Tag Archives: NanoFrazor

World’s smallest record features Christmas classic “Rockin’ Around the Christmas Tree”

Scientists like to have a little fun too as this December 23, 2022 news item on Nanowerk shows,

Measuring only 40 micrometres in diameter, researchers at DTU Physics have made the smallest record ever cut. Featuring the first 25 seconds of the Christmas classic “Rocking Around the Christmas Tree” [sic], the single is cut using a new nano-sculpting machine – the Nanofrazor – recently acquired from Heidelberg Instruments. The Nanofrazor can engrave 3D patterns into surfaces with nanoscale resolution, allowing the researchers to create new nanostructures that may pave the way for novel technologies in fields such as quantum devices, magnetic sensors and electron optics.

”I have done lithography for 30 years, and although we’ve had this machine for a while, it still feels like science fiction. We’ve done many experiments, like making a copy of the Mona Lisa in a 12 by 16-micrometre area with a pixel size of ten nanometers. We’ve also printed an image of DTU’s founder – Hans Christian Ørsted – in an 8 by 12-micrometre size with a pixel size of 2.540.000 DPI. To get an idea of the scale we are working at, we could write our signatures on a red blood cell with this thing,” says Professor Peter Bøggild from DTU Physics.

“The most radical thing is that we can create free-form 3D landscapes at that crazy resolution – this grey-scale nanolithography is a true game-changer for our research”.

The scientists show how they inscribed the song onto the world’s smallest record (Note 1: You will not hear the song. Note 2: i don’t know how many times I’ve seen news releases about audio files (a recorded song, fish singing, etc.) that are not included … sigh),

A December 22, 2022 Technical University of Denmark press release (also on EurekAlert), which originated the news item, provides detail about the work,

Nanoscale Christmas record – in stereo
The Nanofrazor is not like a printer adding material to a medium; instead, it works like a CNC (computer numerical controle) machine removing material at precise locations, leaving the desired shape behind. In the case of the miniature pictures of Mona Lisa and H.C. Ørsted, the final image is defined by the line-by-line removal of polymer until a perfect grey-scale image emerges. To Peter Bøggild, an amateur musician and vinyl record enthusiast, the idea of cutting a nanoscale record was obvious.

“We decided that we might as well try and print a record. We’ve taken a snippet of Rocking Around The Christmas Tree and have cut it just like you would cut a normal record—although, since we’re working on the nanoscale, this one isn’t playable on your average turntable. The Nanofrazor was put to work as a record-cutting lathe – converting an audio signal into a spiralled groove on the surface of the medium. In this case, the medium is a different polymer than vinyl. We even encoded the music in stereo – the lateral wriggles is the left channel, whereas the depth modulation contains the right channel. It may be too impractical and expensive to become a hit record. To read the groove, you need a rather costly atomic force microscope or the Nanofrazor, but it is definitely doable.”

High-speed, low-cost nanostructures

The NOVO Foundation grant BIOMAG, which made the Nanofrazor dream possible, is not about cutting Christmas records or printing images of famous people. Peter Bøggild and his colleagues, Tim Booth and Nolan Lassaline, have other plans. They expect that the Nanofrazor will allow them to sculpt 3D nanostructures in extremely precise detail and do so at high speed and low cost – something that is impossible with existing tools.

“We work with 2D materials, and when these ultrathin materials are carefully laid down on the 3D landscapes, they follow the contours of the surface. In short, they curve, and that is a powerful and entirely new way of “programming” materials to do things that no one would believe were possible just fifteen years ago. For instance, when curved in just the right way, graphene behaves as if there is a giant magnetic field when there is, in fact, none. And we can curve it just the right way with the Nanofrazor,” says Peter Bøggild.

Associate professor Tim Booth adds:

“The fact that we can now accurately shape the surfaces with nanoscale precision at pretty much the speed of imagination is a game changer for us. We have many ideas for what to do next and believe that this machine will significantly speed up the prototyping of new structures. Our main goal is to develop novel magnetic sensors for detecting currents in the living brain within the BIOMAG project. Still, we also look forward to creating precisely sculpted potential landscapes with which we can better control electron waves. There is much work to do.”

Postdoc Nolan Lassaline (who cut the Christmas record), was recently awarded a DKK 2 Mio. VILLUM EXPERIMENT grant to create “quantum soap bubbles” in graphene. He will use the grant – and the Nanofrazor – to explore new ways of structuring nanomaterials and develop novel ways of manipulating electrons in atomically thin materials.

“Quantum soap bubbles are smooth electronic potentials where we add artificially tailored disorders. By doing so, we can manipulate how electrons flow in graphene. We hope to understand how electrons move in engineered disordered potentials and explore if this could become a new platform for advanced neural networks and quantum information processing.”

The Nanofrazor system is now part of the DTU Physics NANOMADE’s unique fabrication facility for air-sensitive 2D materials and devices and part of E-MAT, a greater ecosystem for air-sensitive nanomaterials processing and fabrication led by Prof. Nini Pryds, DTU Energy.

While it’s not an audio file from the smallest record, this features Brenda Lee (who first recorded the song in 1958) in a ‘singalong’ version of “Rockin’ Around the Christmas Tree,”

Bøggild was last featured here in a December 24, 2021 posting “Season’s Greetings with the world’s thinnest Christmas tree.”

Have a lovely Christmas/Winter Solstice/Kwanzaa/Hannukah/Saturnalia/??? celebration!

Hot nano-chisel for creating artificial bones?

If ‘chisel’ made you think of sculpting, you are correct. The researchers are alluding to the process of sculpting in their research.

Researchers were able to replicate — with sub-15 nm resolution — bone tissue structure in a biocompatible material using thermal scanning probe lithography. This method opens up unprecedented possibilities for pioneering new stem cell studies and biomedical applications. Courtesy: New York University Tandon School of Engineering

From a February 9, 2021 news item on phys.org (Note: Links have been removed),

A holy grail for orthopedic research is a method for not only creating artificial bone tissue that precisely matches the real thing, but does so in such microscopic detail that it includes tiny structures potentially important for stem cell differentiation, which is key to bone regeneration.

Researchers at the NYU [New York University] Tandon School of Engineering and New York Stem Cell Foundation Research Institute (NYSF) have taken a major step by creating the exact replica of a bone using a system that pairs biothermal imaging with a heated “nano-chisel.” In a study, “Cost and Time Effective Lithography of Reusable Millimeter Size Bone Tissue Replicas with Sub-15 nm Feature Size on a Biocompatible Polymer,” which appears in the journal Advanced Functional Materials, the investigators detail a system allowing them to sculpt, in a biocompatible material, the exact structure of the bone tissue, with features smaller than the size of a single protein—a billion times smaller than a meter. This platform, called, bio-thermal scanning probe lithography (bio-tSPL), takes a “photograph” of the bone tissue, and then uses the photograph to produce a bona-fide replica of it.

The team, led by Elisa Riedo, professor of chemical and biomolecular engineering at NYU Tandon, and Giuseppe Maria de Peppo, a Ralph Lauren Senior Principal Investigator at the NYSF, demonstrated that it is possible to scale up bio-tSPL to produce bone replicas on a size meaningful for biomedical studies and applications, at an affordable cost. These bone replicas support the growth of bone cells derived from a patient’s own stem cells, creating the possibility of pioneering new stem cell applications with broad research and therapeutic potential. This technology could revolutionize drug discovery and result in the development of better orthopedic implants and devices.

A February 8, 2021 NYU Tandon School of Engineering news release (also on EurekAlert but published February 9, 2021), which originated the news item, explains the work in further detail,

In the human body, cells live in specific environments that control their behavior and support tissue regeneration via provision of morphological and chemical signals at the molecular scale. In particular, bone stem cells are embedded in a matrix of fibers — aggregates of collagen molecules, bone proteins, and minerals. The bone hierarchical structure consists of an assembly of micro- and nano- structures, whose complexity has hindered their replication by standard fabrication methods so far.

“tSPL is a powerful nanofabrication method that my lab pioneered a few years ago, and it is at present implemented by using a commercially available instrument, the NanoFrazor,” said Riedo. “However, until today, limitations in terms of throughput and biocompatibility of the materials have prevented its use in biological research. We are very excited to have broken these barriers and to have led tSPL into the realm of biomedical applications.”

Its time- and cost-effectiveness, as well as the cell compatibility and reusability of the bone replicas, make bio-tSPL an affordable platform for the production of surfaces that perfectly reproduce any biological tissue with unprecedented precision.

“I am excited about the precision achieved using bio-tSPL. Bone-mimetic surfaces, such as the one reproduced in this study, create unique possibilities for understanding cell biology and modeling bone diseases, and for developing more advanced drug screening platforms,” said de Peppo. “As a tissue engineer, I am especially excited that this new platform could also help us create more effective orthopedic implants to treat skeletal and maxillofacial defects resulting from injury or disease.”

Here’s a link to and a citation for the paper,

Cost and Time Effective Lithography of Reusable Millimeter Size Bone Tissue Replicas With Sub‐15 nm Feature Size on A Biocompatible Polymer by Xiangyu Liu, Alessandra Zanut, Martina Sladkova‐Faure, Liyuan Xie, Marcus Weck, Xiaorui Zheng, Elisa Riedo, Giuseppe Maria de Peppo. Advanced Functional Materials DOI: https://doi.org/10.1002/adfm.202008662 First published: 05 February 2021

This paper is behind a paywall.