Tag Archives: NASA

Yarns that harvest and generate energy

The researchers involved in this work are confident enough about their prospects that they will be  patenting their research into yarns. From an August 25, 2017 news item on Nanowerk,

An international research team led by scientists at The University of Texas at Dallas and Hanyang University in South Korea has developed high-tech yarns that generate electricity when they are stretched or twisted.

In a study published in the Aug. 25 [2017] issue of the journal Science (“Harvesting electrical energy from carbon nanotube yarn twist”), researchers describe “twistron” yarns and their possible applications, such as harvesting energy from the motion of ocean waves or from temperature fluctuations. When sewn into a shirt, these yarns served as a self-powered breathing monitor.

“The easiest way to think of twistron harvesters is, you have a piece of yarn, you stretch it, and out comes electricity,” said Dr. Carter Haines, associate research professor in the Alan G. MacDiarmid NanoTech Institute at UT Dallas and co-lead author of the article. The article also includes researchers from South Korea, Virginia Tech, Wright-Patterson Air Force Base and China.

An August 25, 2017 University of Texas at Dallas news release, which originated the news item, expands on the theme,

Yarns Based on Nanotechnology

The yarns are constructed from carbon nanotubes, which are hollow cylinders of carbon 10,000 times smaller in diameter than a human hair. The researchers first twist-spun the nanotubes into high-strength, lightweight yarns. To make the yarns highly elastic, they introduced so much twist that the yarns coiled like an over-twisted rubber band.

In order to generate electricity, the yarns must be either submerged in or coated with an ionically conducting material, or electrolyte, which can be as simple as a mixture of ordinary table salt and water.

“Fundamentally, these yarns are supercapacitors,” said Dr. Na Li, a research scientist at the NanoTech Institute and co-lead author of the study. “In a normal capacitor, you use energy — like from a battery — to add charges to the capacitor. But in our case, when you insert the carbon nanotube yarn into an electrolyte bath, the yarns are charged by the electrolyte itself. No external battery, or voltage, is needed.”

When a harvester yarn is twisted or stretched, the volume of the carbon nanotube yarn decreases, bringing the electric charges on the yarn closer together and increasing their energy, Haines said. This increases the voltage associated with the charge stored in the yarn, enabling the harvesting of electricity.

Stretching the coiled twistron yarns 30 times a second generated 250 watts per kilogram of peak electrical power when normalized to the harvester’s weight, said Dr. Ray Baughman, director of the NanoTech Institute and a corresponding author of the study.

“Although numerous alternative harvesters have been investigated for many decades, no other reported harvester provides such high electrical power or energy output per cycle as ours for stretching rates between a few cycles per second and 600 cycles per second.”

Lab Tests Show Potential Applications

In the lab, the researchers showed that a twistron yarn weighing less than a housefly could power a small LED, which lit up each time the yarn was stretched.

To show that twistrons can harvest waste thermal energy from the environment, Li connected a twistron yarn to a polymer artificial muscle that contracts and expands when heated and cooled. The twistron harvester converted the mechanical energy generated by the polymer muscle to electrical energy.

“There is a lot of interest in using waste energy to power the Internet of Things, such as arrays of distributed sensors,” Li said. “Twistron technology might be exploited for such applications where changing batteries is impractical.”

The researchers also sewed twistron harvesters into a shirt. Normal breathing stretched the yarn and generated an electrical signal, demonstrating its potential as a self-powered respiration sensor.

“Electronic textiles are of major commercial interest, but how are you going to power them?” Baughman said. “Harvesting electrical energy from human motion is one strategy for eliminating the need for batteries. Our yarns produced over a hundred times higher electrical power per weight when stretched compared to other weavable fibers reported in the literature.”

Electricity from Ocean Waves

“In the lab we showed that our energy harvesters worked using a solution of table salt as the electrolyte,” said Baughman, who holds the Robert A. Welch Distinguished Chair in Chemistry in the School of Natural Sciences and Mathematics. “But we wanted to show that they would also work in ocean water, which is chemically more complex.”

In a proof-of-concept demonstration, co-lead author Dr. Shi Hyeong Kim, a postdoctoral researcher at the NanoTech Institute, waded into the frigid surf off the east coast of South Korea to deploy a coiled twistron in the sea. He attached a 10 centimeter-long yarn, weighing only 1 milligram (about the weight of a mosquito), between a balloon and a sinker that rested on the seabed.

Every time an ocean wave arrived, the balloon would rise, stretching the yarn up to 25 percent, thereby generating measured electricity.

Even though the investigators used very small amounts of twistron yarn in the current study, they have shown that harvester performance is scalable, both by increasing twistron diameter and by operating many yarns in parallel.

“If our twistron harvesters could be made less expensively, they might ultimately be able to harvest the enormous amount of energy available from ocean waves,” Baughman said. “However, at present these harvesters are most suitable for powering sensors and sensor communications. Based on demonstrated average power output, just 31 milligrams of carbon nanotube yarn harvester could provide the electrical energy needed to transmit a 2-kilobyte packet of data over a 100-meter radius every 10 seconds for the Internet of Things.”

Researchers from the UT Dallas Erik Jonsson School of Engineering and Computer Science and Lintec of America’s Nano-Science & Technology Center also participated in the study.

The investigators have filed a patent on the technology.

In the U.S., the research was funded by the Air Force, the Air Force Office of Scientific Research, NASA, the Office of Naval Research and the Robert A. Welch Foundation. In Korea, the research was supported by the Korea-U.S. Air Force Cooperation Program and the Creative Research Initiative Center for Self-powered Actuation of the National Research Foundation and the Ministry of Science.

Here’s a link to and a citation for the paper,

Harvesting electrical energy from carbon nanotube yarn twist by Shi Hyeong Kim, Carter S. Haines, Na Li, Keon Jung Kim, Tae Jin Mun, Changsoon Choi, Jiangtao Di, Young Jun Oh, Juan Pablo Oviedo, Julia Bykova, Shaoli Fang, Nan Jiang, Zunfeng Liu, Run Wang, Prashant Kumar, Rui Qiao, Shashank Priya, Kyeongjae Cho, Moon Kim, Matthew Steven Lucas, Lawrence F. Drummy, Benji Maruyama, Dong Youn Lee, Xavier Lepró, Enlai Gao, Dawood Albarq, Raquel Ovalle-Robles, Seon Jeong Kim, Ray H. Baughman. Science 25 Aug 2017: Vol. 357, Issue 6353, pp. 773-778 DOI: 10.1126/science.aam8771

This paper is behind a paywall.

Dexter Johnson in an Aug. 25, 2017 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) delves further into the research,

“Basically what’s happening is when we stretch the yarn, we’re getting a change in capacitance of the yarn. It’s that change that allows us to get energy out,” explains Carter Haines, associate research professor at UT Dallas and co-lead author of the paper describing the research, in an interview with IEEE Spectrum.

This makes it similar in many ways to other types of energy harvesters. For instance, in other research, it has been demonstrated—with sheets of rubber with coated electrodes on both sides—that you can increase the capacitance of a material when you stretch it and it becomes thinner. As a result, if you have charge on that capacitor, you can change the voltage associated with that charge.

“We’re more or less exploiting the same effect but what we’re doing differently is we’re using an electric chemical cell to do this,” says Haines. “So we’re not changing double layer capacitance in normal parallel plate capacitors. But we’re actually changing the electric chemical capacitance on the surface of a super capacitor yarn.”

While there are other capacitance-based energy harvesters, those other devices require extremely high voltages to work because they’re using parallel plate capacitors, according to Haines.

Dexter asks good questions and his post is very informative.

Sounding out the TRAPPIST-1 planetary system

It’s been a while since a data sonification story has come this way. Like my first posting on the topic (Feb. 7, 2014) this is another astrophysics ‘piece of music’. From the University of Toronto (Canada) and Thought Café (a Canadian animation studio),

For those who’d like a little text, here’s more from a May 10, 2017 University of Toronto news release (also on EurekAlert) by Don Campbell,

When NASA announced its discovery of the TRAPPIST-1 system back in February [2017] it caused quite a stir, and with good reason. Three of its seven Earth-sized planets lay in the star’s habitable zone, meaning they may harbour suitable conditions for life.

But one of the major puzzles from the original research describing the system was that it seemed to be unstable.

“If you simulate the system, the planets start crashing into one another in less than a million years,” says Dan Tamayo, a postdoc at U of T Scarborough’s Centre for Planetary Science.

“This may seem like a long time, but it’s really just an astronomical blink of an eye. It would be very lucky for us to discover TRAPPIST-1 right before it fell apart, so there must be a reason why it remains stable.”

Tamayo and his colleagues seem to have found a reason why. In research published in the journal Astrophysical Journal Letters, they describe the planets in the TRAPPIST-1 system as being in something called a “resonant chain” that can strongly stabilize the system.

In resonant configurations, planets’ orbital periods form ratios of whole numbers. It’s a very technical principle, but a good example is how Neptune orbits the Sun three times in the amount of time it takes Pluto to orbit twice. This is a good thing for Pluto because otherwise it wouldn’t exist. Since the two planets’ orbits intersect, if things were random they would collide, but because of resonance, the locations of the planets relative to one another keeps repeating.

“There’s a rhythmic repeating pattern that ensures the system remains stable over a long period of time,” says Matt Russo, a post-doc at the Canadian Institute for Theoretical Astrophysics (CITA) who has been working on creative ways to visualize the system.

TRAPPIST-1 takes this principle to a whole other level with all seven planets being in a chain of resonances. To illustrate this remarkable configuration, Tamayo, Russo and colleague Andrew Santaguida created an animation in which the planets play a piano note every time they pass in front of their host star, and a drum beat every time a planet overtakes its nearest neighbour.

Because the planets’ periods are simple ratios of each other, their motion creates a steady repeating pattern that is similar to how we play music. Simple frequency ratios are also what makes two notes sound pleasing when played together.

Speeding up the planets’ orbital frequencies into the human hearing range produces an astrophysical symphony of sorts, but one that’s playing out more than 40 light years away.

“Most planetary systems are like bands of amateur musicians playing their parts at different speeds,” says Russo. “TRAPPIST-1 is different; it’s a super-group with all seven members synchronizing their parts in nearly perfect time.”

But even synchronized orbits don’t necessarily survive very long, notes Tamayo. For technical reasons, chaos theory also requires precise orbital alignments to ensure systems remain stable. This can explain why the simulations done in the original discovery paper quickly resulted in the planets colliding with one another.

“It’s not that the system is doomed, it’s that stable configurations are very exact,” he says. “We can’t measure all the orbital parameters well enough at the moment, so the simulated systems kept resulting in collisions because the setups weren’t precise.”

In order to overcome this Tamayo and his team looked at the system not as it is today, but how it may have originally formed. When the system was being born out of a disk of gas, the planets should have migrated relative to one another, allowing the system to naturally settle into a stable resonant configuration.

“This means that early on, each planet’s orbit was tuned to make it harmonious with its neighbours, in the same way that instruments are tuned by a band before it begins to play,” says Russo. “That’s why the animation produces such beautiful music.”

The team tested the simulations using the supercomputing cluster at the Canadian Institute for Theoretical Astrophysics (CITA) and found that the majority they generated remained stable for as long as they could possibly run it. This was about 100 times longer than it took for the simulations in the original research paper describing TRAPPIST-1 to go berserk.

“It seems somehow poetic that this special configuration that can generate such remarkable music can also be responsible for the system surviving to the present day,” says Tamayo.

Here’s a link to and a citation for the paper,

Convergent Migration Renders TRAPPIST-1 Long-lived by Daniel Tamayo, Hanno Rein, Cristobal Petrovich, and Norman Murray. The Astrophysical Journal Letters, Volume 840, Number 2 https://doi.org/10.5281/zenodo.496153 Published 2017 May 10

© 2017. The American Astronomical Society. All rights reserved.

This paper is open access.

The Canadian science scene and the 2017 Canadian federal budget

There’s not much happening in the 2017-18 budget in terms of new spending according to Paul Wells’ March 22, 2017 article for TheStar.com,

This is the 22nd or 23rd federal budget I’ve covered. And I’ve never seen the like of the one Bill Morneau introduced on Wednesday [March 22, 2017].

Not even in the last days of the Harper Conservatives did a budget provide for so little new spending — $1.3 billion in the current budget year, total, in all fields of government. That’s a little less than half of one per cent of all federal program spending for this year.

But times are tight. The future is a place where we can dream. So the dollars flow more freely in later years. In 2021-22, the budget’s fifth planning year, new spending peaks at $8.2 billion. Which will be about 2.4 per cent of all program spending.

He’s not alone in this 2017 federal budget analysis; CBC (Canadian Broadcasting Corporation) pundits, Chantal Hébert, Andrew Coyne, and Jennifer Ditchburn said much the same during their ‘At Issue’ segment of the March 22, 2017 broadcast of The National (news).

Before I focus on the science and technology budget, here are some general highlights from the CBC’s March 22, 2017 article on the 2017-18 budget announcement (Note: Links have been removed,

Here are highlights from the 2017 federal budget:

  • Deficit: $28.5 billion, up from $25.4 billion projected in the fall.
  • Trend: Deficits gradually decline over next five years — but still at $18.8 billion in 2021-22.
  • Housing: $11.2 billion over 11 years, already budgeted, will go to a national housing strategy.
  • Child care: $7 billion over 10 years, already budgeted, for new spaces, starting 2018-19.
  • Indigenous: $3.4 billion in new money over five years for infrastructure, health and education.
  • Defence: $8.4 billion in capital spending for equipment pushed forward to 2035.
  • Care givers: New care-giving benefit up to 15 weeks, starting next year.
  • Skills: New agency to research and measure skills development, starting 2018-19.
  • Innovation: $950 million over five years to support business-led “superclusters.”
  • Startups: $400 million over three years for a new venture capital catalyst initiative.
  • AI: $125 million to launch a pan-Canadian Artificial Intelligence Strategy.
  • Coding kids: $50 million over two years for initiatives to teach children to code.
  • Families: Option to extend parental leave up to 18 months.
  • Uber tax: GST to be collected on ride-sharing services.
  • Sin taxes: One cent more on a bottle of wine, five cents on 24 case of beer.
  • Bye-bye: No more Canada Savings Bonds.
  • Transit credit killed: 15 per cent non-refundable public transit tax credit phased out this year.

You can find the entire 2017-18 budget here.

Science and the 2017-18 budget

For anyone interested in the science news, you’ll find most of that in the 2017 budget’s Chapter 1 — Skills, Innovation and Middle Class jobs. As well, Wayne Kondro has written up a précis in his March 22, 2017 article for Science (magazine),

Finance officials, who speak on condition of anonymity during the budget lock-up, indicated the budgets of the granting councils, the main source of operational grants for university researchers, will be “static” until the government can assess recommendations that emerge from an expert panel formed in 2015 and headed by former University of Toronto President David Naylor to review basic science in Canada [highlighted in my June 15, 2016 posting ; $2M has been allocated for the advisor and associated secretariat]. Until then, the officials said, funding for the Natural Sciences and Engineering Research Council of Canada (NSERC) will remain at roughly $848 million, whereas that for the Canadian Institutes of Health Research (CIHR) will remain at $773 million, and for the Social Sciences and Humanities Research Council [SSHRC] at $547 million.

NSERC, though, will receive $8.1 million over 5 years to administer a PromoScience Program that introduces youth, particularly unrepresented groups like Aboriginal people and women, to science, technology, engineering, and mathematics through measures like “space camps and conservation projects.” CIHR, meanwhile, could receive modest amounts from separate plans to identify climate change health risks and to reduce drug and substance abuse, the officials added.

… Canada’s Innovation and Skills Plan, would funnel $600 million over 5 years allocated in 2016, and $112.5 million slated for public transit and green infrastructure, to create Silicon Valley–like “super clusters,” which the budget defined as “dense areas of business activity that contain large and small companies, post-secondary institutions and specialized talent and infrastructure.” …

… The Canadian Institute for Advanced Research will receive $93.7 million [emphasis mine] to “launch a Pan-Canadian Artificial Intelligence Strategy … (to) position Canada as a world-leading destination for companies seeking to invest in artificial intelligence and innovation.”

… Among more specific measures are vows to: Use $87.7 million in previous allocations to the Canada Research Chairs program to create 25 “Canada 150 Research Chairs” honoring the nation’s 150th year of existence, provide $1.5 million per year to support the operations of the office of the as-yet-unappointed national science adviser [see my Dec. 7, 2016 post for information about the job posting, which is now closed]; provide $165.7 million [emphasis mine] over 5 years for the nonprofit organization Mitacs to create roughly 6300 more co-op positions for university students and grads, and provide $60.7 million over five years for new Canadian Space Agency projects, particularly for Canadian participation in the National Aeronautics and Space Administration’s next Mars Orbiter Mission.

Kondros was either reading an earlier version of the budget or made an error regarding Mitacs (from the budget in the “A New, Ambitious Approach to Work-Integrated Learning” subsection),

Mitacs has set an ambitious goal of providing 10,000 work-integrated learning placements for Canadian post-secondary students and graduates each year—up from the current level of around 3,750 placements. Budget 2017 proposes to provide $221 million [emphasis mine] over five years, starting in 2017–18, to achieve this goal and provide relevant work experience to Canadian students.

As well, the budget item for the Pan-Canadian Artificial Intelligence Strategy is $125M.

Moving from Kondros’ précis, the budget (in the “Positioning National Research Council Canada Within the Innovation and Skills Plan” subsection) announces support for these specific areas of science,

Stem Cell Research

The Stem Cell Network, established in 2001, is a national not-for-profit organization that helps translate stem cell research into clinical applications, commercial products and public policy. Its research holds great promise, offering the potential for new therapies and medical treatments for respiratory and heart diseases, cancer, diabetes, spinal cord injury, multiple sclerosis, Crohn’s disease, auto-immune disorders and Parkinson’s disease. To support this important work, Budget 2017 proposes to provide the Stem Cell Network with renewed funding of $6 million in 2018–19.

Space Exploration

Canada has a long and proud history as a space-faring nation. As our international partners prepare to chart new missions, Budget 2017 proposes investments that will underscore Canada’s commitment to innovation and leadership in space. Budget 2017 proposes to provide $80.9 million on a cash basis over five years, starting in 2017–18, for new projects through the Canadian Space Agency that will demonstrate and utilize Canadian innovations in space, including in the field of quantum technology as well as for Mars surface observation. The latter project will enable Canada to join the National Aeronautics and Space Administration’s (NASA’s) next Mars Orbiter Mission.

Quantum Information

The development of new quantum technologies has the potential to transform markets, create new industries and produce leading-edge jobs. The Institute for Quantum Computing is a world-leading Canadian research facility that furthers our understanding of these innovative technologies. Budget 2017 proposes to provide the Institute with renewed funding of $10 million over two years, starting in 2017–18.

Social Innovation

Through community-college partnerships, the Community and College Social Innovation Fund fosters positive social outcomes, such as the integration of vulnerable populations into Canadian communities. Following the success of this pilot program, Budget 2017 proposes to invest $10 million over two years, starting in 2017–18, to continue this work.

International Research Collaborations

The Canadian Institute for Advanced Research (CIFAR) connects Canadian researchers with collaborative research networks led by eminent Canadian and international researchers on topics that touch all humanity. Past collaborations facilitated by CIFAR are credited with fostering Canada’s leadership in artificial intelligence and deep learning. Budget 2017 proposes to provide renewed and enhanced funding of $35 million over five years, starting in 2017–18.

Earlier this week, I highlighted Canada’s strength in the field of regenerative medicine, specifically stem cells in a March 21, 2017 posting. The $6M in the current budget doesn’t look like increased funding but rather a one-year extension. I’m sure they’re happy to receive it  but I imagine it’s a little hard to plan major research projects when you’re not sure how long your funding will last.

As for Canadian leadership in artificial intelligence, that was news to me. Here’s more from the budget,

Canada a Pioneer in Deep Learning in Machines and Brains

CIFAR’s Learning in Machines & Brains program has shaken up the field of artificial intelligence by pioneering a technique called “deep learning,” a computer technique inspired by the human brain and neural networks, which is now routinely used by the likes of Google and Facebook. The program brings together computer scientists, biologists, neuroscientists, psychologists and others, and the result is rich collaborations that have propelled artificial intelligence research forward. The program is co-directed by one of Canada’s foremost experts in artificial intelligence, the Université de Montréal’s Yoshua Bengio, and for his many contributions to the program, the University of Toronto’s Geoffrey Hinton, another Canadian leader in this field, was awarded the title of Distinguished Fellow by CIFAR in 2014.

Meanwhile, from chapter 1 of the budget in the subsection titled “Preparing for the Digital Economy,” there is this provision for children,

Providing educational opportunities for digital skills development to Canadian girls and boys—from kindergarten to grade 12—will give them the head start they need to find and keep good, well-paying, in-demand jobs. To help provide coding and digital skills education to more young Canadians, the Government intends to launch a competitive process through which digital skills training organizations can apply for funding. Budget 2017 proposes to provide $50 million over two years, starting in 2017–18, to support these teaching initiatives.

I wonder if BC Premier Christy Clark is heaving a sigh of relief. At the 2016 #BCTECH Summit, she announced that students in BC would learn to code at school and in newly enhanced coding camp programmes (see my Jan. 19, 2016 posting). Interestingly, there was no mention of additional funding to support her initiative. I guess this money from the federal government comes at a good time as we will have a provincial election later this spring where she can announce the initiative again and, this time, mention there’s money for it.

Attracting brains from afar

Ivan Semeniuk in his March 23, 2017 article (for the Globe and Mail) reads between the lines to analyze the budget’s possible impact on Canadian science,

But a between-the-lines reading of the budget document suggests the government also has another audience in mind: uneasy scientists from the United States and Britain.

The federal government showed its hand at the 2017 #BCTECH Summit. From a March 16, 2017 article by Meera Bains for the CBC news online,

At the B.C. tech summit, Navdeep Bains, Canada’s minister of innovation, said the government will act quickly to fast track work permits to attract highly skilled talent from other countries.

“We’re taking the processing time, which takes months, and reducing it to two weeks for immigration processing for individuals [who] need to come here to help companies grow and scale up,” Bains said.

“So this is a big deal. It’s a game changer.”

That change will happen through the Global Talent Stream, a new program under the federal government’s temporary foreign worker program.  It’s scheduled to begin on June 12, 2017.

U.S. companies are taking notice and a Canadian firm, True North, is offering to help them set up shop.

“What we suggest is that they think about moving their operations, or at least a chunk of their operations, to Vancouver, set up a Canadian subsidiary,” said the company’s founder, Michael Tippett.

“And that subsidiary would be able to house and accommodate those employees.”

Industry experts says while the future is unclear for the tech sector in the U.S., it’s clear high tech in B.C. is gearing up to take advantage.

US business attempts to take advantage of Canada’s relative stability and openness to immigration would seem to be the motive for at least one cross border initiative, the Cascadia Urban Analytics Cooperative. From my Feb. 28, 2017 posting,

There was some big news about the smallest version of the Cascadia region on Thursday, Feb. 23, 2017 when the University of British Columbia (UBC) , the University of Washington (state; UW), and Microsoft announced the launch of the Cascadia Urban Analytics Cooperative. From the joint Feb. 23, 2017 news release (read on the UBC website or read on the UW website),

In an expansion of regional cooperation, the University of British Columbia and the University of Washington today announced the establishment of the Cascadia Urban Analytics Cooperative to use data to help cities and communities address challenges from traffic to homelessness. The largest industry-funded research partnership between UBC and the UW, the collaborative will bring faculty, students and community stakeholders together to solve problems, and is made possible thanks to a $1-million gift from Microsoft.

Today’s announcement follows last September’s [2016] Emerging Cascadia Innovation Corridor Conference in Vancouver, B.C. The forum brought together regional leaders for the first time to identify concrete opportunities for partnerships in education, transportation, university research, human capital and other areas.

A Boston Consulting Group study unveiled at the conference showed the region between Seattle and Vancouver has “high potential to cultivate an innovation corridor” that competes on an international scale, but only if regional leaders work together. The study says that could be possible through sustained collaboration aided by an educated and skilled workforce, a vibrant network of research universities and a dynamic policy environment.

It gets better, it seems Microsoft has been positioning itself for a while if Matt Day’s analysis is correct (from my Feb. 28, 2017 posting),

Matt Day in a Feb. 23, 2017 article for the The Seattle Times provides additional perspective (Note: Links have been removed),

Microsoft’s effort to nudge Seattle and Vancouver, B.C., a bit closer together got an endorsement Thursday [Feb. 23, 2017] from the leading university in each city.

The partnership has its roots in a September [2016] conference in Vancouver organized by Microsoft’s public affairs and lobbying unit [emphasis mine.] That gathering was aimed at tying business, government and educational institutions in Microsoft’s home region in the Seattle area closer to its Canadian neighbor.

Microsoft last year [2016] opened an expanded office in downtown Vancouver with space for 750 employees, an outpost partly designed to draw to the Northwest more engineers than the company can get through the U.S. guest worker system [emphasis mine].

This was all prior to President Trump’s legislative moves in the US, which have at least one Canadian observer a little more gleeful than I’m comfortable with. From a March 21, 2017 article by Susan Lum  for CBC News online,

U.S. President Donald Trump’s efforts to limit travel into his country while simultaneously cutting money from science-based programs provides an opportunity for Canada’s science sector, says a leading Canadian researcher.

“This is Canada’s moment. I think it’s a time we should be bold,” said Alan Bernstein, president of CIFAR [which on March 22, 2017 was awarded $125M to launch the Pan Canada Artificial Intelligence Strategy in the Canadian federal budget announcement], a global research network that funds hundreds of scientists in 16 countries.

Bernstein believes there are many reasons why Canada has become increasingly attractive to scientists around the world, including the political climate in the United States and the Trump administration’s travel bans.

Thankfully, Bernstein calms down a bit,

“It used to be if you were a bright young person anywhere in the world, you would want to go to Harvard or Berkeley or Stanford, or what have you. Now I think you should give pause to that,” he said. “We have pretty good universities here [emphasis mine]. We speak English. We’re a welcoming society for immigrants.”​

Bernstein cautions that Canada should not be seen to be poaching scientists from the United States — but there is an opportunity.

“It’s as if we’ve been in a choir of an opera in the back of the stage and all of a sudden the stars all left the stage. And the audience is expecting us to sing an aria. So we should sing,” Bernstein said.

Bernstein said the federal government, with this week’s so-called innovation budget, can help Canada hit the right notes.

“Innovation is built on fundamental science, so I’m looking to see if the government is willing to support, in a big way, fundamental science in the country.”

Pretty good universities, eh? Thank you, Dr. Bernstein, for keeping some of the boosterism in check. Let’s leave the chest thumping to President Trump and his cronies.

Ivan Semeniuk’s March 23, 2017 article (for the Globe and Mail) provides more details about the situation in the US and in Britain,

Last week, Donald Trump’s first budget request made clear the U.S. President would significantly reduce or entirely eliminate research funding in areas such as climate science and renewable energy if permitted by Congress. Even the National Institutes of Health, which spearheads medical research in the United States and is historically supported across party lines, was unexpectedly targeted for a $6-billion (U.S.) cut that the White House said could be achieved through “efficiencies.”

In Britain, a recent survey found that 42 per cent of academics were considering leaving the country over worries about a less welcoming environment and the loss of research money that a split with the European Union is expected to bring.

In contrast, Canada’s upbeat language about science in the budget makes a not-so-subtle pitch for diversity and talent from abroad, including $117.6-million to establish 25 research chairs with the aim of attracting “top-tier international scholars.”

For good measure, the budget also includes funding for science promotion and $2-million annually for Canada’s yet-to-be-hired Chief Science Advisor, whose duties will include ensuring that government researchers can speak freely about their work.

“What we’ve been hearing over the last few months is that Canada is seen as a beacon, for its openness and for its commitment to science,” said Ms. Duncan [Kirsty Duncan, Minister of Science], who did not refer directly to either the United States or Britain in her comments.

Providing a less optimistic note, Erica Alini in her March 22, 2017 online article for Global News mentions a perennial problem, the Canadian brain drain,

The budget includes a slew of proposed reforms and boosted funding for existing training programs, as well as new skills-development resources for unemployed and underemployed Canadians not covered under current EI-funded programs.

There are initiatives to help women and indigenous people get degrees or training in science, technology, engineering and mathematics (the so-called STEM subjects) and even to teach kids as young as kindergarten-age to code.

But there was no mention of how to make sure Canadians with the right skills remain in Canada, TD’s DePratto {Toronto Dominion Bank} Economics; TD is currently experiencing a scandal {March 13, 2017 Huffington Post news item}] told Global News.

Canada ranks in the middle of the pack compared to other advanced economies when it comes to its share of its graduates in STEM fields, but the U.S. doesn’t shine either, said DePratto [Brian DePratto, senior economist at TD .

The key difference between Canada and the U.S. is the ability to retain domestic talent and attract brains from all over the world, he noted.

To be blunt, there may be some opportunities for Canadian science but it does well to remember (a) US businesses have no particular loyalty to Canada and (b) all it takes is an election to change any perceived advantages to disadvantages.

Digital policy and intellectual property issues

Dubbed by some as the ‘innovation’ budget (official title:  Building a Strong Middle Class), there is an attempt to address a longstanding innovation issue (from a March 22, 2017 posting by Michael Geist on his eponymous blog (Note: Links have been removed),

The release of today’s [march 22, 2017] federal budget is expected to include a significant emphasis on innovation, with the government revealing how it plans to spend (or re-allocate) hundreds of millions of dollars that is intended to support innovation. Canada’s dismal innovation record needs attention, but spending our way to a more innovative economy is unlikely to yield the desired results. While Navdeep Bains, the Innovation, Science and Economic Development Minister, has talked for months about the importance of innovation, Toronto Star columnist Paul Wells today delivers a cutting but accurate assessment of those efforts:

“This government is the first with a minister for innovation! He’s Navdeep Bains. He frequently posts photos of his meetings on Twitter, with the hashtag “#innovation.” That’s how you know there is innovation going on. A year and a half after he became the minister for #innovation, it’s not clear what Bains’s plans are. It’s pretty clear that within the government he has less than complete control over #innovation. There’s an advisory council on economic growth, chaired by the McKinsey guru Dominic Barton, which periodically reports to the government urging more #innovation.

There’s a science advisory panel, chaired by former University of Toronto president David Naylor, that delivered a report to Science Minister Kirsty Duncan more than three months ago. That report has vanished. One presumes that’s because it offered some advice. Whatever Bains proposes, it will have company.”

Wells is right. Bains has been very visible with plenty of meetings and public photo shoots but no obvious innovation policy direction. This represents a missed opportunity since Bains has plenty of policy tools at his disposal that could advance Canada’s innovation framework without focusing on government spending.

For example, Canada’s communications system – wireless and broadband Internet access – falls directly within his portfolio and is crucial for both business and consumers. Yet Bains has been largely missing in action on the file. He gave approval for the Bell – MTS merger that virtually everyone concedes will increase prices in the province and make the communications market less competitive. There are potential policy measures that could bring new competitors into the market (MVNOs [mobile virtual network operators] and municipal broadband) and that could make it easier for consumers to switch providers (ban on unlocking devices). Some of this falls to the CRTC, but government direction and emphasis would make a difference.

Even more troubling has been his near total invisibility on issues relating to new fees or taxes on Internet access and digital services. Canadian Heritage Minister Mélanie Joly has taken control of the issue with the possibility that Canadians could face increased costs for their Internet access or digital services through mandatory fees to contribute to Canadian content.  Leaving aside the policy objections to such an approach (reducing affordable access and the fact that foreign sources now contribute more toward Canadian English language TV production than Canadian broadcasters and distributors), Internet access and e-commerce are supposed to be Bains’ issue and they have a direct connection to the innovation file. How is it possible for the Innovation, Science and Economic Development Minister to have remained silent for months on the issue?

Bains has been largely missing on trade related innovation issues as well. My Globe and Mail column today focuses on a digital-era NAFTA, pointing to likely U.S. demands on data localization, data transfers, e-commerce rules, and net neutrality.  These are all issues that fall under Bains’ portfolio and will impact investment in Canadian networks and digital services. There are innovation opportunities for Canada here, but Bains has been content to leave the policy issues to others, who will be willing to sacrifice potential gains in those areas.

Intellectual property policy is yet another area that falls directly under Bains’ mandate with an obvious link to innovation, but he has done little on the file. Canada won a huge NAFTA victory late last week involving the Canadian patent system, which was challenged by pharmaceutical giant Eli Lilly. Why has Bains not promoted the decision as an affirmation of how Canada’s intellectual property rules?

On the copyright front, the government is scheduled to conduct a review of the Copyright Act later this year, but it is not clear whether Bains will take the lead or again cede responsibility to Joly. The Copyright Act is statutorily under the Industry Minister and reform offers the chance to kickstart innovation. …

For anyone who’s not familiar with this area, innovation is often code for commercialization of science and technology research efforts. These days, digital service and access policies and intellectual property policies are all key to research and innovation efforts.

The country that’s most often (except in mainstream Canadian news media) held up as an example of leadership in innovation is Estonia. The Economist profiled the country in a July 31, 2013 article and a July 7, 2016 article on apolitical.co provides and update.

Conclusions

Science monies for the tri-council science funding agencies (NSERC, SSHRC, and CIHR) are more or less flat but there were a number of line items in the federal budget which qualify as science funding. The $221M over five years for Mitacs, the $125M for the Pan-Canadian Artificial Intelligence Strategy, additional funding for the Canada research chairs, and some of the digital funding could also be included as part of the overall haul. This is in line with the former government’s (Stephen Harper’s Conservatives) penchant for keeping the tri-council’s budgets under control while spreading largesse elsewhere (notably the Perimeter Institute, TRIUMF [Canada’s National Laboratory for Particle and Nuclear Physics], and, in the 2015 budget, $243.5-million towards the Thirty Metre Telescope (TMT) — a massive astronomical observatory to be constructed on the summit of Mauna Kea, Hawaii, a $1.5-billion project). This has lead to some hard feelings in the past with regard to ‘big science’ projects getting what some have felt is an undeserved boost in finances while the ‘small fish’ are left scrabbling for the ever-diminishing (due to budget cuts in years past and inflation) pittances available from the tri-council agencies.

Mitacs, which started life as a federally funded Network Centre for Excellence focused on mathematics, has since shifted focus to become an innovation ‘champion’. You can find Mitacs here and you can find the organization’s March 2016 budget submission to the House of Commons Standing Committee on Finance here. At the time, they did not request a specific amount of money; they just asked for more.

The amount Mitacs expects to receive this year is over $40M which represents more than double what they received from the federal government and almost of 1/2 of their total income in the 2015-16 fiscal year according to their 2015-16 annual report (see p. 327 for the Mitacs Statement of Operations to March 31, 2016). In fact, the federal government forked over $39,900,189. in the 2015-16 fiscal year to be their largest supporter while Mitacs’ total income (receipts) was $81,993,390.

It’s a strange thing but too much money, etc. can be as bad as too little. I wish the folks Mitacs nothing but good luck with their windfall.

I don’t see anything in the budget that encourages innovation and investment from the industrial sector in Canada.

Finallyl, innovation is a cultural issue as much as it is a financial issue and having worked with a number of developers and start-up companies, the most popular business model is to develop a successful business that will be acquired by a large enterprise thereby allowing the entrepreneurs to retire before the age of 30 (or 40 at the latest). I don’t see anything from the government acknowledging the problem let alone any attempts to tackle it.

All in all, it was a decent budget with nothing in it to seriously offend anyone.

From flubber to thubber

Flubber (flying rubber) is an imaginary material that provided a plot point for two Disney science fiction comedies, The Absent-Minded Professor in 1961 which was remade in 1997 as Flubber. By contrast, ‘thubber’ (thermally conductive rubber) is a real life new material developed at Carnegie Mellon University (US).

A Feb. 13, 2017 news item on phys.org makes the announcement (Note: A link has been removed),

Carmel Majidi and Jonathan Malen of Carnegie Mellon University have developed a thermally conductive rubber material that represents a breakthrough for creating soft, stretchable machines and electronics. The findings were published in Proceedings of the National Academy of Sciences this week.

The new material, nicknamed “thubber,” is an electrically insulating composite that exhibits an unprecedented combination of metal-like thermal conductivity, elasticity similar to soft, biological tissue, and can stretch over six times its initial length.

A Feb.13, 2017 Carnegie Mellon University news release (also on EurekAlert), which originated the news item, provides more detail (Note A link has been removed),

“Our combination of high thermal conductivity and elasticity is especially critical for rapid heat dissipation in applications such as wearable computing and soft robotics, which require mechanical compliance and stretchable functionality,” said Majidi, an associate professor of mechanical engineering.

Applications could extend to industries like athletic wear and sports medicine—think of lighted clothing for runners and heated garments for injury therapy. Advanced manufacturing, energy, and transportation are other areas where stretchable electronic material could have an impact.

“Until now, high power devices have had to be affixed to rigid, inflexible mounts that were the only technology able to dissipate heat efficiently,” said Malen, an associate professor of mechanical engineering. “Now, we can create stretchable mounts for LED lights or computer processors that enable high performance without overheating in applications that demand flexibility, such as light-up fabrics and iPads that fold into your wallet.”

The key ingredient in “thubber” is a suspension of non-toxic, liquid metal microdroplets. The liquid state allows the metal to deform with the surrounding rubber at room temperature. When the rubber is pre-stretched, the droplets form elongated pathways that are efficient for heat travel. Despite the amount of metal, the material is also electrically insulating.

To demonstrate these findings, the team mounted an LED light onto a strip of the material to create a safety lamp worn around a jogger’s leg. The “thubber” dissipated the heat from the LED, which would have otherwise burned the jogger. The researchers also created a soft robotic fish that swims with a “thubber” tail, without using conventional motors or gears.

“As the field of flexible electronics grows, there will be a greater need for materials like ours,” said Majidi. “We can also see it used for artificial muscles that power bio-inspired robots.”

Majidi and Malen acknowledge the efforts of lead authors Michael Bartlett, Navid Kazem, and Matthew Powell-Palm in performing this multidisciplinary work. They also acknowledge funding from the Air Force, NASA, and the Army Research Office.

Here’s a link to and a citation for the paper,

High thermal conductivity in soft elastomers with elongated liquid metal inclusions by Michael D. Bartlett, Navid Kazem, Matthew J. Powell-Palm, Xiaonan Huang, Wenhuan Sun, Jonathan A. Malen, and Carmel Majidi.  Proceedings of the National Academy of Sciences of the United States of America (PNAS, Proceedings of the National Academy of Sciences) doi: 10.1073/pnas.1616377114

This paper is open access.

Aliens wreak havoc on our personal electronics

The aliens in question are subatomic particles and the havoc they wreak is low-grade according to the scientist who was presenting on the topic at the AAAS (American Association for the Advancement of Science) 2017 Annual Meeting (Feb. 16 – 20, 2017) in Boston, Massachusetts. From a Feb. 17, 2017 news item on ScienceDaily,

You may not realize it but alien subatomic particles raining down from outer space are wreaking low-grade havoc on your smartphones, computers and other personal electronic devices.

When your computer crashes and you get the dreaded blue screen or your smartphone freezes and you have to go through the time-consuming process of a reset, most likely you blame the manufacturer: Microsoft or Apple or Samsung. In many instances, however, these operational failures may be caused by the impact of electrically charged particles generated by cosmic rays that originate outside the solar system.

“This is a really big problem, but it is mostly invisible to the public,” said Bharat Bhuva, professor of electrical engineering at Vanderbilt University, in a presentation on Friday, Feb. 17 at a session titled “Cloudy with a Chance of Solar Flares: Quantifying the Risk of Space Weather” at the annual meeting of the American Association for the Advancement of Science in Boston.

A Feb. 17, 2017 Vanderbilt University news release (also on EurekAlert), which originated the news item, expands on  the theme,

When cosmic rays traveling at fractions of the speed of light strike the Earth’s atmosphere they create cascades of secondary particles including energetic neutrons, muons, pions and alpha particles. Millions of these particles strike your body each second. Despite their numbers, this subatomic torrent is imperceptible and has no known harmful effects on living organisms. However, a fraction of these particles carry enough energy to interfere with the operation of microelectronic circuitry. When they interact with integrated circuits, they may alter individual bits of data stored in memory. This is called a single-event upset or SEU.

Since it is difficult to know when and where these particles will strike and they do not do any physical damage, the malfunctions they cause are very difficult to characterize. As a result, determining the prevalence of SEUs is not easy or straightforward. “When you have a single bit flip, it could have any number of causes. It could be a software bug or a hardware flaw, for example. The only way you can determine that it is a single-event upset is by eliminating all the other possible causes,” Bhuva explained.

There have been a number of incidents that illustrate how serious the problem can be, Bhuva reported. For example, in 2003 in the town of Schaerbeek, Belgium a bit flip in an electronic voting machine added 4,096 extra votes to one candidate. The error was only detected because it gave the candidate more votes than were possible and it was traced to a single bit flip in the machine’s register. In 2008, the avionics system of a Qantus passenger jet flying from Singapore to Perth appeared to suffer from a single-event upset that caused the autopilot to disengage. As a result, the aircraft dove 690 feet in only 23 seconds, injuring about a third of the passengers seriously enough to cause the aircraft to divert to the nearest airstrip. In addition, there have been a number of unexplained glitches in airline computers – some of which experts feel must have been caused by SEUs – that have resulted in cancellation of hundreds of flights resulting in significant economic losses.

An analysis of SEU failure rates for consumer electronic devices performed by Ritesh Mastipuram and Edwin Wee at Cypress Semiconductor on a previous generation of technology shows how prevalent the problem may be. Their results were published in 2004 in Electronic Design News and provided the following estimates:

  • A simple cell phone with 500 kilobytes of memory should only have one potential error every 28 years.
  • A router farm like those used by Internet providers with only 25 gigabytes of memory may experience one potential networking error that interrupts their operation every 17 hours.
  • A person flying in an airplane at 35,000 feet (where radiation levels are considerably higher than they are at sea level) who is working on a laptop with 500 kilobytes of memory may experience one potential error every five hours.

Bhuva is a member of Vanderbilt’s Radiation Effects Research Group, which was established in 1987 and is the largest academic program in the United States that studies the effects of radiation on electronic systems. The group’s primary focus was on military and space applications. Since 2001, the group has also been analyzing radiation effects on consumer electronics in the terrestrial environment. They have studied this phenomenon in the last eight generations of computer chip technology, including the current generation that uses 3D transistors (known as FinFET) that are only 16 nanometers in size. The 16-nanometer study was funded by a group of top microelectronics companies, including Altera, ARM, AMD, Broadcom, Cisco Systems, Marvell, MediaTek, Renesas, Qualcomm, Synopsys, and TSMC

“The semiconductor manufacturers are very concerned about this problem because it is getting more serious as the size of the transistors in computer chips shrink and the power and capacity of our digital systems increase,” Bhuva said. “In addition, microelectronic circuits are everywhere and our society is becoming increasingly dependent on them.”

To determine the rate of SEUs in 16-nanometer chips, the Vanderbilt researchers took samples of the integrated circuits to the Irradiation of Chips and Electronics (ICE) House at Los Alamos National Laboratory. There they exposed them to a neutron beam and analyzed how many SEUs the chips experienced. Experts measure the failure rate of microelectronic circuits in a unit called a FIT, which stands for failure in time. One FIT is one failure per transistor in one billion hours of operation. That may seem infinitesimal but it adds up extremely quickly with billions of transistors in many of our devices and billions of electronic systems in use today (the number of smartphones alone is in the billions). Most electronic components have failure rates measured in 100’s and 1,000’s of FITs.

chart

Trends in single event upset failure rates at the individual transistor, integrated circuit and system or device level for the three most recent manufacturing technologies. (Bharat Bhuva, Radiation Effects Research Group, Vanderbilt University)

“Our study confirms that this is a serious and growing problem,” said Bhuva.“This did not come as a surprise. Through our research on radiation effects on electronic circuits developed for military and space applications, we have been anticipating such effects on electronic systems operating in the terrestrial environment.”

Although the details of the Vanderbilt studies are proprietary, Bhuva described the general trend that they have found in the last three generations of integrated circuit technology: 28-nanometer, 20-nanometer and 16-nanometer.

As transistor sizes have shrunk, they have required less and less electrical charge to represent a logical bit. So the likelihood that one bit will “flip” from 0 to 1 (or 1 to 0) when struck by an energetic particle has been increasing. This has been partially offset by the fact that as the transistors have gotten smaller they have become smaller targets so the rate at which they are struck has decreased.

More significantly, the current generation of 16-nanometer circuits have a 3D architecture that replaced the previous 2D architecture and has proven to be significantly less susceptible to SEUs. Although this improvement has been offset by the increase in the number of transistors in each chip, the failure rate at the chip level has also dropped slightly. However, the increase in the total number of transistors being used in new electronic systems has meant that the SEU failure rate at the device level has continued to rise.

Unfortunately, it is not practical to simply shield microelectronics from these energetic particles. For example, it would take more than 10 feet of concrete to keep a circuit from being zapped by energetic neutrons. However, there are ways to design computer chips to dramatically reduce their vulnerability.

For cases where reliability is absolutely critical, you can simply design the processors in triplicate and have them vote. Bhuva pointed out: “The probability that SEUs will occur in two of the circuits at the same time is vanishingly small. So if two circuits produce the same result it should be correct.” This is the approach that NASA used to maximize the reliability of spacecraft computer systems.

The good news, Bhuva said, is that the aviation, medical equipment, IT, transportation, communications, financial and power industries are all aware of the problem and are taking steps to address it. “It is only the consumer electronics sector that has been lagging behind in addressing this problem.”

The engineer’s bottom line: “This is a major problem for industry and engineers, but it isn’t something that members of the general public need to worry much about.”

That’s fascinating and I hope the consumer electronics industry catches up with this ‘alien invasion’ issue. Finally, the ‘bit flips’ made me think of the 1956 movie ‘Invasion of the Body Snatchers‘.

Communicating science effectively—a December 2016 book from the US National Academy of Sciences

I stumbled across this Dec. 13, 2016  essay/book announcement by Dr. Andrew Maynard and Dr. Dietram A. Scheufele on The Conversation,

Many scientists and science communicators have grappled with disregard for, or inappropriate use of, scientific evidence for years – especially around contentious issues like the causes of global warming, or the benefits of vaccinating children. A long debunked study on links between vaccinations and autism, for instance, cost the researcher his medical license but continues to keep vaccination rates lower than they should be.

Only recently, however, have people begun to think systematically about what actually works to promote better public discourse and decision-making around what is sometimes controversial science. Of course scientists would like to rely on evidence, generated by research, to gain insights into how to most effectively convey to others what they know and do.

As it turns out, the science on how to best communicate science across different issues, social settings and audiences has not led to easy-to-follow, concrete recommendations.

About a year ago, the National Academies of Sciences, Engineering and Medicine brought together a diverse group of experts and practitioners to address this gap between research and practice. The goal was to apply scientific thinking to the process of how we go about communicating science effectively. Both of us were a part of this group (with Dietram as the vice chair).

The public draft of the group’s findings – “Communicating Science Effectively: A Research Agenda” – has just been published. In it, we take a hard look at what effective science communication means and why it’s important; what makes it so challenging – especially where the science is uncertain or contested; and how researchers and science communicators can increase our knowledge of what works, and under what conditions.

At some level, all science communication has embedded values. Information always comes wrapped in a complex skein of purpose and intent – even when presented as impartial scientific facts. Despite, or maybe because of, this complexity, there remains a need to develop a stronger empirical foundation for effective communication of and about science.

Addressing this, the National Academies draft report makes an extensive number of recommendations. A few in particular stand out:

  • Use a systems approach to guide science communication. In other words, recognize that science communication is part of a larger network of information and influences that affect what people and organizations think and do.
  • Assess the effectiveness of science communication. Yes, researchers try, but often we still engage in communication first and evaluate later. Better to design the best approach to communication based on empirical insights about both audiences and contexts. Very often, the technical risk that scientists think must be communicated have nothing to do with the hopes or concerns public audiences have.
  • Get better at meaningful engagement between scientists and others to enable that “honest, bidirectional dialogue” about the promises and pitfalls of science that our committee chair Alan Leshner and others have called for.
  • Consider social media’s impact – positive and negative.
  • Work toward better understanding when and how to communicate science around issues that are contentious, or potentially so.

The paper version of the book has a cost but you can get a free online version.  Unfortunately,  I cannot copy and paste the book’s table of contents here and was not able to find a book index although there is a handy list of reference texts.

I have taken a very quick look at the book. If you’re in the field, it’s definitely worth a look. It is, however, written for and by academics. If you look at the list of writers and reviewers, you will find over 90% are professors at one university or another. That said, I was happy to see references to Dan Kahan’s work at the Yale Law School’s Culture Cognition Project cited. As happens they weren’t able to cite his latest work [***see my xxx, 2017 curiosity post***], released about a month after “Communicating Science Effectively: A Research Agenda.”

I was unable to find any reference to science communication via popular culture. I’m a little dismayed as I feel that this is a seriously ignored source of information by science communication specialists and academicians but not by the folks at MIT (Massachusetts Institute of Technology) who announced a wireless app in the same week as it was featured in an episode of the US television comedy, The Big Bang Theory. Here’s more from MIT’s emotion detection wireless app in a Feb. 1, 2017 news release (also on EurekAlert),

It’s a fact of nature that a single conversation can be interpreted in very different ways. For people with anxiety or conditions such as Asperger’s, this can make social situations extremely stressful. But what if there was a more objective way to measure and understand our interactions?

Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and Institute of Medical Engineering and Science (IMES) say that they’ve gotten closer to a potential solution: an artificially intelligent, wearable system that can predict if a conversation is happy, sad, or neutral based on a person’s speech patterns and vitals.

“Imagine if, at the end of a conversation, you could rewind it and see the moments when the people around you felt the most anxious,” says graduate student Tuka Alhanai, who co-authored a related paper with PhD candidate Mohammad Ghassemi that they will present at next week’s Association for the Advancement of Artificial Intelligence (AAAI) conference in San Francisco. “Our work is a step in this direction, suggesting that we may not be that far away from a world where people can have an AI social coach right in their pocket.”

As a participant tells a story, the system can analyze audio, text transcriptions, and physiological signals to determine the overall tone of the story with 83 percent accuracy. Using deep-learning techniques, the system can also provide a “sentiment score” for specific five-second intervals within a conversation.

“As far as we know, this is the first experiment that collects both physical data and speech data in a passive but robust way, even while subjects are having natural, unstructured interactions,” says Ghassemi. “Our results show that it’s possible to classify the emotional tone of conversations in real-time.”

The researchers say that the system’s performance would be further improved by having multiple people in a conversation use it on their smartwatches, creating more data to be analyzed by their algorithms. The team is keen to point out that they developed the system with privacy strongly in mind: The algorithm runs locally on a user’s device as a way of protecting personal information. (Alhanai says that a consumer version would obviously need clear protocols for getting consent from the people involved in the conversations.)

How it works

Many emotion-detection studies show participants “happy” and “sad” videos, or ask them to artificially act out specific emotive states. But in an effort to elicit more organic emotions, the team instead asked subjects to tell a happy or sad story of their own choosing.

Subjects wore a Samsung Simband, a research device that captures high-resolution physiological waveforms to measure features such as movement, heart rate, blood pressure, blood flow, and skin temperature. The system also captured audio data and text transcripts to analyze the speaker’s tone, pitch, energy, and vocabulary.

“The team’s usage of consumer market devices for collecting physiological data and speech data shows how close we are to having such tools in everyday devices,” says Björn Schuller, professor and chair of Complex and Intelligent Systems at the University of Passau in Germany, who was not involved in the research. “Technology could soon feel much more emotionally intelligent, or even ‘emotional’ itself.”

After capturing 31 different conversations of several minutes each, the team trained two algorithms on the data: One classified the overall nature of a conversation as either happy or sad, while the second classified each five-second block of every conversation as positive, negative, or neutral.

Alhanai notes that, in traditional neural networks, all features about the data are provided to the algorithm at the base of the network. In contrast, her team found that they could improve performance by organizing different features at the various layers of the network.

“The system picks up on how, for example, the sentiment in the text transcription was more abstract than the raw accelerometer data,” says Alhanai. “It’s quite remarkable that a machine could approximate how we humans perceive these interactions, without significant input from us as researchers.”

Results

Indeed, the algorithm’s findings align well with what we humans might expect to observe. For instance, long pauses and monotonous vocal tones were associated with sadder stories, while more energetic, varied speech patterns were associated with happier ones. In terms of body language, sadder stories were also strongly associated with increased fidgeting and cardiovascular activity, as well as certain postures like putting one’s hands on one’s face.

On average, the model could classify the mood of each five-second interval with an accuracy that was approximately 18 percent above chance, and a full 7.5 percent better than existing approaches.

The algorithm is not yet reliable enough to be deployed for social coaching, but Alhanai says that they are actively working toward that goal. For future work the team plans to collect data on a much larger scale, potentially using commercial devices such as the Apple Watch that would allow them to more easily implement the system out in the world.

“Our next step is to improve the algorithm’s emotional granularity so that it is more accurate at calling out boring, tense, and excited moments, rather than just labeling interactions as ‘positive’ or ‘negative,’” says Alhanai. “Developing technology that can take the pulse of human emotions has the potential to dramatically improve how we communicate with each other.”

This research was made possible in part by the Samsung Strategy and Innovation Center.

Episode 14 of season 10 of The Big Bang Theory was titled “The Emotion Detection Automation”  (full episode can be found on this webpage) and broadcast on Feb. 2, 2017. There’s also a Feb. 2, 2017 recap (recapitulation) by Lincee Ray for EW.com (it seems Ray is unaware that there really is such a machine),

Who knew we would see the day when Sheldon and Raj figured out solutions for their social ineptitudes? Only The Big Bang Theory writers would think to tackle our favorite physicists’ lack of social skills with an emotion detector and an ex-girlfriend focus group. It’s been a while since I enjoyed both storylines as much as I did in this episode. That’s no bazinga.

When Raj tells the guys that he is back on the market, he wonders out loud what is wrong with his game. Why do women reject him? Sheldon receives the information like a scientist and runs through many possible answers. Raj shuts him down with a simple, “I’m fine.”

Sheldon is irritated when he learns that this obligatory remark is a mask for what Raj is really feeling. It turns out, Raj is not fine. Sheldon whines, wondering why no one just says exactly what’s on their mind. It’s quite annoying for those who struggle with recognizing emotional cues.

Lo and behold, Bernadette recently read about a gizmo that was created for people who have this exact same anxiety. MIT has a prototype, and because Howard is an alum, he can probably submit Sheldon’s name as a beta tester.

Of course this is a real thing. If anyone can build an emotion detector, it’s a bunch of awkward scientists with zero social skills.

This is the first time I’ve noticed an academic institution’s news release to be almost simultaneous with mention of its research in a popular culture television program, which suggests things have come a long way since I featured news about a webinar by the National Academies ‘ Science and Entertainment Exchange for film and television productions collaborating with scientists in an Aug. 28, 2012 post.

One last science/popular culture moment: Hidden Figures, a movie about African American women who were human computers supporting NASA (US National Aeronautics and Space Agency) efforts during the 1960s space race and getting a man on the moon was (shockingly) no. 1 in the US box office for a few weeks (there’s more about the movie here in my Sept. 2, 2016 post covering then upcoming movies featuring science).  After the movie was released, Mary Elizabeth Williams wrote up a Jan. 23, 2017 interview with the ‘Hidden Figures’ scriptwriter for Salon.com

I [Allison Schroeder] got on the phone with her [co-producer Renee Witt] and Donna  [co-producer Donna Gigliotti] and I said, “You have to hire me for this; I was born to write this.” Donna sort of rolled her eyes and was like, “God, these Hollywood types would say anything.” I said, “No, no, I grew up at Cape Canaveral. My grandmother was a computer programmer at NASA, my grandfather worked on the Mercury prototype, and I interned there all through high school and then the summer after my freshman year at Stanford I interned. I worked at a missile launch company.”

She was like, “OK that’s impressive.” And I said, “No, I literally grew up climbing on the Mercury capsule — hitting all the buttons, trying to launch myself into space.”

She said, “Well do you think you can handle the math?” I said that I had to study a certain amount of math at Stanford for economics degree. She said, “Oh, all right, that sounds pretty good.”

I pitched her a few scenes. I pitched her the end of the movie that you saw with Katherine running the numbers as John Glenn is trying to get up in space. I pitched her the idea of one of the women as a mechanic and to see her legs underneath the engine. You’re used to seeing a guy like that, but what would it be like to see heels and pantyhose and a skirt and she’s a mechanic and fixing something? Those are some of the scenes that I pitched them, and I got the job.

I love that the film begins with setting up their mechanical aptitude. You set up these are women; you set up these women of color. You set up exactly what that means in this moment in history. It’s like you just go from there.

I was on a really tight timeline because this started as an indie film. It was just Donna Gigliotti, Renee Witt, me and the author Margot Lee Shetterly for about a year working on it. I was only given four weeks for research and 12 weeks for writing the first draft. I’m not sure if I hadn’t known NASA and known the culture and just knew what the machines would look like, knew what the prototypes looked like, if I could have done it that quickly. I turned in that draft and Donna was like, “OK you’ve got the math and the science; it’s all here. Now go have fun.” Then I did a few more drafts and that was really enjoyable because I could let go of the fact I did it and make sure that the characters and the drive of the story and everything just fit what needed to happen.

For anyone interested in the science/popular culture connection, David Bruggeman of the Pasco Phronesis blog does a better job than I do of keeping up with the latest doings.

Getting back to ‘Communicating Science Effectively: A Research Agenda’, even with a mention of popular culture, it is a thoughtful book on the topic.

Nanotech business news from Turkey and from Northern Ireland

I have two nanotech business news bits, one from Turkey and one from Northern Ireland.

Turkey

A Turkish company has sold one of its microscopes to the US National Aeronautics and Space Administration (NASA), according to a Jan. 20, 2017 news item on dailysabah.com,

Turkish nanotechnology company Nanomanyetik has begun selling a powerful microscope to the U.S. space agency NASA, the company’s general director told Anadolu Agency on Thursday [Jan. 19, 2017].

Dr. Ahmet Oral, who also teaches physics at Middle East Technical University, said Nanomanyetik developed a microscope that is able to map surfaces on the nanometric and atomic levels, or extremely small particles.

Nanomanyetik’s foreign customers are drawn to the microscope because of its higher quality yet cheaper price compared to its competitors.

“There are almost 30 firms doing this work,” according to Oral. “Ten of them are active and we are among these active firms. Our aim is to be in the top three,” he said, adding that Nanomanyetik jumps to the head of the line because of its after-sell service.

In addition to sales to NASA, the Ankara-based firm exports the microscope to Brazil, Chile, France, Iran, Israel, Italy, Japan, Poland, South Korea and Spain.

Electronics giant Samsung is also a customer.

“Where does Samsung use this product? There are pixels in the smartphones’ displays. These pixels are getting smaller each year. Now the smallest pixel is 15X10 microns,” he said. Human hair is between 10 and 100 microns in diameter.

“They are figuring inner sides of pixels so that these pixels can operate much better. These patterns are on the nanometer level. They are using these microscopes to see the results of their works,” Oral said.

Nanomanyetik’s microscopes produces good quality, high resolution images and can even display an object’s atoms and individual DNA fibers, according to Oral.

You can find the English language version of the Nanomanyetik (NanoMagnetics Instruments) website here . For those with the language skills there is the Turkish language version, here.

Northern Ireland

A Jan. 22, 2017 news article by Dominic Coyle for The Irish Times (Note: Links have been removed) shares this business news and mention of a world first,

MOF Technologies has raised £1.5 million (€1.73 million) from London-based venture capital group Excelsa Ventures and Queen’s University Belfast’s Qubis research commercialisation group.

MOF Technologies chief executive Paschal McCloskey welcomed the Excelsa investment.

Established in part by Qubis in 2012 in partnership with inventor Prof Stuart James, MOF Technologies began life in a lab at the School of Chemistry and Chemical Engineering at Queen’s.

Its metal organic framework (MOF) technology is seen as having significant potential in areas including gas storage, carbon capture, transport, drug delivery and heat transformation. Though still in its infancy, the market is forecast to grow to £2.2 billion by 2022, the company says.

MOF Technologies last year became the first company worldwide to successfully commercialise MOFs when it agreed a deal with US fruit and vegetable storage provider Decco Worldwide to commercialise MOFs for use in a food application.

TruPick, designed by Decco and using MOF Technologies’ environmentally friendly technology, enables nanomaterials control the effects of ethylene on fruit produce so it maintains freshness in storage or transport.

MOFs are crystalline, sponge-like materials composed of two components – metal ions and organic molecules known as linkers.

“We very quickly recognised the market potential of MOFs in terms of their unmatched ability for gas storage,” said Moritz Bolle from Excelsa Ventures. “This technology will revolutionise traditional applications and open countless new opportunities for industry. We are confident MOF Technologies is the company that will lead this seismic shift in materials science.

You can find MOF Technologies here.

Morphing airplane wing

Long a science fiction trope, ‘morphing’, in this case, an airplane wing, is closer to reality with this work from the Massachusetts Institute of Technology (MIT). From a Nov. 3, 2016 MIT news release (also on EurekAlert),

When the Wright brothers accomplished their first powered flight more than a century ago, they controlled the motion of their Flyer 1 aircraft using wires and pulleys that bent and twisted the wood-and-canvas wings. This system was quite different than the separate, hinged flaps and ailerons that have performed those functions on most aircraft ever since. But now, thanks to some high-tech wizardry developed by engineers at MIT and NASA, some aircraft may be returning to their roots, with a new kind of bendable, “morphing” wing.

The new wing architecture, which could greatly simplify the manufacturing process and reduce fuel consumption by improving the wing’s aerodynamics, as well as improving its agility, is based on a system of tiny, lightweight subunits that could be assembled by a team of small specialized robots, and ultimately could be used to build the entire airframe. The wing would be covered by a “skin” made of overlapping pieces that might resemble scales or feathers.

The new concept is described in the journal Soft Robotics, in a paper by Neil Gershenfeld, director of MIT’s Center for Bits and Atoms (CBA); Benjamin Jenett, a CBA graduate student; Kenneth Cheung PhD ’12, a CBA alumnus and NASA research scientist; and four others.

Researchers have been trying for many years to achieve a reliable way of deforming wings as a substitute for the conventional, separate, moving surfaces, but all those efforts “have had little practical impact,” Gershenfeld says. The biggest problem was that most of these attempts relied on deforming the wing through the use of mechanical control structures within the wing, but these structures tended to be so heavy that they canceled out any efficiency advantages produced by the smoother aerodynamic surfaces. They also added complexity and reliability issues.

By contrast, Gershenfeld says, “We make the whole wing the mechanism. It’s not something we put into the wing.” In the team’s new approach, the whole shape of the wing can be changed, and twisted uniformly along its length, by activating two small motors that apply a twisting pressure to each wingtip.

Like building with blocks

The basic principle behind the new concept is the use of an array of tiny, lightweight structural pieces, which Gershenfeld calls “digital materials,” that can be assembled into a virtually infinite variety of shapes, much like assembling a structure from Lego blocks. The assembly, performed by hand for this initial experiment, could be done by simple miniature robots that would crawl along or inside the structure as it took shape. The team has already developed prototypes of such robots.

The individual pieces are strong and stiff, but the exact choice of the dimensions and materials used for the pieces, and the geometry of how they are assembled, allow for a precise tuning of the flexibility of the final shape. For the initial test structure, the goal was to allow the wing to twist in a precise way that would substitute for the motion of separate structural pieces (such as the small ailerons at the trailing edges of conventional wings), while providing a single, smooth aerodynamic surface.

Building up a large and complex structure from an array of small, identical building blocks, which have an exceptional combination of strength, light weight, and flexibility, greatly simplifies the manufacturing process, Gershenfeld explains. While the construction of light composite wings for today’s aircraft requires large, specialized equipment for layering and hardening the material, the new modular structures could be rapidly manufactured in mass quantities and then assembled robotically in place.

Gershenfeld and his team have been pursuing this approach to building complex structures for years, with many potential applications for robotic devices of various kinds. For example, this method could lead to robotic arms and legs whose shapes could bend continuously along their entire length, rather than just having a fixed number of joints.

This research, says Cheung, “presents a general strategy for increasing the performance of highly compliant — that is, ‘soft’ — robots and mechanisms,” by replacing conventional flexible materials with new cellular materials “that are much lower weight, more tunable, and can be made to dissipate energy at much lower rates” while having equivalent stiffness.

Saving fuel, cutting emissions

While exploring possible applications of this nascent technology, Gershenfeld and his team consulted with NASA engineers and others seeking ways to improve the efficiency of aircraft manufacturing and flight. They learned that “the idea that you could continuously deform a wing shape to do pure lift and roll has been a holy grail in the field, for both efficiency and agility,” he says. Given the importance of fuel costs in both the economics of the airline industry and that sector’s contribution to greenhouse gas emissions, even small improvements in fuel efficiency could have a significant impact.

Wind-tunnel tests of this structure showed that it at least matches the aerodynamic properties of a conventional wing, at about one-tenth the weight.

The “skin” of the wing also enhances the structure’s performance. It’s made from overlapping strips of flexible material, layered somewhat like feathers or fish scales, allowing for the pieces to move across each other as the wing flexes, while still providing a smooth outer surface.

The modular structure also provides greater ease of both assembly and disassembly: One of this system’s big advantages, in principle, Gershenfeld says, is that when it’s no longer needed, the whole structure can be taken apart into its component parts, which can then be reassembled into something completely different. Similarly, repairs could be made by simply replacing an area of damaged subunits.

“An inspection robot could just find where the broken part is and replace it, and keep the aircraft 100 percent healthy at all times,” says Jenett.

Following up on the successful wind tunnel tests, the team is now extending the work to tests of a flyable unpiloted aircraft, and initial tests have shown great promise, Jenett says. “The first tests were done by a certified test pilot, and he found it so responsive that he decided to do some aerobatics.”

Some of the first uses of the technology may be to make small, robotic aircraft — “super-efficient long-range drones,” Gershenfeld says, that could be used in developing countries as a way of delivering medicines to remote areas.

Here’s a link to and a citation for the paper,

Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures by Benjamin Jenett, Sam Calisch, Daniel Cellucci, Nick Cramer, Neil Gershenfeld, Sean Swei, and Kenneth C. Cheung. Soft Robotics. October 2016, ahead of print. doi:10.1089/soro.2016.0032. Published online: Oct. 26, 2016

This paper is open access.

Nanotechnology and water sustainability webinar, Oct. 19, 2016

An upcoming (Oct. 19, 2016) webinar from the US National Nanotechnology Initiative (NNI) is the first of a new series (from an Oct. 7, 2016 news item on Nanowerk),

“Water Sustainability through Nanotechnology: A Federal Perspective” – This webinar is the first in a series exploring the confluence of nanotechnology and water. This event will introduce the Nanotechnology Signature Initiative (NSI): Water Sustainability through Nanotechnology and highlight the activities of several participating Federal agencies. …

The NNI event page for the Water Sustainability through Nanotechnology webinar provides more detail,

Panelists include Nora Savage (National Science Foundation), Daniel Barta (National Aeronautics and Space Adminstration), Paul Shapiro (U.S. Environmental Protection Agency), Jim Dobrowolski (USDA National Institute of Food and Agriculture), and Hongda Chen (USDA National Institute of Food and Agriculture).

Webinar viewers will be able to submit questions for the panelists to answer during the Q&A period. Submitted questions will be considered in the order received and may be posted on the NNI website. A moderator will identify relevant questions and pose them to the speakers. Due to time constraints, not all questions may be addressed during the webinar. The moderator reserves the right to group similar questions and to skip questions, as appropriate.

There will be more in this series according to the webinar event page,

  • Increase water availability.
  • Improve the efficiency of water delivery and use.
  • Enable next-generation water monitoring systems.

You can register here to participate.

The NNI has a webpage dedicated to Water Sustainability through Nanotechnology: Nanoscale solutions for a Global-Scale Challenge, which explains their perspective on the matter,

Water is essential to all life, and its significance bridges many critical areas for society: food, energy, security, and the environment. Projected population growth in the coming decades and associated increases in demands for water exacerbate the mounting pressure to address water sustainability. Yet, only 2.5% of the world’s water is fresh water, and some of the most severe impacts of climate change are on our country’s water resources. For example, in 2012, droughts affected about two-thirds of the continental United States, impacting water supplies, tourism, transportation, energy, and fisheries – costing the agricultural sector alone $30 billion. In addition, the ground water in many of the Nation’s aquifers is being depleted at unsustainable rates, which necessitates drilling ever deeper to tap groundwater resources. Finally, water infrastructure is a critically important but sometimes overlooked aspect of water treatment and distribution. Both technological and sociopolitical solutions are required to address these problems.

The text also goes on to describe how nanotechnology could  assist with this challenge.

Movies and science, science, science (Part 1 of 2)

In the last few years, there’s been a veritable plethora of movies (and television shows in Canada and the US) that are about science and technology or have a significant  component or investigate the social impact. The trend does not seem to be slowing.

This first of two parts features the film, *Hidden* Figures, and a play being turned into a film, Photograph 51. The second part features the evolving Theranos story and plans to turn it into a film, The Man Who Knew Infinity, a film about an Indian mathematician, the science of the recent all woman Ghostbusters, and an ezine devoted to science films.

For the following movie tidbits, I have David Bruggeman to thank.

Hidden Figures

From David’s June 21, 2016 post on his Pasco Phronesis blog (Note: A link has been removed),

Hidden Figures is a fictionalized treatment of the book of the same name written by Margot Lee Shetterly (and underwritten by the Sloan Foundation).  Neither the book nor the film are released yet.  The book is scheduled for a September release, and the film currently has a January release date in the U.S.

Both the film and the book focus on the story of African American women who worked as computers for the government at the Langley National Aeronautic Laboratory in Hampton, Virginia.  The women served as human computers, making the calculations NASA needed during the Space Race.  While the book features four women, the film is focused on three: Katherine Johnson (recipient of the Presidential Medal of Freedom), Dorothy Vaughan, and Mary Jackson.  They are played by, respectively, Taraji P. Henson, Octavia Spencer, and Janelle Monae.  Other actors in the film include Kevin Costner, Kirsten Dunst, Aldis Hodge, and Jim Parsons.  The film is directed by Theodore Melfi, and the script is by Allison Schroeder.

*ETA Oct. 6, 2016: The book ‘Hidden Figures’ is nonfiction while the movie is a fictionalized adaptation  based on a true story.*

According to imdb.com, the movie’s release date is Dec. 25, 2016 (this could change again).

The history for ‘human computers’ stretches back to the 17th century, at least. From the Human Computer entry in Wikipedia (Note: Links have been removed),

The term “computer”, in use from the early 17th century (the first known written reference dates from 1613),[1] meant “one who computes”: a person performing mathematical calculations, before electronic computers became commercially available. “The human computer is supposed to be following fixed rules; he has no authority to deviate from them in any detail.” (Turing, 1950) Teams of people were frequently used to undertake long and often tedious calculations; the work was divided so that this could be done in parallel.

Prior to NASA, a team of women in the 19th century in the US were known as Harvard Computers (from the Wikipedia entry; Note: Links have been removed),

Edward Charles Pickering (director of the Harvard Observatory from 1877 to 1919) decided to hire women as skilled workers to process astronomical data. Among these women were Williamina Fleming, Annie Jump Cannon, Henrietta Swan Leavitt and Antonia Maury. This staff came to be known as “Pickering’s Harem” or, more respectfully, as the Harvard Computers.[1] This was an example of what has been identified as the “harem effect” in the history and sociology of science.

It seems that several factors contributed to Pickering’s decision to hire women instead of men. Among them was the fact that men were paid much more than women, so he could employ more staff with the same budget. This was relevant in a time when the amount of astronomical data was surpassing the capacity of the Observatories to process it.[2]

The first woman hired was Williamina Fleming, who was working as a maid for Pickering. It seems that Pickering was increasingly frustrated with his male assistants and declared that even his maid could do a better job. Apparently he was not mistaken, as Fleming undertook her assigned chores efficiently. When the Harvard Observatory received in 1886 a generous donation from the widow of Henry Draper, Pickering decided to hire more female staff and put Fleming in charge of them.[3]

While it’s not thrilling to find out that Pickering was content to exploit the women he was hiring, he deserves kudos for recognizing that women could do excellent work and acting on that recognition. When you consider the times, Pickering’s was an extraordinary act.

Getting back to Hidden Figures, an Aug.15, 2016 posting by Kathleen for Lainey Gossip celebrates the then newly released trailer for the movie,

If you’ve been watching the Olympics [Rio 2016], you know how much the past 10 days have been an epic display of #BlackGirlMagic. Fittingly, the trailer for Hidden Figures was released last night during Sunday’s Olympic coverage. It’s the story of three brilliant African American women, played by Taraji P Henson, Octavia Spencer and Janelle Monae, who made history by serving as the brains behind the NASA launch of astronaut John Glenn into orbit in 1962.

Three black women helped launch a dude into space in the 60s. AT NASA. Think about how America treated black women in the 60s. As Katherine Johnson, played by Taraji P Henson, jokes in the trailer, they were still sitting at the back of the bus. In 1962 Malcolm X said, “The most disrespected person in America is the Black woman, the most unprotected person in America is the Black woman. The most neglected person in America is the Black woman.” These women had to face that truth every day and they still rose to greatness. I’m obsessed with this story.

Overall, the trailer is good. I like the pace and the performances look strong. …

I’m most excited for Hidden Figures (as Lainey pointed out, this title is THE WORST) because black girls are being celebrated for their brains on screen. That is rare. When the trailer aired, my brother Sam texted me, “WHOA, a smart black girl movie!”

*ETA Sept. 5, 2016: Aran Shetterly contacted me to say this:

What you may not know is that the term “Hidden Figures” is a specific reference to flight science. It tested a pilot’s ability to pick out a simple figure from a set of more complex, difficult to see images. http://www.militaryaptitudetests.com/afoqt/

Thank you Mr. Shetterly!

Photograph 51 (the Rosalind Franklin story)

Also in David’s June 21, 2016 post is a mention of Photograph 51, a play and soon-to-be film about Rosalind Franklin, the discovery of the double helix, and a science controversy. I first wrote about Photograph 51 in a Jan. 16, 2012 posting (scroll down about 50% of the way) regarding an international script writing competition being held in Dublin, Ireland. At the time, I noted that Anna Ziegler’s play, Photograph 51 had won a previous competition cycle of the screenwriting competition. I wrote again about the play in a Sept. 2, 2015 posting about its London production (Sept. 5 – Nov. 21, 2015) featuring actress Nicole Kidman.

The versions of the Franklin story with which I’m familiar paint her as the wronged party, ignored and unacknowledged by the scientists (Francis, Crick, James Watson, and Maurice Wilkins) who got all the glory and the Nobel Prize. Stephen Curry in a Sept. 16, 2015 posting on the Guardian science blogs suggests the story may not be quite as simple as that (Note: A link has been removed),

Ziegler [Anna Ziegler, playwright] is up front in admitting that she has rearranged facts to suit the drama. This creates some oddities of chronology and motive for those familiar with the history. I know of no suggestion of romantic interest in Franklin from Wilkins, or of a separation of Crick from his wife in the aftermath of his triumph with Watson in solving the DNA structure. There is no mention in the play of the fact that Franklin published her work (and the famous photograph 51) in the journal Nature alongside Watson and Crick’s paper and one by Wilkins. Nor does the audience hear of the international recognition that Franklin enjoyed in her own right between 1953 and her untimely death in 1958, not just for her involvement in DNA, but also for her work on the structure of coal and of viruses.

Published long after her death, The Double Helix is widely thought to treat Franklin unfairly. In the minds of many she remains the wronged woman whose pioneering results were taken by others to solve DNA and win the Nobel prize. But the real story – many elements of which come across strongly in the play – is more complex*.

Franklin is a gifted experimentalist. Her key contributions to the discovery were in improving methods for taking X-ray pictures of and discovering the distinct A and B conformations of DNA. But it becomes clear that her methodical, meticulous approach to data analysis – much to Wilkins’ impotent frustration – eventually allows the Kings ‘team’ to be overtaken by the bolder, intuitive stratagem of Watson and Crick.

Curry’s piece is a good read and provides insight into the ways temperament affects how science is practiced.

Interestingly, there was a 1987 dramatization of the ‘double helix or life story’ (from the Life Story entry on Wikipedia; Note: Links have been removed),

The film tells the story of the rivalries of the two teams of scientists attempting to discover the structure of DNA. Francis Crick and James D. Watson at Cambridge University and Maurice Wilkins and Rosalind Franklin at King’s College London.

The film manages to convey the loneliness and competitiveness of scientific research but also educates the viewer as to how the structure of DNA was discovered. In particular, it explores the tension between the patient, dedicated laboratory work of Franklin and the sometimes uninformed intuitive leaps of Watson and Crick, all played against a background of institutional turf wars, personality conflicts and sexism. In the film Watson jokes, plugging the path of intuition: “Blessed are they who believed before there was any evidence.” The film also shows why Watson and Crick made their discovery, overtaking their competitors in part by reasoning from genetic function to predict chemical structure, thus helping to establish the then still-nascent field of molecular biology.

You can find out more about the stars, crew, and cast here on imdb.com

In addition to Life Story, the dramatization is also sometimes titled as ‘The Race for the Double Helix’ or the ‘Double Helix’.

Getting back to Photograph 51 (the film), Michael Grandage who directed the stage play will also direct the film. Grandage just made his debut as a film director with ‘Genius’ starring Colin Firth and Jude Law. According to this June 23, 2016 review by Sarah on Laineygossip.com, he stumbled a bit by casting British and Australian actors as Americans,

The first hurdle to clear with Genius, the feature film debut of English theater director Michael Grandage, is that everyone is played by Brits and Aussies, and by “everyone” I mean some of the most towering figures of American literature. You cast the best actor for the role and a good actor can convince you they’re anyone, so it shouldn’t really matter, but there is something profoundly odd about watching a parade of Lit 101 All Stars appear on screen and struggle with American accents. …

That kind of casting should not be a problem with Photograph 51 where the action takes place with British personalities.

Part 2 is here.

*’Human’ corrected to ‘Hidden’ on Sept. 5, 2016.