Tag Archives: nanomaterial definition

In depth report on European Commission’s nanotechnology definition

A February 13, 2019 news item on the (US) National Law Review blog announces a new report on nanomaterial definitions (Note: A link has been removed),

The European Commission’s (EC) Joint Research Center (JRC) published on February 13, 2019, a report entitled An overview of concepts and terms used in the European Commission’s definition of nanomaterial. … The report provides recommendations for a harmonized and coherent implementation of the nanomaterial definition in any specific regulatory context at the European Union (EU) and national level.

©2019 Bergeson & Campbell, P.C.

There’s a bit more detail about the report in a February 19, 2019 European Commission press release,

The JRC just released a report clarifying the key concepts and terms used in the European Commission’s nanomaterial definition.

This will support stakeholders for the correct implementation of legislation making reference to the definition.

Nanotechnology may well be one of the most fast-moving sectors of the last few years.
The number of products produced by nanotechnology or containing nanomaterials entering the market is increasing.

As the technology develops, nanomaterials are delivering benefits to many sectors, including: healthcare (in targeted drug delivery, regenerative medicine, and diagnostics), electronics, cosmetics, textiles, information technology and environmental protection.
As the name suggests, nanomaterials are very small – so small that they are invisible to the human eye.

In fact, nanomaterials contain particles smaller than 100 nanometres (100 millionths of a millimetre).

Nanomaterials have unique physical and chemical characteristics.
They can be used in consumer products to improve the products’ properties – for instance, to make something more resistant against breaking, stains or humidity.

Nanomaterials have undoubtedly enabled progress in many areas, but as with all innovation, we must ensure that the impact on human health and the environment are properly considered

The European Commission’s Recommendation on the definition of nanomaterials (2011/696/EU) provides a general basis for regulatory instruments in many areas.

This definition has been used in the EU regulations on biocidal products and medical devices, and the REACH regulation. It is also used in various national legislative texts.

However, in the context of a JRC survey, many respondents expressed difficulties with the implementation of the EC definition, in particular due to the fact that some of the key concepts and terms could be interpreted in different ways.

Therefore, the JRC just published the report “An overview of concepts and terms used in the European Commission’s definition of nanomaterial” which aims to provide a clarification of the key concepts and terms of the nanomaterial definition and discusses them in a regulatory context.

This will facilitate a common understanding and fosters a harmonised and coherent implementation of the nanomaterial definition in different regulatory context at EU and national level.

Not my favourite topic but definitions and their implementation are important whether I like it or not.

NanoDefine: a project for implementing the European Union’s definition for nanomaterials

Here”s an excerpt from the Dec. 13, 2013 news item on Azonano about a new consortium focused on measuring nanomaterials and, if I understand the news item rightly, refining the definition so that it can be implemented,

A 29-partner consortium of top European RTD [?] performers, metrology institutes, and nanomaterials and instrument manufacturers, gathered at a launch meeting in Wageningen, NL, [Netherlands] last month to begin the mobilisation of the critical mass of expertise required to establish the measurement tools and scientific data that help to implement the EU recommendation on the definition of a nanomaterial.

We have come a long way in exploring the full potential of nano as a key enabling technology, yet, there are still uncertainties surrounding environment, health and safety (EHS) issues and the questions that need to be addressed: what is or isn’t a nanomaterial. One challenge consists in the development of methods that reliably identify, characterize and measure nanomaterials (NM) both as substance and in various products and matrices. In responses, the European Commission has recently recommended a definition of NM as a reference to determine this (2011/696/EU).

The NanoDefine project will explicitly address this question over the next four years.

I have written about the European Union’s definition of nanomaterials in an Oct, 18, 2011 posting,

After all the ‘sturm und drang’ in the last few months (my Sept. 8, 2011 posting summarizing some of the lively discussion), a nanomaterials definition for Europe has been adopted. It is the first ‘cross-cutting’ nanomaterials definition to date according to the Oct. 18, 2011 news item on Nanowerk,

“Nanomaterials” are materials whose main constituents have a dimension of between 1 and 100 billionth of a metre, according to a Recommendation on the definition of nanomaterial (pdf) adopted by the European Commission today. The announcement marks an important step towards greater protection for citizens, clearly defining which materials need special treatment in specific legislation.

I also featured some specific critiques of the then newly proclaimed definition in an Oct. 19, 2011 posting and again in an Oct. 20, 2011 posting.

The Institute of Nanotechnology Dec. 12, 2013 news release, which originated the news item, provides more details about the NanoDefine project,

Based on a comprehensive evaluation of existing methodologies and a rigorous intra-lab and inter-lab comparison, validated measurement methods and instruments will be developed that are robust, readily implementable, cost-effective and capable to reliably measure the size of particles in the range of 1 – 100 nm, with different shapes, coatings and for the widest possible range of materials, in various complex media and products. Practical case studies will assess their applicability for various sectors, including food/feed, cosmetics etc.

One major outcome of the project will be the establishment of an integrated tiered approach including validated rapid screening methods (tier 1) and validated in depth methods (tier 2), with a user manual to guide end-users, such as manufacturers, regulatory bodies and contract laboratories, to implement the developed methodology.

NanoDefine will closely collaborate with its sister projects in the NanoSafety Cluster (www.nanosafetycluster.eu) as well as engage with international EHS, RTD and metrology initiatives. NanoDefine will also be strongly linked to main standardization bodies, such as CEN, ISO and OECD, by actively participating in Technical Commissions and Working Groups, and by proposing specific ISO/CEN work items, to integrate the developed and validated methodology into the current standardization work.

For more information:
NanoDefine: ‘Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial’ receives funding from the European Community’s Seventh Framework Programme under grant agreement n°604347 and runs from 1/11/2013 – 31/10/2017

Visit the project website: www.nanodefine.eu (currently under construction) [as of Dec. 13, 2013 there is no landing page]
Contact the Project Coordinators:
hans.marvin@wur.nl
wim.beek@wur.nl
stefan.weigel@wur.nl
rudolf.reuther@enas-online.com

Visit the NanoSafety Cluster website: www.nanosafetycluster.eu

I have searched on this blog to see if I’ve stumbled across the Institute of Nanotechnology, located in the UK, previously but cannot find any other mentions (which may be due to the search function and my impatience for paging through apparently irrelevant search results). At any rate, here’s more about the institute from its About Us webpage (Note: Links have been removed),

Background

The Institute of Nanotechnology (IoN) was founded by Ottilia Saxl in January 1997. It is a registered Charity, whose core activities are focused on education and training in nanotechnology. It grew out of the Centre for Nanotechnology, part funded by the DTI through the UK’s National Initiative on Nanotechnology (NION). The Institute was one of the world’s first nanotechnology information providers and is now a global leader.

The Institute works closely with governments, universities, researchers, companies and the general public to educate and inform on all aspects of nanotechnology. It also organises various international scientific events, conferences and educational courses that examine the implications of nanotechnology across a wide variety of themes and sectors.

As most people know (except maybe policymakers), implementation is the tricky part of any rule, policy, and/or law and  the definitions are crucial.

To define or not to define nanomaterials

There’s been a debate of sorts over whether or not nanomaterials should be defined prior to setting a regulatory framework. It’s a topic I covered most recently in my July 8, 2011 posting,

I have mentioned Andrew’s (Dr. Andrew Maynard [Director of University of Michigan Risk Science Center]) perspective vis à vis bypassing a definition of nanomaterials and getting on with the task of setting a regulatory framework in my June 9, 2011 and my April 15, 2011 postings. I expressed some generalized doubts about this approach in the earlier posting while noting that both Andrew and Dexter Johnson (Nanoclast blog on the IEEE [Institute of Electrical and Electronics Engineers]  Spectrumwebsite) have a point when they express concern that the definition may be based on public relations concerns rather than science.

Andrew’s  ‘comment’, Don’t define nanomaterials, had been published the day before in the journal Nature. An Aug. 30, 2011 news item on Nanowerk alerted me to the latest development. A few days ago, Hermann Stamm of the European Commission Joint Research Centre, Institute for Health and Consumer Protection had a rejoinder published, Risk factors: Nanomaterials should be defined.

So here’s how this part of the debate started in July, Andrew notes his concern that policymakers will give in to expediency and define nanomaterials primarily in relation to size, i. e., 1 to 100 nanometres. From Andrew’s July 7, 2011 Nature comment (Note: This is behind a paywall, you can read a draft version here),

It makes sense to assume that nanomaterials could come with unanticipated risks. A rapidly growing body of research indicates that some nanoscale materials behave differently from their bigger and smaller counterparts1. For instance, normally benign titanium dioxide — widely used as a whitener — becomes increasingly toxic as its particle size shrinks. Nanoscale titanium dioxide has been classified as a potential human carcinogen by the US National Institute for Occupational Safety and Health.

But it is becoming clear that many parameters other than size modulate risk, including particle shape, porosity, surface area and chemistry. Some of these parameters become more relevant at smaller scales — but not always. The transition from ‘conventional’ to ‘unconventional’ behaviour, when it does occur, depends critically on the particular material and the context.

A ‘one size fits all’ definition of nanomaterials will fail to capture what is important for addressing risk.

He then provides a series of arguments supporting his notion that a list of attributes along with values that would precipitate action is preferable to what he described as a ‘one size fits all’ approach.

Herman Stamm’s rejoinder (August 25, 2011 Nature comment [Note: this is behind a paywall]) simplifies Andrew’s arguments for a simple reiteration of his position,

Maynard’s point that such materials are heterogeneous is justified. However, they all have structures on the nanoscale, which modify their other properties. Size is therefore the most appropriate parameter on which to base a broad definition …

My concern with these things has to do with implementation and which approach is going to ensure better safety? Andrew’s approach reminds me of fuzzy logic and computers. I think they’re called ‘if then’ programming scripts: if [xxx happens] then do [yyy]; if [ssss happens] then do [ttt] and so on. Stamm’s approach is a standard one for regulation, i. e., create a hard and fast rule.

Both approaches have their strengths and weaknesses. Andrew’s proposed method allows for great flexibility and agility but as the system becomes more complex (and they always do) then there’s a strong probability of incompatible ‘scripts’ and if there isn’t an overarching principle or rule, then disputes become very difficult if not impossible to resolve.

Stamm’s method, i. e., using size as the key determinant for a rule is likely to lead to an inflexibile attitude and a lack of agility when dealing with situations that are ambiguous or don’t fit the definition. Who hasn’t experienced or heard of a bureaucrat who abides strictly by the rules as written even if they’re not appropriate for the specific situation?

As I’ve noted before I’m slowly coming round to Andrew’s suggestion although I continue to have doubts.