Tag Archives: Nanotools for Neuroscience and Brain Activity Mapping

Digi, Nano, Bio, Neuro – why should we care more about converging technologies?

Personality in focus: the convergence of biology and computer technology could make extremely sensitive data available. (Image: by-​studio / AdobeStock) [downloaded from https://ethz.ch/en/news-and-events/eth-news/news/2024/05/digi-nano-bio-neuro-or-why-we-should-care-more-about-converging-technologies.html]

I gave a guest lecture some years ago where I mentioned that I thought the real issue with big data and AI (artificial intelligence) lay in combining them (or convergence). These days, it seems I was insufficiently imaginative as researchers from ETH Zurich have taken the notion much further.

From a May 7, 2024 ETH Zurich press release (also on EurekAlert), Note: You’ll see in the ‘References’ some extra words, ‘external page’ is self-explanatory but ‘call made’ remains a mystery to me,

In my research, I [Dirk Helbing, Professor of Computational Social Science at the Department of Humanities, Social and Political Sciences and associated with the Department of Computer Science at ETH Zurich.] deal with the consequences of digitalisation for people, society and democracy. In this context, it is also important to keep an eye on their convergence in computer and life sciences – i.e. what becomes possible when digital technologies grow increasingly together with biotechnology, neurotechnology and nanotechnology.

Converging technologies are seen as a breeding ground for far-​reaching innovations. However, they are blurring the boundaries between the physical, biological and digital worlds. Conventional regulations are becoming ineffective as a result.

In a joint study I conducted with my co-​author Marcello Ienca, we have recently examined the risks and societal challenges of technological convergence – and concluded that the effects for individuals and society are far-​reaching.

We would like to draw attention to the challenges and risks of converging technologies and explain why we consider it necessary to accompany technological developments internationally with strict regulations.

For several years now, everyone has been able to observe, within the context of digitalisation, the consequences of leaving technological change to market forces alone without effective regulation.

Misinformation and manipulation on the web

The Digital Manifesto was published in 2015 – almost ten years ago.1 Nine European experts, including one from ETH Zurich, issued an urgent warning against scoring, i.e. the evaluation of people, and big nudging,2 a subtle form of digital manipulation. The latter is based on personality profiles created using cookies and other surveillance data. A little later, the Cambridge Analytica scandal alerted the world to how the data analysis company had been using personalised ads (microtargeting) in an attempt to manipulate voting behaviour in democratic elections.

This has brought democracies around the world under considerable pressure. Propaganda, fake news and hate speech are polarising and sowing doubt, while privacy is on the decline. We are in the midst of an international information war for control of our minds, in which advertising companies, tech corporations, secret services and the military are fighting to exert an influence on our mindset and behaviour. The European Union has adopted the AI Act in an attempt to curb these dangers.

However, digital technologies have developed at a breathtaking pace, and new possibilities for manipulation are already emerging. The merging of digital and nanotechnology with modern biotechnology and neurotechnology makes revolutionary applications possible that had been hardly imaginable before.

Microrobots for precision medicine

In personalised medicine, for example, the advancing miniaturisation of electronics is making it increasingly possible to connect living organisms and humans with networked sensors and computing power. The WEF [World Economic Forum] proclaimed the “Internet of Bodies” as early as 2020.3, 4

One example that combines conventional medication with a monitoring function is digital pills. These could control medication and record a patient’s physiological data (see this blog post).

Experts expect sensor technology to reach the nanoscale. Magnetic nanoparticles or nanoelectronic components, i.e. tiny particles invisible to the naked eye with a diameter up to 100 nanometres, would make it possible to transport active substances, interact with cells and record vast amounts of data on bodily functions. If introduced into the body, it is hoped that diseases could be detected at an early stage and treated in a personalised manner. This is often referred to as high-​precision medicine.

Nano-​electrodes record brain function

Miniaturised electrodes that can simultaneously measure and manipulate the activity of thousands of neurons coupled with ever-​improving AI tools for the analysis of brain signals are approaches that are now leading to much-​discussed advances in the brain-​computer interface. Brain activity mapping is also on the agenda. Thanks to nano-​neurotechnology, we could soon envisage smartphones and other AI applications being controlled directly by thoughts.

“Long before precision medicine and neurotechnology work reliably, these technologies will be able to be used against people.” Dirk Helbling

Large-​scale projects to map the human brain are also likely to benefit from this.5 In future, brain activity mapping will not only be able to read our thoughts and feelings but also make them possible of being influenced remotely – the latter would probably be a lot more effective than previous manipulation methods like big nudging.

However, conventional electrodes are not suitable for permanent connection between cells and electronics – this requires durable and biocompatible interfaces. This has given rise to the suggestion of transmitting signals optogenetically, i.e. to control genes in special cells with light pulses.6 This would make the implementation of amazing circuits possible (see this ETH News article [November 11, 2014 press release] “Controlling genes with thoughts” ).

The downside of convergence

Admittedly, the applications mentioned above may sound futuristic, with most of them still visions or in their early stages of development. However, a lot of research is being conducted worldwide and at full speed. The military is also interested in using converging technologies for its own purposes. 7, 8

The downside of convergence is the considerable risks involved, such as state or private players gaining access to highly sensitive data and misusing it to monitor and influence people. The more connected our bodies become, the more vulnerable we will be to cybercrime and hacking. It cannot be ruled out that military applications exist already.5 One thing is clear, however: long before precision medicine and neurotechnology work reliably, these technologies will be able to be used against people.

“We need to regain control of our personal data. To do this, we need genuine informational self-​determination.” Dirk Helbling

The problem is that existing regulations are specific and insufficient to keep technological convergence in check. But how are we to retain control over our lives if it becomes increasingly possible to influence our thoughts, feelings and decisions by digital means?

Converging global regulation is needed

In our recent paper we conclude that any regulation of converging technologies would have to be based on converging international regulations. Accordingly, we outline a new global regulatory framework and propose ten governance principles to close the looming regulatory gap. 9

The framework emphasises the need for safeguards to protect bodily and mental functions from unauthorised interference and to ensure personal integrity and privacy by, for example. establishing neurorights.

To minimise risks and prevent abuse, future regulations should be inclusive, transparent and trustworthy. The principle of participatory governance is key, which would have to involve all the relevant groups and ensure that the concerns of affected minorities are also taken into account in decision-​making processes.

Finally, we need to regain control of our personal data. To accomplish this, we need genuine informational self-​determination. This would also have to apply to the digital twins of our body and personality, because they can be used to hack our health and our way of thinking – for good or for bad.10

With our contribution, we would like to initiate public debate about converging technologies. Despite its major relevance, we believe that too little attention is being paid to this topic. Continuous discourse on benefits, risks and sensible rules can help to steer technological convergence in such a way that it serves people instead of harming them.

Dirk Helbing wrote this article together with external page Marcello Ienca call_made, who previously worked at ETH Zurich and EPFL and is now Assistant Professor of Ethics of AI and Neuroscience at the Technical University of Munich.

References

1 Digital-​Manifest: external page Digitale Demokratie statt Datendiktatur call_made (2015) Spektrum der Wissenschaft

2 external page Sie sind das Ziel! call_made (2024) Schweizer Monat

3 external page The Internet of Bodies Is Here: Tackling new challenges of technology governance call_made (2020) World Economic Forum

4 external page Tracking how our bodies work could change our lives call_made (2020) World Economic Forum

5 external page Nanotools for Neuroscience and Brain Activity Mapping call_made (2013) ACS Nano

6 external page Innovationspotenziale der Mensch-​Maschine-Interaktion call_made (2016) Deutsche Akademie der Technikwissenschaften

7 external page Human Augmentation – The Dawn of a New Paradigm. A strategic implications project call_made (2021) UK Ministry of Defence

8 external page Behavioural change as the core of warfighting call_made (2017) Militaire Spectator

9 Helbing D, Ienca M: external page Why converging technologies need converging international regulation call_made (2024) Ethics and Information Technology

10 external page Who is Messing with Your Digital Twin? Body, Mind, and Soul for Sale? call_made Dirk Helbing TEDx Talk (2023)

Here’s a second link to and citation for the paper,

Why converging technologies need converging international regulation by Dirk Helbing & Marcello Ienca. Ethics and Information Technology Volume 26, article number 15, (2024) DOI: 10.1007/s10676-024-09756-8 Published: 28 February 2024

This paper is open access.

Nanotechnology and the US mega science project: BAM (Brain Activity Map) and more

The Brain Activity Map (BAM) project received budgetary approval as of this morning, Apr. 2, 2013 (I first mentioned BAM in my Mar. 4, 2013 posting when approval seemed imminent). From the news item, Obama Announces Huge Brain-Mapping Project, written by Stephanie Pappas for Yahoo News (Note: Links have been removed),

 President Barack Obama announced a new research initiative this morning (April 2) to map the human brain, a project that will launch with $100 million in funding in 2014.

The Brain Activity Map (BAM) project, as it is called, has been in the planning stages for some time. In the June 2012 issue of the journal Neuron, six scientists outlined broad proposals for developing non-invasive sensors and methods to experiment on single cells in neural networks. This February, President Obama made a vague reference to the project in his State of the Union address, mentioning that it could “unlock the answers to Alzheimer’s.”

In March, the project’s visionaries outlined their final goals in the journal Science. They call for an extended effort, lasting several years, to develop tools for monitoring up to a million neurons at a time. The end goal is to understand how brain networks function.

“It could enable neuroscience to really get to the nitty-gritty of brain circuits, which is the piece that’s been missing from the puzzle,” Rafael Yuste, the co-director of the Kavli Institute for Brain Circuits at Columbia University, who is part of the group spearheading the project, told LiveScience in March. “The reason it’s been missing is because we haven’t had the techniques, the tools.” [Inside the Brain: A Journey Through Time]

Not all neuroscientists support the project, however, with some arguing that it lacks clear goals and may cannibalize funds for other brain research.

….

I believe the $100M mentioned for 2014 would one installment in a series totaling up to $1B or more. In any event, it seems like a timely moment to comment on the communications campaign that has been waged on behalf of the BAM. It reminds me a little of the campaign for graphene, which was waged in the build up to the decision as to which two projects (in a field of six semi-finalists, then narrowed to a field of four finalists) should receive a FET (European Union’s Future and Emerging Technology) 1 billion euro research prize each. It seemed to me even a year or so before the decision that graphene’s win was a foregone conclusion but the organizers left nothing to chance and were relentless in their pursuit of attention and media coverage in the buildup to the final decision.

The most recent salvo in the BAM campaign was an attempt to link it with nanotechnology. A shrewd move given that the US has spent well over $1B since the US National Nanotechnology Initiative (NNI) was first approved in 2000. Linking the two projects means the NNI can lend a little authority to the new project (subtext: we’ve supported a mega-project before and that was successful) while the new project BAM can imbue the ageing NNI with some excitement.

Here’s more about nanotechnology and BAM from a Mar. 27, 2013 Spotlight article by Michael Berger on Nanowerk,

A comprehensive understanding of the brain remains an elusive, distant frontier. To arrive at a general theory of brain function would be an historic event, comparable to inferring quantum theory from huge sets of complex spectra and inferring evolutionary theory from vast biological field work. You might have heard about the proposed Brain Activity Map – a project that, like the Human Genome Project, will tap the hive mind of experts to make headway in the understanding of the field. Engineers and nanotechnologists will be needed to help build ever smaller devices for measuring the activity of individual neurons and, later, to control how those neurons function. Computer scientists will be called upon to develop methods for storing and analyzing the vast quantities of imaging and physiological data, and for creating virtual models for studying brain function. Neuroscientists will provide critical biological expertise to guide the research and interpret the results.

Berger goes on to highlight some of the ways nanotechnology-enabled devices could contribute to the effort. He draws heavily on a study published Mar. 20, 2013 online in ACS (American Chemical Society)Nano. Shockingly, the article is open access. Given that this is the first time I’ve come across an open access article in any of the American Chemical Society’s journals, I suspect that there was payment of some kind involved to make this information freely available. (The practice of allowing researchers to pay more in order to guarantee open access to their research in journals that also have articles behind paywalls seems to be in the process of becoming more common.)

Here’s a citation and a link to the article about nanotechnology and BAM,

Nanotools for Neuroscience and Brain Activity Mapping by A. Paul Alivisatos, Anne M. Andrews, Edward S. Boyden, Miyoung Chun, George M. Church, Karl Deisseroth, John P. Donoghue, Scott E. Fraser, Jennifer Lippincott-Schwartz, Loren L. Looger, Sotiris Masmanidis, Paul L. McEuen, Arto V. Nurmikko, Hongkun Park, Darcy S. Peterka, Clay Reid, Michael L. Roukes, Axel Scherer, Mark Schnitzer, Terrence J. Sejnowski, Kenneth L. Shepard, Doris Tsao, Gina Turrigiano, Paul S. Weiss, Chris Xu, Rafael Yuste, and Xiaowei Zhuang. ACS Nano, 2013, 7 (3), pp 1850–1866 DOI: 10.1021/nn4012847 Publication Date (Web): March 20, 2013
Copyright © 2013 American Chemical Society

As these things go, it’s a readable article for people without a neuroscience education provided they don’t mind feeling a little confused from time to time. From Nanotools for Neuroscience and Brain Activity Mapping (Note: Footnotes and links removed),

The Brain Activity Mapping (BAM) Project (…) has three goals in terms of building tools for neuroscience capable of (…) measuring the activity of large sets of neurons in complex brain circuits, (…) computationally analyzing and modeling these brain circuits, and (…) testing these models by manipulating the activities of chosen sets of neurons in these brain circuits.

As described below, many different approaches can, and likely will, be taken to achieve these goals as neural circuits of increasing size and complexity are studied and probed.

The BAM project will focus both on dynamic voltage activity and on chemical neurotransmission. With an estimated 85 billion neurons, 100 trillion synapses, and 100 chemical neurotransmitters in the human brain,(…) this is a daunting task. Thus, the BAM project will start with model organisms, neural circuits (vide infra), and small subsets of specific neural circuits in humans.

Among the approaches that show promise for the required dynamic, parallel measurements are optical and electro-optical methods that can be used to sense neural cell activity such as Ca2+,(7) voltage,(…) and (already some) neurotransmitters;(…) electrophysiological approaches that sense voltages and some electrochemically active neurotransmitters;(…) next-generation photonics-based probes with multifunctional capabilities;(18) synthetic biology approaches for recording histories of function;(…) and nanoelectronic measurements of voltage and local brain chemistry.(…) We anticipate that tools developed will also be applied to glia and more broadly to nanoscale and microscale monitoring of metabolic processes.

Entirely new tools will ultimately be required both to study neurons and neural circuits with minimal perturbation and to study the human brain. These tools might include “smart”, active nanoscale devices embedded within the brain that report on neural circuit activity wirelessly and/or entirely new modalities of remote sensing of neural circuit dynamics from outside the body. Remarkable advances in nanoscience and nanotechnology thus have key roles to play in transduction, reporting, power, and communications.

One of the ultimate goals of the BAM project is that the knowledge acquired and tools developed will prove useful in the intervention and treatment of a wide variety of diseases of the brain, including depression, epilepsy, Parkinson’s, schizophrenia, and others. We note that tens of thousands of patients have already been treated with invasive (i.e., through the skull) treatments. [emphases mine] While we hope to reduce the need for such measures, greatly improved and more robust interfaces to the brain would impact effectiveness and longevity where such treatments remain necessary.

Perhaps not so coincidentally, there was this Mar. 29, 2013 news item on Nanowerk,

Some human cells forget to empty their trash bins, and when the garbage piles up, it can lead to Parkinson’s disease and other genetic and age-related disorders. Scientists don’t yet understand why this happens, and Rice University engineering researcher Laura Segatori is hoping to change that, thanks to a prestigious five-year CAREER Award from the National Science Foundation (NSF).

Segatori, Rice’s T.N. Law Assistant Professor of Chemical and Biomolecular Engineering and assistant professor of bioengineering and of biochemistry and cell biology, will use her CAREER grant to create a toolkit for probing the workings of the cellular processes that lead to accumulation of waste material and development of diseases, such as Parkinson’s and lysosomal storage disorders. Each tool in the kit will be a nanoparticle — a speck of matter about the size of a virus — with a specific shape, size and charge.  [emphases mine] By tailoring each of these properties, Segatori’s team will create a series of specialized probes that can undercover the workings of a cellular process called autophagy.

“Eventually, once we understand how to design a nanoparticle to activate autophagy, we will use it as a tool to learn more about the autophagic process itself because there are still many question marks in biology regarding how this pathway works,” Segatori said. “It’s not completely clear how it is regulated. It seems that excessive autophagy may activate cell death, but it’s not yet clear. In short, we are looking for more than therapeutic applications. We are also hoping to use these nanoparticles as tools to study the basic science of autophagy.”

There is no direct reference to BAM but there are some intriguing correspondences.

Finally, there is no mention of nanotechnology in this radio broadcast/podcast and transcript but it does provide more information about BAM (for many folks this was first time they’d heard about the project) and the hopes and concerns this project raises while linking it to the Human Genome Project. From the Mar. 31, 2013 posting of a transcript and radio (Kera News; a National Public Radio station) podcast titled, Somewhere Over the Rainbow: The Journey to Map the Human Brain,

During the State of the Union, President Obama said the nation is about to embark on an ambitious project: to examine the human brain and create a road map to the trillions of connections that make it work.

“Every dollar we invested to map the human genome returned $140 to our economy — every dollar,” the president said. “Today, our scientists are mapping the human brain to unlock the answers to Alzheimer’s.”

Details of the project have slowly been leaking out: $3 billion, 10 years of research and hundreds of scientists. The National Institutes of Health is calling it the Brain Activity Map.

Obama isn’t the first to tout the benefits of a huge government science project. But can these projects really deliver? And what is mapping the human brain really going to get us?

Whether one wants to call it a public relations campaign or a marketing campaign is irrelevant. Science does not take place in an environment where data and projects are considered dispassionately. Enormous amounts of money are spent to sway public opinion and policymakers’ decisions.

ETA Ap. 3, 2013: Here are more stories about BAM and the announcement:

BRAIN Initiative Launched to Unlock Mysteries of Human Mind

Obama’s BRAIN Only 1/13 The Size Of Europe’s

BRAIN Initiative Builds on Efforts of Leading Neuroscientists and Nanotechnologists