Tag Archives: nanofibres

Watching artificial nanofibres self-sort in real-time

A May 31, 2016 news item on phys.org describes research on self-assembling fibres at Kyoto University (Japan) by referencing the ancient Greek mythological figure, Psyche,

The Greek goddess Psyche borrowed help from ants to sort a room full of different grains. Cells, on the other hand, do something similar without Olympian assistance, as they organize molecules into robust, functional fibers. Now scientists are able to see self-sorting phenomena happen in real time with artificial molecules.

The achievement, reported in Nature Chemistry, elucidates how two different types of nanofibers sort themselves into organized structures under artificial conditions.

“Basic cellular structures, such as actin filaments, come into being through the autonomous self-sorting of individual molecules, even though a tremendous variety of proteins and small molecules are present inside the cell,” says lead author Hajime Shigemitsu, a researcher in Itaru Hamachi’s lab at Kyoto University.

A May 30, 2016 Kyoto University news release (also on EurekAlert), which originated the news item, expands on the theme,

“Imagine a box filled with an assortment of building blocks — it’s as if the same type of blocks started sorting themselves into neat bundles all on their own. In living cells, such phenomena always happen, enabling accurate self-assembling of proteins, which is essential for cell functions.”

“If we are able to control self-sorting with artificial molecules, we can work toward developing intelligent, next-generation biomimics that possess the flexibility and diversity of functions that exist in a living cell.”

Study co-author Ryou Kubota explains that previous studies have already made artificial molecules build themselves into fibers — but only when there was one type of molecule around. Having a jumble of types, on the other hand, made the molecules confused.

“The difficulty in inducing self-assembly with artificial molecules is that they don’t recognize the same type of molecule, unlike molecules in the natural world. Different types of artificial molecules interact with each other and make an unsorted cluster.”

From a database of structural analyses, Hamachi and colleagues discovered a combination of nanofibers — namely a peptide-based and lipid-based hydrogelator — that would make sorted fibers without mixing with the other. They then tethered the fibers with fluorescent probes; with a type of microscope typically used in cell imaging, the team was able to observe directly and in real-time how the artificial molecules sorted themselves.

“Ultimately, this finding could help develop new materials that respond dynamically to different environments and stimuli,” elaborates Hamachi. “This insight is not only useful for materials science, but may also provide useful clues for understanding self-organization in cells.”

Here’s a link to and a citation for the paper,

In situ real-time imaging of self-sorted supramolecular nanofibres by Shoji Onogi, Hajime Shigemitsu, Tatsuyuki Yoshii, Tatsuya Tanida, Masato Ikeda, Ryou Kubota, & Itaru Hamachi. Nature Chemistry (2016) doi:10.1038/nchem.2526 Published online 30 May 2016

This paper is behind a paywall bu the researchers have made a video of the self-sorting proteins freely available,

Disinfectant for backyard pools could be key to new nanomaterials

Research from McGill University (Québec, Canada) focuses on cyanuric acid, one of the chemicals used to disinfect backyard pools. according to a March 1, 2016 McGill University news release (received by email; it can also be found in a March 1, 2016 news item on Nanowerk *and on EurekAlert*),

Cyanuric acid is commonly used to stabilize chlorine in backyard pools; it binds to free chlorine and releases it slowly in the water. But researchers at McGill University have now discovered that this same small, inexpensive molecule can also be used to coax DNA into forming a brand new structure: instead of forming the familiar double helix, DNA’s nucleobases — which normally form rungs in the DNA ladder — associate with cyanuric acid molecules to form a triple helix.

The discovery “demonstrates a fundamentally new way to make DNA assemblies,” says Hanadi Sleiman, Canada Research Chair in DNA Nanoscience at McGill and senior author of the study, published in Nature Chemistry. “This concept may apply to many other molecules, and the resulting DNA assemblies could have applications in a range of technologies.”

The DNA alphabet, composed of the four letters A, T, G and C, is the underlying code that gives rise to the double helix famously discovered by Watson and Crick more than 60 years ago. The letters, or bases, of DNA can also interact in other ways to form a variety of DNA structures used by scientists in nanotechnology applications – quite apart from DNA’s biological role in living cells.

For years, scientists have sought to develop a larger, designer alphabet of DNA bases that would enable the creation of more DNA structures with unique, new properties. For the most part, however, devising these new molecules has involved costly and complex procedures.

The road to the McGill team’s discovery began some eight years ago, when Sleiman mentioned to others in her lab that cyanuric acid might be worth experimenting with because of its properties. The molecule has three faces with the same binding features as thymine (T in the DNA alphabet), the natural complement to adenine (A).  “One of my grad students tried it,” she recalls, “and came back and said he saw fibres” through an atomic force microscope.

The researchers later discovered that these fibres have a unique underlying structure. Cyanuric acid is able to coax strands composed of adenine bases into forming a novel motif in DNA assembly. The adenine and cyanuric acid units associate into flower-like rosettes; these form the cross-section of a triple helix.  The strands then combine to form long fibres.

“The nanofibre material formed in this way is easy to access, abundant and highly structured,” says Nicole Avakyan, a PhD student in Sleiman’s lab and first author of the study. “With further development, we can envisage a variety of applications of this material, from medicinal chemistry to tissue engineering and materials science.”

Here’s a link to and a citation for the paper,

Reprogramming the assembly of unmodified DNA with a small molecule by Nicole Avakyan, Andrea A. Greschner, Faisal Aldaye, Christopher J. Serpell, Violeta Toader,    Anne Petitjean, & Hanadi F. Sleiman. Nature Chemistry (2016) doi:10.1038/nchem.2451 Published online 22 February 2016

This paper is behind a paywall.

*’also on EurekAlert’ added on March 2, 2016.

Brushing your way to nanofibres

The scientists are using what looks like a hairbrush to create nanofibres ,

Figure 2: Brush-spinning of nanofibers. (Reprinted with permission by Wiley-VCH Verlag)) [downloaded from http://www.nanowerk.com/spotlight/spotid=41398.php]

Figure 2: Brush-spinning of nanofibers. (Reprinted with permission by Wiley-VCH Verlag)) [downloaded from http://www.nanowerk.com/spotlight/spotid=41398.php]

A Sept. 23, 2015 Nanowerk Spotlight article by Michael Berger provides an in depth look at this technique (developed by a joint research team of scientists from the University of Georgia, Princeton University, and Oxford University) which could make producing nanofibers for use in scaffolds (tissue engineering and other applications) more easily and cheaply,

Polymer nanofibers are used in a wide range of applications such as the design of new composite materials, the fabrication of nanostructured biomimetic scaffolds for artificial bones and organs, biosensors, fuel cells or water purification systems.

“The simplest method of nanofiber fabrication is direct drawing from a polymer solution using a glass micropipette,” Alexander Tokarev, Ph.D., a Research Associate in the Nanostructured Materials Laboratory at the University of Georgia, tells Nanowerk. “This method however does not scale up and thus did not find practical applications. In our new work, we introduce a scalable method of nanofiber spinning named touch-spinning.”

James Cook in a Sept. 23, 2015 article for Materials Views provides a description of the technology,

A glass rod is glued to a rotating stage, whose diameter can be chosen over a wide range of a few centimeters to more than 1 m. A polymer solution is supplied, for example, from a needle of a syringe pump that faces the glass rod. The distance between the droplet of polymer solution and the tip of the glass rod is adjusted so that the glass rod contacts the polymer droplet as it rotates.

Following the initial “touch”, the polymer droplet forms a liquid bridge. As the stage rotates the bridge stretches and fiber length increases, with the diameter decreasing due to mass conservation. It was shown that the diameter of the fiber can be precisely controlled down to 40 nm by the speed of the stage rotation.

The method can be easily scaled-up by using a round hairbrush composed of 600 filaments.

When the rotating brush touches the surface of a polymer solution, the brush filaments draw many fibers simultaneously producing hundred kilometers of fibers in minutes.

The drawn fibers are uniform since the fiber diameter depends on only two parameters: polymer concentration and speed of drawing.

Returning to Berger’s Spotlight article, there is an important benefit with this technique,

As the team points out, one important aspect of the method is the drawing of single filament fibers.

These single filament fibers can be easily wound onto spools of different shapes and dimensions so that well aligned one-directional, orthogonal or randomly oriented fiber meshes with a well-controlled average mesh size can be fabricated using this very simple method.

“Owing to simplicity of the method, our set-up could be used in any biomedical lab and facility,” notes Tokarev. “For example, a customized scaffold by size, dimensions and othermorphologic characteristics can be fabricated using donor biomaterials.”

Berger’s and Cook’s articles offer more illustrations and details.

Here’s a link to and a citation for the paper,

Touch- and Brush-Spinning of Nanofibers by Alexander Tokarev, Darya Asheghal, Ian M. Griffiths, Oleksandr Trotsenko, Alexey Gruzd, Xin Lin, Howard A. Stone, and Sergiy Minko. Advanced Materials DOI: 10.1002/adma.201502768ViewFirst published: 23 September 2015

This paper is behind a paywall.

Magnetospinning with an inexpensive magnet

The fridge magnet mentioned in the headline for a May 11, 2015  Nanowerk spotlight aricle by Michael Berger isn’t followed up until the penultimate paragraph but it is worth the wait,

“Our method for spinning of continuous micro- and nanofibers uses a permanent revolving magnet,” Alexander Tokarev, Ph.D., a Research Associate in the Nanostructured Materials Laboratory at the University of Georgia, tells Nanowerk. “This fabrication technique utilizes magnetic forces and hydrodynamic features of stretched threads to produce fine nanofibers.”

“The new method provides excellent control over the fiber diameter and is compatible with a range of polymeric materials and polymer composite materials including biopolymers,” notes Tokarev. “Our research showcases this new technique and demonstrates its advantages to the scientific community.”

Electrospinning is the most popular method to produce nanofibers in labs now. Owing to its simplicity and low costs, a magnetospinning set-up could be installed in any non-specialized laboratory for broader use of magnetospun nanofibers in different methods and technologies. The total cost of a laboratory electrospinning system is above $10,000. In contrast, no special equipment is needed for magnetospinning. It is possible to build a magnetospinning set-up, such as the University of Georgia team utilizes, by just using a $30 rotating motor and a $5 permanent magnet. [emphasis mine]

Berger’s article references a recent paper published by the team,

Magnetospinning of Nano- and Microfibers by Alexander Tokarev, Oleksandr Trotsenko, Ian M. Griffiths, Howard A. Stone, and Sergiy Minko. Advanced Materials First published: 8 May 2015Full publication history DOI: 10.1002/adma.201500374View/save citation

This paper is behind a paywall.

* The headline originally stated that a ‘fridge’ magnet was used. Researcher Alexander Tokarev kindly dropped by correct this misunderstanding on my part and the headline has been changed to read  ‘inexpensive magnet’ on May 14, 2015 at approximately 1400 hundred hours PDT.

Norwegians weigh in with research into wood nanocellulose healing application

It’s not just the Norwegians but they certainly seem to be leading the way on the NanoHeal project. Here’s a little more about the intricacies of healing wounds and why wood nanocellulose is being considered for wound healing, from the Aug. 23, 2012 news item on Nanowerk,

Wound healing is a complicated process consisting of several different phases and a delicate interaction between different kinds of cells, signal factors and connective tissue substance. If the wound healing does not function optimally, this can result in chronic wounds, cicatrisation or contractures. By having an optimal wound dressing such negative effects can be reduced. A modern wound dressing should be able to provide a barrier against infection, control fluid loss, reduce the pain during the treatment, create and maintain a moist environment in the wound, enable introduction of medicines into the wound, be able to absorb exudates during the inflammatory phase, have high mechanical strength, elasticity and conformability and allow for easy and painless release from the wound after use.

Nanocellulose is a highly fibrillated material, composed of nanofibrils with diameters in the nanometer scale (< 100 nm), with high aspect ratio and high specific surface area (“Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view” [open access article in Nanoscale Research Letters]). Cellulose nanofibrils have many advantageous properties, such as high strength and ability to self-assembly.

Recently, the suitability of cellulose nanofibrils from wood for forming elastic cryo-gels has been demonstrated by scientists from Paper and Fibre Research Institute (PFI) and Lund University (“Cross-linking cellulose nanofibrils for potential elastic cryo-structured gels”  [open access in Nanoscale Research Letters). Cryogelation is a technique that makes it possible to engineer 3-D structures with controlled porosity. A porous structure with interconnected pores is essential for use in modern wound healing in which absorption of exudates, release of medicines into the wound or exchange of cells are essential properties.

The Research Council of Norway recently awarded a grant to the NanoHeal project, from the project page on the PFI (Pulp and Fibre Research Institute) website,

This multi-disciplinary research programme will develop novel material solutions for use in advanced wound healing based on nanofibrillated cellulose structures. This proposal requires knowledge on the effective production and application of sustainable and innovative micro- and nanofibres based on cellulose. The project will assess the ability of these nanofibres to interact with complementary polymers to form novel material structures with optimised adhesion and moulding properties, absorbance, porosity and mechanical performance.  The NanoHeal proposal brings together leading scientists in the fields of nanocellulose technology, polymer chemistry, printing and nanomedicine, to produce biocompatible and biodegradable natural polymers that can be functionalized for clinical applications. As a prototype model, the project will develop materials for use in wound healing. However, the envisaged technologies of synthesis and functionalization will have a diversity of commercial and industrial applications.

The project is funded by the Research Council of Norway/NANO2021, and is a cooperation between several leading R&D partners.

  • PFI
  • NTNU [Norwegian University of Science and Technology], Faculty of medicine
  • Cardiff University
  • Swansea University
  • Lund University
  • AlgiPharma

Project period: 2012-2016

I wonder when I’m going to start hearing about Canadian research into wood nanocellulose  (nanocrystalline cellulose or otherwise) applications.

It’s the length, not the size that matters with nanofibres such as carbon nanotubes

The Aug. 22, 2012 news item on Nanowerk by way of Feedzilla features some research at the University of Edinburgh which determined that short nanofibres do not have the same effect on lung cells as longer fibres do. From the news item, here’s a description of why this research was undertaken

Nanofibres, which can be made from a range of materials including carbon, are about 1,000 times smaller than the width of a human hair and can reach the lung cavity when inhaled.

This may lead to a cancer known as mesothelioma, which is known to be caused by breathing in asbestos fibres, which are similar to nanofibres.

I wrote about research at Brown University which explained why some fibres get stuck in lung cells in a Sept. 22, 2011 posting titled, Why asbestos and carbon nanotubes are so dangerous to cells. The short answer is: if the tip is rounded, the cell mistakes the fibre for a sphere and, in error, it attempts to absorb it. Here’s some speculation on my part about what the results might mean (from my Sept. 22, 2011 posting),

The whole thing has me wondering about long vs. short carbon nanotubes. Does this mean that short carbon nanotubes can be ingested successfully? If so, at what point does short become too long to ingest?

The University of Edinburgh Aug. 22, 2012 news release provides answer to last year’s  speculation about length,

The University study found that lung cells were not affected by short fibres that were less than five-thousandths of a millimetre long.

However, longer fibres can reach the lung cavity, where they become stuck and cause disease.

We knew that long fibres, compared with shorter fibres, could cause tumours but until now we did not know the cut-off length at which this happened. Knowing the length beyond which the tiny fibres can cause disease is important in ensuring that safe fibres are made in the future as well as helping to understand the current risk from asbestos and other fibres, [said] Ken Donaldson, Professor of Respiratory Toxicology.

Sometimes, I surprise myself. I think I’ll take a moment to bask. … Done now!

Here’s my final thought, while this research suggests short length nanofibres won’t cause mesothelioma, this doesn’t rule out  other potential problems. So, let’s celebrate this new finding and then get back to investigating nanofibres and their impact on health.