Tag Archives: NANOYOU

Nanoeducation compendium (2012) from the European Commission

Michael Berger has written an Oct. 6, 2014 Nanowerk Spotlight article about the European Commission’s NANOTECHNOLOGIES: Principles, Applications, Implications and Hands-on Activities: A compendium for educators published in 2012. From the article,

The lessons, discussions on applications and hands-on experiments presented in this book have been tested and enriched by hundreds of teachers, professors and educators from about one thousand schools in 20 countries in Europe and beyond, involving about 40.000 students.

The educational materials in this compendium are organized in three self-contained modules to offer increased flexibility throughout the development of the course, addressing the fundamental concepts, the main application areas and selected hands-on experiments.

Moreover, a case study approach provides educators and teachers with practical applications and examples to discuss in class. Background materials, literature reviews, specific case studies and ideas are presented to show educators how to address nanosciences and nanotechnologies concepts. Topics dealing with the ethical, societal and safety aspects of nanotechnologies are also included to help educators encouraging class debates, referenced with other European projects and relevant webpages.

One caveat, two years later some of the material may be dated, e.g., webpages may have been moved.

There is an overview of various nanoeducation materials and organizations in the European Union provided in a Dec. 18, 2013 posting for NanoDiode (an innovative, coordinated programme for outreach and dialogue throughout Europe to support the effective governance of nanotechnologies; Note: links have been removed),

The need for education features prominently in European policy texts such as the European Commission’s Strategy for Nanotechnology of 2004 and its Nanosciences and Nanotechnologies Action Plan of 2005, which aims to ‘Promote networking and disseminate ‘best practice’s for education and training in N&N.’  Along with similar policy mandates for education on European member states and in other parts of the globe, this has resulted in a wide range of nanotechnology education activities over the last decade. The European project NANOYOU for instance organised a range of education activities such as a poster, film, contest, virtual dialogue, cards, role play, lab experiments, puzzle and games, and a website in 13 languages. In a similar fashion, the European project TimeforNano developed a range of educational materials and events (News & events, a video competition, a NanoKIT, a quiz and a website in 9 languages). The recent compendium for educators made on the basis of NANOYOU and, to a lesser extent, TimeforNano presents an extensive overview on the relevant principles, applications, implications and hands-on activities for nanotechnology education. [emphasis mine; this is the 2012 compendium mentioned in this post]

NISENet (Nanoscale Informal Science Education Network) features the compendium and offers more information and a link to it from here.

Most recently (Sept. 30, 2014 post), I featured a nanoeducation effort in Estonia The country is participating in the Quantum Spin-Off Project which offers an entrepreneurial aspect, as well as, education in the field of nanotechnology/nanoscience.

Nanoeducation in Europe

There’s a Nano-eTwinning toolkit available from NanoYou (Nano Youth) for teachers. It’s aimed at children 11 to 14 years of age. From the May 23, 2011 news item on Nanowerk,

A new eTwinning toolkit has been produced in the context of NANOYOU to offer schools creative ideas to explore and learn about nanotechnologies. The toolkit provides guidelines to organise a class programme as well as pedagogical objectives, follow up suggestions and evaluation ideas.

eTwinning is a community for schools in Europe that gives teachers the opportunity and tools to join online collaborative projects, to get involved in educational networking and to participate in professional development activities.The eTwinning Portal -developed by European Schoolnet- is available in 24 languages and offers, among others, partner-finding tools, social networking facilities and online working platforms for teachers and pupils to collaborate online.

In looking at the toolkit, I was most interested in the process. For example, here’s item five,

5) Role Play on ELSA:
– Select a dilemma on ethical, legal and social aspects of Nanotechnology from the 10 NANOYOU role plays directly connected with one of the applications of Nanotechnology.
– Each stakeholder is represented by a team composed of pupils of the partner schools. Each team should be about 6 persons. Pupils are given enough time to communicate and share information, opinions and strategies to be able to effectively sustain the point of view of the stakeholder they have been assigned.
– The discussion among stakeholder takes place, either using the forum in the TwinSpace, in an asynchronous manner or during a synchronous event (e.g. a TwinSpace chat, a Skype session or a videoconference). At the end of the discussion, a solution to the dilemma, or at least a possible concrete path to reach it, should be proposed. Pupils may also be asked to write newspaper articles, which summarise their different points of view and the compromise reached (if there is one).
– The results are made public and visible on the TwinSpace, and on schools websites.

I wonder how they will measure success for this project. It is possible to rate the toolkit although no one has done so yet (presumably there just hasn’t been enough time).

I have previously mentioned the NanoYou programme in a May 3, 2010 posting.

Stephen Fry, Cambridge University, and nanotechnology

Courtesy of Nanowerk, I found a new introductory video, Introduction to the strange new world of nanoscience, that Stephen Fry (actor) narrates on behalf of Cambridge University. Providing a very engaging and delightful introduction to nanotechnology, it also illustrates something I was discussing in one of my postings yesterday. The notion that the adoption of any science or technology is inevitable and not to be questioned is in full display. Since the video’s purpose is to introduce (“sell’) nanotechnology I have no quibble with the video itself, my doubts centre on the fact that the nanotechnology discussion is couched in terms of pro or con with no questioning of the basic premise, i.e., should we do this just because we can and how do we decide one way or the other?

Tim Harper on his TNT blog, which is located on his Cientifica website, offers a possible answer in one of his recent postings,

That’s all there is to technology diffusion, whether GM, nanotech or anything else. It is the ultimate form of democracy, because it is us, the people, who eventually get to choose whether a technology is used or not, not politicians, companies or single issue campaign groups.

Leaving aside the concept of marketplace democracy to shift gears, Harper is making the assumption that nothing catastrophic will occur because according to Harper’s posting on the topic,

After ten years of nanotech scare stories I feel that we have a fairly balanced resreach [sic] agenda, with plenty of good science being backed up by excellent toxicology and risk management studies.

It should be noted that Harper is responding from the perspective of someone located in the UK where there has been far more public discussion and interest in the possible risks associated with nanotechnology than there has been in either Canada or the US.

I have to agree with Harper in some degree with his thesis that the marketplace is where a new technology or innovation fails or succeeds and is where democracy  prevails since in the marketplace, the sloganeering and mud-slinging from all sides becomes irrelevant as technology is adopted or it isn’t.

However, it might be time to consider some alternatives to marketplace democracy because, unlike Harper, I’m not quite so confident about the toxicology and risk management studies undertaken so far and the stakes are much higher than they have been in the past. I realize that it’ s impossible to have 100% confidence and I find many of nanotechnology’s possible benefits quite compelling so I’m willing go along with it to a point. I just don’t want to lose sight of the fact that we are juggling many possibilities in a very dynamic environment and using methods and models that worked in times past is rather like showing up to a modern battle zone dressed in medieval armour.

Getting back to the Cambridge University video, do go and watch it on the Nanowerk site. It is fun and very informative and approximately 17 mins. I noticed that they reused part of their Nokia morph animation (last mentioned on this blog here) and offered some thoughts from Professor Mark Welland, the team leader on that project. Interestingly, Welland was talking about yet another possibility. (Sometimes I think nano goes too far!) He was suggesting that we could have chips/devices in our brains that would allow us to think about phoning someone and an immediate connection would be made to that person. Bluntly—no. Just think what would happen if the marketers got access and I don’t even want to think what a person who suffers psychotic breaks (i.e., hearing voices) would do with even more input. Welland starts to talk at the 11 minute mark (I think). For an alternative take on the video and more details, visit Dexter Johnson’s blog, Nanoclast, for this posting. Hint, he likes the idea of a phone in the brain much better than I do.

You can also find the video here on the Cambridge University site where you’ll also find out it was funded by the European Commission for a nanotechnology dialogue project called NanoYou.

Einstein’s ghosts and a nano education programme in Europe

He named it ‘spooky action’ as the concept so unnerved him. Einstein used it to describe distant particles’ communication with each other. Today, scientists at Bristol University and the Imperial College London are using ‘spooky action’ to solve the problem of identifying quantum devices. As to why this might be useful, (from the article),

Anthony Laing, PhD student in the Department of Physics, who performed the study, said: “Apart from providing insight into the fundamentals of quantum physics, this work may be crucial for future quantum technologies.

“How else could a future quantum engineer build a quantum computer if they can’t tell which circuits they have?”

The European Commission has awarded a 1.5M Euros education contract to Israel’s Organization for Rehabilitation and Training. 30,000 European students (11 – 18 years [additional programmes for young adults 19 – 25] will be introduced to nanotechnology through the NANOYOU project. There’s more information here and here.

I’ve been wondering when they’d find a way to fuse nanotechnology with sex and they’ve done it. Apparently nanotechnology may be helpful for erectile dysfunction. There’s a project which focuses on drug delivery and has been tested on rats. So I don’t think there’s anything to get too excited about yet but if you are interested, there’s more here.