Tag Archives: Nanotechnology: A Policy Primer

Nanotechnology policy primer for US Congress

I was hoping to get more information about that symposium I mentioned in my Jan. 27, 2012 posting (in addition to the news about one of the presentations which I mentioned in my March 29, 2012 posting about assessing lifecycles and economic impacts),

The Organization for Economic Cooperation and Development (OECD), the American Association for the Advancement of Science (AAAS), and the US National Nanotechnology Initiative (NNI) are hosting an  International Symposium on Assessing the Economic Impact of Nanotechnology, March 27 – 28, 2012 in Washington, D.C.

As it turns out, an April 13, 2102 brief (Nanotechnology: A Policy Primer) prepared by John Sargent for the US Congress relies on some data that was provided to the symposium. Unfortunately, there’s not much and it’s about funding, not nanotechnology’s economic impacts. From Sargent’s policy primer, page 12,

The United States has led, and continues to lead, all nations in known public investments in nanotechnology R&D, though the estimated U.S. share of global public investments has fallen as other nations have established similar programs and increased funding. In 2011, Lux Research, an emerging technologies consulting firm, estimated total (public and private) global nanotechnology funding for 2010 to be approximately $17.8 billion with corporate R&D accounting for a majority of funding for the first time.[14] Cientifica, a privately held nanotechnology business analysis and consulting firm, estimated global public investments in nanotechnology in 2010 to be approximately $10 billion per year, with cumulative global public investments through 2011 reaching approximately $67.5 billion. Cientifica also concluded that the United States had fallen behind both Russia and China in nanotechnology R&D funding on a purchasing power parity (PPP) basis (which takes into account the price of goods and services in each nation), but still leads the world in real dollar terms (adjusted on a currency exchange rate basis).[15]

Private investments in nanotechnology R&D come from two primary sources, corporations and venture capital investors. Lux Research estimated that total global private sector nanotechnology funding had risen from $9.2 billion in 2009 to $9.6 billion in 2010, while the venture capital component of the investment had fallen from $822 million in 2009 to $646 million in 2010. According to the firm, U.S. private sector funding of approximately $3.5 billion led all other nations, followed by Japan (almost $3 billion), and Germany (about $1 billion). Lux Research also reported that the amount of venture capital funding in Europe was one-fifth that of the North American level.[16]

14 OECD /NNI International Symposium on Assessing the Economic Impact of Nanotechnology, Background Paper 2: Finance and Investor Models in Nanotechnology, Working Party on Nanotechnology, Organization for Economic Cooperation and Development, March 16, 2012, p. 4.

15 Global Funding of Nanotechnologies and Its Impact, Cientifica, July 2011, available at http://cientifica.eu/blog/wpcontent/ uploads/downloads/2011/07/Global-Nanotechnology-Funding-Report-2011.pdf.

16 OECD /NNI International Symposium on Assessing the Economic Impact of Nanotechnology, Background Paper 2: Finance and Investor Models in Nanotechnology, Working Party on Nanotechnology, Organization for Economic Cooperation and Development, March 16, 2012, p. 4.

This primer provides a good brief (17 pp.) introduction for anyone who’s not familiar with the field of nanotechnology.