Tag Archives: nanosunscreen

Australian scientists say that sunscreens with zinc oxide nanoparticles aren’t toxic to you

The Australians have had quite the struggle over whether or not to use nanotechnology-enabled sunscreens (see my Feb. 9, 2012 posting about an Australian nanosunscreen debacle and I believe the reverberations continue even ’til today). This latest research will hopefully help calm the waters. From a Dec. 4, 2018 news item on ScienceDaily,

Zinc oxide (ZnO) has long been recognized as an effective sunscreen agent. However, there have been calls for sunscreens containing ZnO nanoparticles to be banned because of potential toxicity and the need for caution in the absence of safety data in humans. An important new study provides the first direct evidence that intact ZnO nanoparticles neither penetrate the human skin barrier nor cause cellular toxicity after repeated application to human volunteers under in-use conditions. This confirms that the known benefits of using ZnO nanoparticles in sunscreens clearly outweigh the perceived risks, reports the Journal of Investigative Dermatology.

A December 4, 2018 Elsevier (Publishing) press release (also on EurekAlert), which originated the news item, provides international context for the safety discussion while providing more details about this latest research,

The safety of nanoparticles used in sunscreens has been a highly controversial international issue in recent years, as previous animal exposure studies found much higher skin absorption of zinc from application of ZnO sunscreens to the skin than in human studies. Some public advocacy groups have voiced concern that penetration of the upper layer of the skin by sunscreens containing ZnO nanoparticles could gain access to the living cells in the viable epidermis with toxic consequences, including DNA damage. A potential danger, therefore, is that this concern may also result in an undesirable downturn in sunscreen use. A 2017 National Sun Protection Survey by the Cancer Council Australia found only 55 percent of Australians believed it was safe to use sunscreen every day, down from 61 per cent in 2014.

Investigators in Australia studied the safety of repeated application of agglomerated ZnO nanoparticles applied to five human volunteers (aged 20 to 30 years) over five days. This mimics normal product use by consumers. They applied ZnO nanoparticles suspended in a commercial sunscreen base to the skin of volunteers hourly for six hours and daily for five days. Using multiphoton tomography with fluorescence lifetime imaging microscopy, they showed that the nanoparticles remained within the superficial layers of the stratum corneum and in the skin furrows. The fate of ZnO nanoparticles was also characterized in excised human skin in vitro. They did not penetrate the viable epidermis and no cellular toxicity was seen, even after repeated hourly or daily applications typically used for sunscreens.

“The terrible consequences of skin cancer and photoaging are much greater than any toxicity risk posed by approved sunscreens,” stated lead investigator Michael S. Roberts, PhD, of the Therapeutics Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, and School of Pharmacy and Medical Sciences, University of South Australia, Sansom Institute, Adelaide, QLD, Australia.

“This study has shown that sunscreens containing nano ZnO can be repeatedly applied to the skin with minimal risk of any toxicity. We hope that these findings will help improve consumer confidence in these products, and in turn lead to better sun protection and reduction in ultraviolet-induced skin aging and cancer cases,” he concluded.

“This study reinforces the important public health message that the known benefits of using ZnO nano sunscreens clearly outweigh the perceived risks of using nano sunscreens that are not supported by the scientific evidence,” commented Paul F.A. Wright, PhD, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia, in an accompanying editorial. “Of great significance is the investigators’ finding that the slight increase in zinc ion concentrations in viable epidermis was not associated with cellular toxicity under conditions of realistic ZnO nano sunscreen use.

A November 21, 2018 University of South Australia press release (also on EurekAlert) provides some additional insight into the Australian situation,, Note: Links have been removed,

It’s safe to slap on the sunscreen this summer – in repeated doses – despite what you have read about the potential toxicity of sunscreens.

A new study led by the University of Queensland (UQ) and University of South Australia (UniSA) provides the first direct evidence that zinc oxide nanoparticles used in sunscreen neither penetrate the skin nor cause cellular toxicity after repeated applications.

The research, published this week in the Journal of Investigative Dermatology, refutes widespread claims among some public advocacy groups – and a growing belief among consumers – about the safety of nanoparticulate-based sunscreens.

UQ and UniSA lead investigator, Professor Michael Roberts, says the myth about sunscreen toxicity took hold after previous animal studies found much higher skin absorption of zinc-containing sunscreens than in human studies.

“There were concerns that these zinc oxide nanoparticles could be absorbed into the epidermis, with toxic consequences, including DNA damage,” Professor Roberts says.

The toxicity link was picked up by consumers, sparking fears that Australians could reduce their sunscreen use, echoed by a Cancer Council 2017 National Sun Protection Survey showing a drop in the number of people who believed it was safe to use sunscreens every day.

Professor Roberts and his co-researchers in Brisbane, Adelaide, Perth and Germany studied the safety of repeated applications of zinc oxide nanoparticles applied to five volunteers aged 20-30 years.

Volunteers applied the ZnO nanoparticles every hour for six hours on five consecutive days.

“Using superior imaging methods, we established that the nanoparticles remained within the superficial layers of the skin and did not cause any cellular damage,” Professor Roberts says.

“We hope that these findings help improve consumer confidence in these products and in turn lead to better sun protection. The terrible consequences of skin cancer and skin damage caused by prolonged sun exposure are much greater than any toxicity posed by approved sunscreens.”

Here’s a link to and a citation for the paper,

Support for the Safe Use of Zinc Oxide Nanoparticle Sunscreens: Lack of Skin Penetration or Cellular Toxicity after Repeated Application in Volunteers by Yousuf H. Mohammed, Amy Holmes, Isha N. Haridass, Washington Y. Sanchez, Hauke Studier, Jeffrey E. Grice, Heather A.E. Benson, Michael S. Roberts. Jurnal of Investigative Dermatology. DOI: https://doi.org/10.1016/j.jid.2018.08.024 Article in Press Published online (Dec. 4, 2018?)

As of Dec. 11, 2018, this article is open access.

Safer sunblock and bioadhesive nanoparticles from Yale University

The skin has a lot of protective barriers but it’s always possible to make something better so a sunblock that doesn’t penetrate the* skin at all seems like it might be a good thing. Interestingly, this new sunblock or sunscreen is enabled by nanoparticles but not the metallic nanoparticles found in what are sometimes called nanosunscreens. From a Sept. 29, 2015 news item on Nanowerk,

Researchers at Yale have developed a sunscreen that doesn’t penetrate the skin, eliminating serious health concerns associated with commercial sunscreens.

Most commercial sunblocks are good at preventing sunburn, but they can go below the skin’s surface and enter the bloodstream. As a result, they pose possible hormonal side effects and could even be promoting the kind of skin cancers they’re designed to prevent.

But researchers at Yale have developed a new sunblock, made with bioadhesive nanoparticles, that stays on the surface of the skin.

A Sept. 28, 2015 Yale University news release by William Weir, whch originated the news item, describes the research in more detail,

“We found that when we apply the sunblock to the skin, it doesn’t come off, and more importantly, it doesn’t penetrate any further into the skin,” said the paper’s senior author, Mark Saltzman, the Goizueta Foundation Professor of Biomedical Engineering. “Nanoparticles are large enough to keep from going through the skin’s surface, and our nanoparticles are so adhesive that they don’t even go into hair follicles, which are relatively open.”

Using mouse models, the researchers tested their sunblock against direct ultraviolet rays and their ability to cause sunburn. In this regard, even though it used a significantly smaller amount of the active ingredient than commercial sunscreens, the researchers’ formulation protected equally well against sunburn.

They also looked at an indirect — and much less studied — effect of UV light. When the active ingredients of sunscreen absorb UV light, a chemical change triggers the generation of oxygen-carrying molecules known as reactive oxygen species (ROS). If a sunscreen’s agents penetrate the skin, this chemical change could cause cellular damage, and potentially facilitate skin cancer.

“Commercial chemical sunblock is protective against the direct hazards of ultraviolet damage of DNA, but might not be against the indirect ones,” said co-author Michael Girardi, a professor of dermatology at Yale Medical School. “In fact, the indirect damage was worse when we used the commercial sunblock.”

Girardi, who specializes in skin cancer development and progression, said little research has been done on the ultimate effects of sunblock usage and the generation of ROS, “but obviously, there’s concern there.”

Previous studies have found traces of commercial sunscreen chemicals in users’ bloodstreams, urine, and breast milk. There is evidence that these chemicals cause disruptions with the endocrine system, such as blocking sex hormone receptors.

To test penetration levels, the researchers applied strips of adhesive tape to skin previously treated with sunscreen. The tape was then removed rapidly, along with a thin layer of skin. Repeating this procedure allowed the researchers to remove the majority of the outer skin layer, and measure how deep the chemicals had penetrated into the skin. Traces of the sunscreen chemical administered in a conventional way were found to have soaked deep within the skin. The Yale team’s sunblock came off entirely with the initial tape strips.

Tests also showed that a substantial amount of the Yale team’s sunscreen remained on the skin’s surface for days, even after exposure to water. When wiped repeatedly with a towel, the new sunblock was entirely removed. [emphasis mine]

To make the sunblock, the researchers developed a nanoparticle with a surface coating rich in aldehyde groups, which stick tenaciously to the outer skin layer. The nanoparticle’s hydrophilic layer essentially locks in the active ingredient, a hydrophobic chemical called padimate O.

Some sunscreen solutions that use larger particles of inorganic compounds, such as titanium dioxide or zinc oxide, also don’t penetrate the skin. For aesthetic reasons, though, these opaque sunscreen products aren’t very popular. By using a nanoparticle to encase padimate O, an organic chemical used in many commercial sunscreens, the Yale team’s sunblock is both transparent and stays out of the skin cells and bloodstream.

This seems a little confusing to me and I think clarification may be helpful. My understanding is that the metallic nanoparticles (nano titanium dioxide and nano zinc oxide) engineered for use in commercial sunscreens are also (in addition to the macroscale titanium dioxide and zinc oxide referred to in the Yale news release) too large to pass through the skin. At least that was the understanding in 2010 and I haven’t stumbled across any information that is contradictory. Here’s an excerpt from a July 20, 2010 posting where I featured portions of a debate between Georgia Miller (at that time representing Friends of the Earth) and Dr. Andrew Maynard (at that time director of the University of Michigan Risk Science Center and a longtime participant in the nanotechnology risk discussions),

Three of the scientists whose work was cited by FoE as proof that nanosunscreens are dangerous either posted directly or asked Andrew to post comments which clarified the situation with exquisite care,

Despite FoE’s implications that nanoparticles in sunscreens might cause cancer because they are photoactive, Peter Dobson points out that there are nanomaterials used in sunscreens that are designed not to be photoactive. Brian Gulson, who’s work on zinc skin penetration was cited by FoE, points out that his studies only show conclusively that zinc atoms or ions can pass through the skin, not that nanoparticles can pass through. He also notes that the amount of zinc penetration from zinc-based sunscreens is very much lower than the level of zinc people have in their body in the first place. Tilman Butz, who led one of the largest projects on nanoparticle penetration through skin to date, points out that – based on current understanding – the nanoparticles used in sunscreens are too large to penetrate through the skin.

However, there may be other ingredients which do pass through into the bloodstream and are concerning.

One other thing I’d like to note. Not being able to remove the sunscreen easily ( “When wiped repeatedly with a towel, the new sunblock was entirely removed.”) may prove to be a problem as we need Vitamin D, which is for the most part obtainable by sun exposure.

In any event, here’s a link to and a citation for the paper,

A sunblock based on bioadhesive nanoparticles by Yang Deng, Asiri Ediriwickrema, Fan Yang, Julia Lewis, Michael Girardi, & W. Mark Saltzman. Nature Materials (2015) doi:10.1038/nmat4422 Published online 28 September 2015

This paper is behind a paywall.

*’teh’ changed to ‘the’ on June 6, 2016.