrit E. Jacob, and Robert Hovden. PNAS vol. 118 no. 42 e2107477118 DOI: https://doi.org/10.1073/pnas.2107477118 Published in issue October 19, 2021 Published online October 18, 2021

This paper appears to be open access.

Flexible glass inspired by seashells and by ancient Rome

In the same way that grass is considered strong because it bends, scientists are trying to make glass stronger by making it flexible. A September 28, 2021 news item on phys.org announces research on biomimicry for creating flexible glass from McGill University (Montréal, Canada), Note: Links have been removed,

Scientists from McGill University develop stronger and tougher glass, inspired by the inner layer of mollusk shells. Instead of shattering upon impact, the new material has the resiliency of plastic and could be used to improve cell phone screens in the future, among other applications.

While techniques like tempering and laminating can help reinforce glass, they are costly and no longer work once the surface is damaged. “Until now there were trade-offs between high strength, toughness, and transparency. Our new material is not only three times stronger than the normal glass, but also more than five times more fracture resistant,” says Allen Ehrlicher, an Associate Professor in the Department of Bioengineering at McGill University.

A September 28, 2021 McGill University news release (also on EurekAlert), which originated the news item, discusses biomimicry (or inspiration by nature) and how ancient Rome also inspired this latest work,

Nature as master of design

Drawing inspiration from nature, the scientist created a new glass and acrylic composite material that mimics nacre or mother of pearl. “Nature is a master of design. Studying the structure of biological materials and understanding how they work offers inspiration, and sometimes blueprints, for new materials,” says Ehrlicher.

“Amazingly, nacre has the rigidity of a stiff material and durability of a soft material, giving it the best of both worlds,” he explains. “It’s made of stiff pieces of chalk-like matter that are layered with soft proteins that are highly elastic. This structure produces exceptional strength, making it 3000 times tougher than the materials that compose it.”

The scientists took the architecture of nacre and replicated it with layers of glass flakes and acrylic, yielding an exceptionally strong yet opaque material that can be produced easily and inexpensively. They then went a step further to make the composite optically transparent. “By tuning the refractive index of the acrylic, we made it seamlessly blend with the glass to make a truly transparent composite,” says lead author Ali Amini, a Postdoctoral Researcher at McGill. As next steps, they plan to improve it by incorporating smart technology allowing the glass to change its properties, such as colour, mechanics, and conductivity.

Lost invention of flexible glass

Flexible glass is supposedly a lost invention from the time of the reign of the Roman Emperor Tiberius Caesar. According to popular historical accounts by Roman authors Gaius Plinius Secundus and Petronius, the inventor brought a drinking bowl made of the material before the Emperor. When the bowl was put to the test to break it, it only dented instead of shattering.

After the inventor swore he was the only person who knew how to produce the material, Tiberius had the man executed, fearing that the glass would devalue gold and silver because it might be more valuable.

“When I think about the story of Tiberius, I’m glad that our material innovation leads to publication rather than execution,” says Ehrlicher.

The humour is a nice touch.

Here’s a link to and a citation for the paper,

Centrifugation and index-matching yields a strong and transparent bioinspired nacreous composite by Ali Amini, Adele Khavari, François Barthelat, and Allen J. Ehrlicher. Science 10 Sep 2021 Vol 373 Issue 6560 pp. 1229-1234 DOI: https://doi.org/10.1126/science.abf0277

This paper is behind a paywall.

Mother-of-pearl self-assembles from disorder into perfection

Courtesy: Mother-of-pearl Courtesy: Technische Universitaet (TU) Dresden

Mother-of-pearl (also known as nacre) research has been featured here a few times (links at the end of this post). This time it touches on self-assembly, which is the source of much interest and, on occasion, much concern in the field of nanotechnology.

In any case, the latest mother-of-pearl work comes from the Technische Universität (TU) Dresden (Technical University of Dresden), located in Germany. From a January 4, 2021 news item on phys.org,

In a new study published in Nature Physics, researchers from the B CUBE—Center for Molecular Bioengineering at TU Dresden and European Synchrotron Radiation Facility (ESRF) in Grenoble [Grance] describe, for the first time, that structural defects in self-assembling nacre attract and cancel each other out, eventually leading to a perfect periodic structure.

A January 4, 2021 Technische Universität (TU) Dresden press release (also on EurekAlert), which originated the news item, explains the reason for the ongoing interest in mother-of-pearl and reveals an unexpected turn in the research,

Mollusks build shells to protect their soft tissues from predators. Nacre, also known as the mother of pearl, has an intricate, highly regular structure that makes it an incredibly strong material. Depending on the species, nacres can reach tens of centimeters in length. No matter the size, each nacre is built from materials deposited by a multitude of single cells at multiple different locations at the same time. How exactly this highly periodic and uniform structure emerges from the initial disorder was unknown until now.

Nacre formation starts uncoordinated with the cells depositing the material simultaneously at different locations. Not surprisingly, the early nacre structure is not very regular. At this point, it is full of defects. “In the very beginning, the layered mineral-organic tissue is full of structural faults that propagate through a number of layers like a helix. In fact, they look like a spiral staircase, having either right-handed or left-handed orientation,” says Dr. Igor Zlotnikov, research group leader at the B CUBE – Center for Molecular Bioengineering at TU Dresden. “The role of these defects in forming such a periodic tissue has never been established. On the other hand, the mature nacre is defect-free, with a regular, uniform structure. How could perfection emerge from such disorder?”

The researchers from the Zlotnikov group collaborated with the European Synchrotron Radiation Facility (ESRF) in Grenoble to take a very detailed look at the internal structure of the early and mature nacre. Using synchrotron-based holographic X-ray nano-tomography the researchers could capture the growth of nacre over time. “Nacre is an extremely fine structure, having organic features below 50 nm in size. Beamline ID16A at the ESRF provided us with an unprecedented capability to visualize nacre in three-dimensions,” explains Dr. Zlotnikov. “The combination of electron dense and highly periodical inorganic platelets with delicate and slender organic interfaces makes nacre a challenging structure to image. Cryogenic imaging helped us to obtain the resolving power we needed,” explains Dr. ‘Alexandra] Pacureanu from the X-ray Nanoprobe group at the ESRF.

The analysis of data was quite a challenge. The researchers developed a segmentation algorithm using neural networks and trained it to separate different layers of nacre. In this way, they were able to follow what happens to the structural defects as nacre grows.

The behavior of structural defects in a growing nacre was surprising. Defects of opposite screw direction were attracted to each other from vast distances. The right-handed and left-handed defects moved through the structure, until they met, and cancelled each other out. These events led to a tissue-wide synchronization. Over time, it allowed the structure to develop into a perfectly regular and defect-free.

Periodic structures similar to nacre are produced by many different animal species. The researchers think that the newly discovered mechanism could drive not only the formation of nacre but also other biogenic structures.

Here’s a link to and a citation for the paper,

Dynamics of topological defects and structural synchronization in a forming periodic tissue by Maksim Beliaev, Dana Zöllner, Alexandra Pacureanu, Paul Zaslansky & Igor Zlotnikov. Nature Physics (2021) First published online: 17 September 2020 Published: 04 January 2021

This paper is behind a paywall.

As promised here are the links for One tough mother, imitating mother-of-pearl for stronger ceramics (a March 14, 2014 posting) and Clues as to how mother of pearl is made (a December 15, 2015 posting).

One tough mother, imitating mother-of-pearl for stronger ceramics

I love mother-of-pearl or nacre as it’s also known,

The iridescent nacre inside a Nautilus shell cut in half. The chambers are clearly visible and arranged in a logarithmic spiral. Photo taken by me -- Chris 73 | Talk 12:40, 5 May 2004 (UTC)

The iridescent nacre inside a Nautilus shell cut in half. The chambers are clearly visible and arranged in a logarithmic spiral.
Photo taken by me — Chris 73 | Talk 12:40, 5 May 2004 (UTC)

We had a mother-of-pearl-covered shell when I was a child, one I loved to hold but ours had a blue-black sheen. Enough of this trip down memory lane, it turns out that nacre has inspired a new type of stronger ceramic material from scientists at the Centre national de la recherche scientifique (CNRS) as a March 24, 2014 news item on ScienceDaily notes,

Whether traditional or derived from high technology, ceramics all have the same flaw: they are fragile. Yet this characteristic may soon be a thing of the past: a team of researchers led by the Laboratoire de Synthèse et Fonctionnalisation des Céramiques (CNRS/Saint-Gobain), in collaboration with the Laboratoire de Géologie de Lyon: Terre, Planètes et Environnement (CNRS/ENS de Lyon/Université Claude Bernard Lyon 1) and the Laboratoire Matériaux: Ingénierie et Science (CNRS/INSA Lyon/Université Claude Bernard Lyon 1), has recently presented a new ceramic material inspired by mother-of-pearl from the small single-shelled marine mollusk abalone.

This material, almost ten times stronger than a conventional ceramic, is the result of an innovative manufacturing process that includes a freezing step. This method appears to be compatible with large-scale industrialization and should not be much more expensive than the techniques already in use.

The CNRS March 21,2014 press release, which originated the news item, describes the properties of nacre which excited the scientists and the way in which they mimicked those properties in a synthetic material,

Toughness, i.e. the ability of a material containing a crack to resist fracture, is considered to be the Achilles heel of ceramics. To compensate for their intrinsic fragilit y, these are sometimes combined with tougher materials such as metals or polymers — generally leading to varying degrees of limitations. For example, polymers cannot resist temperatures above 300°C, which restricts their use in motors or ovens.

A material similar to ceramic, although extremely tough, is found in nature. Mother-of-pearl, which covers the shells of abalone and some bivalves, is 95% composed of calcium carbonate (aragonite), an intrinsically fragile material that is nonetheless very tough. Mother-of-pearl can be seen as a stack of small bricks, welded together with mortar composed of proteins. Its toughness is due to its complex, hierarchical structure where cracks must follow a tortuous path to propagate. It is this structure that inspired the researchers.

As a base ingredient, the team from the Laboratoire de Synthèse et Fonctionnalisation des Céramiques (CNRS/Saint-Gobain) used a common ceramic powder, alumina, in the form of microscopic platelets. To obtain the layered mother-of-pearl structure, they suspended this powder in water. The colloidal suspension (1) was then cooled to obtain controlled ice crystal growth, caus ing alumina to self-assemble in the form of stacks of platelets. The final material was subsequently obtained from a high temperature densification step.

This artificial mother-of-pearl is ten times tougher than a conventional alumina ceramic. This is because a crack has to move round the alumina “bricks” one by one to propagate. This zigzag pathway prevents it from crossing the material easily.

One of the advantages of the process is that it is not exclusive to alumina. Any ceramic powder, as long as it is in the form of platelets, can self-assemble via the same process, which could easily be used on an industrial scale. This bio-inspired material’s toughness for equivalent density could make it possible to produce smaller, lighter parts with no significant increase in costs. This invention could become a material of choice for applications subjected to severe constraints in fields ranging from energy to armor plating.

For those who like their communiqué de presse en français,

Les céramiques, qu’elles soient traditionnelles ou de haute technologie, présentent toutes un défaut : leur fragilité. Ce côté cassant pourrait bientôt disparaître : une équipe de chercheurs, menée par le Laboratoire de synthèse et fonctionnalisation des céramiques (CNRS/Saint-Gobain), en collaboration avec le Laboratoire de géologie de Lyon : Terre, planètes et environnement (CNRS/ENS de Lyon/Université Claude Bernard Lyon 1) et le laboratoire Matériaux : ingénierie et science (CNRS/INSA Lyon/Université Claude Bernard Lyon 1) vient de présenter un nouveau matériau céramique inspiré de la nacre des ormeaux, petits mollusques marins à coquille unique. Ce matériau, près de dix fois plus tenace qu’une céramique classique, est issu d’un procédé de fabrication innovant qui passe par une étape de congélation. Cette méthode semble compatible avec une industrialisation à échelle plus importante, à priori sans surcoût notable par rapport à celles déjà employées. Conservant ses propriétés à des températures d’au moins 600°C, cette nacre artificielle pourrait trouver une foule d’applications dans l’industrie et permettre d’alléger ou de réduire en taille des éléments céramiques des moteurs ou des dispositifs de génération d’énergie. Ces travaux sont publiés le 23 mars 2014 sur le site internet de la revue Nature Materials.

La ténacité, capacité d’un matériau à résister à la rupture en présence d’une fissure, est considérée comme le talon d’Achille des céramiques. Pour pallier leur fragilité intrinsèque, celles-ci sont parfois combinées à d’autres matériaux plus tenaces, métalliques ou polymères. L’adjonction de tels matériaux s’accompagne généralement de limitations plus ou moins sévères. Par exemple, les polymères ne résistent pas à des températures supérieures à 300°C, ce qui limite leur utilisation dans les moteurs ou les fours.

Dans la nature, il existe un matériau proche de la céramique qui est extrêmement tenace : la nacre qui recouvre la coquille des ormeaux et autres bivalves. La nacre est composée à 95 % d’un matériau intrinsèquement fragile, le carbonate de calcium (l’aragonite). Pourtant, sa ténacité est forte. La nacre peut être vue comme un empilement de briques de petite taille, soudées entre elles par un mortier composé de protéines. Sa ténacité tient à sa structure complexe et hiérarchique. La propagation de fissures dans ce type d’architecture est rendue difficile par le chemin tortueux que celles-ci doivent parcourir pour se propager. C’est cette structure qui a inspiré les chercheurs.

Comme ingrédient de base, l’équipe du Laboratoire de synthèse et fonctionnalisation des céramiques (CNRS/Saint-Gobain) a pris une poudre céramique courante, l’alumine, qui se présente sous la forme de plaquettes microscopiques. Pour obtenir la structure lamellée de la nacre, ils ont mis cette poudre en suspension dans de l’eau. Cette suspension colloïdale (1) a été refroidie de manière à obtenir une croissance contrôlée de cristaux de glace. Ceci conduit à un auto-assemblage de l’alumine sous forme d’un empilement de plaquettes. Finalement, le matériau final a été obtenu grâce à une étape de densification à haute température.

Cette nacre artificielle est dix fois plus tenace qu’une céramique classique composée d’alumine. Ceci est dû au fait qu’une fissure, pour se propager, doit contourner une à une les « briques » d’alumine. Ce chemin en zigzag l’empêche de traverser facilement le volume du matériau.

L’un des avantages du procédé est qu’il n’est pas exclusif à l’alumine. N’importe quelle poudre céramique, pour peu qu’elle se présente sous la forme de plaquettes, peut subir le même processus d’auto-assemblage. De plus, l’industrialisation de ce procédé ne devrait pas présenter de difficultés. L’obtention de pièces composées avec ce matériau bio-inspiré ne devrait pas entraîner de grands surcoûts. Sa forte ténacité pour une densité équivalente pourrait permettre de fabriquer des pièces plus petites et légères. Il pourrait devenir un matériau de choix pour les applications soumises à des contraintes sévères dans des domaines allant de l’énergie au blindage.

Here’s a link to and a citation for the research paper which was published in English,

Strong, tough and stiff bioinspired ceramics from brittle constituents by Florian Bouville, Eric Maire, Sylvain Meille, Bertrand Van de Moortèle, Adam J. Stevenson, & Sylvain Deville. Nature Material (2014) doi:10.1038/nmat3915 Published online 23 March 2014

This paper is behind a paywall.