Tag Archives: Natalie Stingelin

The evolution of molecules as observed with femtosecond stimulated Raman spectroscopy

A July 3, 2014 news item on Azonano features some recent research from the Université de Montréal (amongst other institutions),

Scientists don’t fully understand how ‘plastic’ solar panels work, which complicates the improvement of their cost efficiency, thereby blocking the wider use of the technology. However, researchers at the University of Montreal, the Science and Technology Facilities Council, Imperial College London and the University of Cyprus have determined how light beams excite the chemicals in solar panels, enabling them to produce charge.

A July 2, 2014 University of Montreal news release, which originated the news item, provides a fascinating description of the ultrafast laser process used to make the observations,

 “We used femtosecond stimulated Raman spectroscopy,” explained Tony Parker of the Science and Technology Facilities Council’s Central Laser Facility. “Femtosecond stimulated Raman spectroscopy is an advanced ultrafast laser technique that provides details on how chemical bonds change during extremely fast chemical reactions. The laser provides information on the vibration of the molecules as they interact with the pulses of laser light.” Extremely complicated calculations on these vibrations enabled the scientists to ascertain how the molecules were evolving. Firstly, they found that after the electron moves away from the positive centre, the rapid molecular rearrangement must be prompt and resemble the final products within around 300 femtoseconds (0.0000000000003 s). A femtosecond is a quadrillionth of a second – a femtosecond is to a second as a second is to 3.7 million years. This promptness and speed enhances and helps maintain charge separation.  Secondly, the researchers noted that any ongoing relaxation and molecular reorganisation processes following this initial charge separation, as visualised using the FSRS method, should be extremely small.

As for why the researchers’ curiosity was stimulated (from the news release),

The researchers have been investigating the fundamental beginnings of the reactions that take place that underpin solar energy conversion devices, studying the new brand of photovoltaic diodes that are based on blends of polymeric semiconductors and fullerene derivatives. Polymers are large molecules made up of many smaller molecules of the same kind – consisting of so-called ‘organic’ building blocks because they are composed of atoms that also compose molecules for life (carbon, nitrogen, sulphur). A fullerene is a molecule in the shape of a football, made of carbon. “In these and other devices, the absorption of light fuels the formation of an electron and a positive charged species. To ultimately provide electricity, these two attractive species must separate and the electron must move away. If the electron is not able to move away fast enough then the positive and negative charges simple recombine and effectively nothing changes. The overall efficiency of solar devices compares how much recombines and how much separates,” explained Sophia Hayes of the University of Cyprus, last author of the study.

… “Our findings open avenues for future research into understanding the differences between material systems that actually produce efficient solar cells and systems that should as efficient but in fact do not perform as well. A greater understanding of what works and what doesn’t will obviously enable better solar panels to be designed in the future,” said the University of Montreal’s Carlos Silva, who was senior author of the study.

Here’s a link to and a citation for the paper,

Direct observation of ultrafast long-range charge separation at polymer–fullerene heterojunctions by Françoise Provencher, Nicolas Bérubé, Anthony W. Parker, Gregory M. Greetham, Michael Towrie, Christoph Hellmann, Michel Côté, Natalie Stingelin, Carlos Silva & Sophia C. Hayes. Nature Communications 5, Article number: 4288 doi:10.1038/ncomms5288 Published 01 July 2014

This article is behind a paywall but there is a free preview available vie ReadCube Access.

Controlling crystal growth for plastic electronics

A July 4, 2013 news item on Nanowerk highlights research into plastic electronics taking place at Imperial College London (ICL), Note: A link has been removed,

Scientists have discovered a way to better exploit a process that could revolutionise the way that electronic products are made.

The scientists from Imperial College London say improving the industrial process, which is called crystallisation, could revolutionise the way we produce electronic products, leading to advances across a whole range of fields; including reducing the cost and improving the design of plastic solar cells.

The process of making many well-known products from plastics involves controlling the way that microscopic crystals are formed within the material. By controlling the way that these crystals are grown engineers can determine the properties they want such as transparency and toughness. Controlling the growth of these crystals involves engineers adding small amounts of chemical additives to plastic formulations. This approach is used in making food boxes and other transparent plastic containers, but up until now it has not been used in the electronics industry.

The team from Imperial have now demonstrated that these additives can also be used to improve how an advanced type of flexible circuitry called plastic electronics is made.

The team found that when the additives were included in the formulation of plastic electronic circuitry they could be printed more reliably and over larger areas, which would reduce fabrication costs in the industry.

The team reported their findings this month in the journal Nature Materials (“Microstructure formation in molecular and polymer semiconductors assisted by nucleation agents”).

The June 7, 2013 Imperial College London news release by Joshua Howgego, which originated the news item, describes the researchers and the process in more detail,

Dr Natalie Stingelin, the leader of the study from the Department of Materials and Centre of Plastic Electronics at Imperial, says:

“Essentially, we have demonstrated a simple way to gain control over how crystals grow in electrically conducting ‘plastic’ semiconductors. Not only will this help industry fabricate plastic electronic devices like solar cells and sensors more efficiently. I believe it will also help scientists experimenting in other areas, such as protein crystallisation, an important part of the drug development process.”

Dr Stingelin and research associate Neil Treat looked at two additives, sold under the names IrgaclearÒ XT 386 and MilladÒ 3988, which are commonly used in industry. These chemicals are, for example, some of the ingredients used to improve the transparency of plastic drinking bottles. The researchers experimented with adding tiny amounts of these chemicals to the formulas of several different electrically conducting plastics, which are used in technologies such as security key cards, solar cells and displays.

The researchers found the additives gave them precise control over where crystals would form, meaning they could also control which parts of the printed material would conduct electricity. In addition, the crystallisations happened faster than normal. Usually plastic electronics are exposed to high temperatures to speed up the crystallisation process, but this can degrade the materials. This heat treatment treatment is no longer necessary if the additives are used.

Another industrially important advantage of using small amounts of the additives was that the crystallisation process happened more uniformly throughout the plastics, giving a consistent distribution of crystals.  The team say this could enable circuits in plastic electronics to be produced quickly and easily with roll-to-roll printing procedures similar to those used in the newspaper industry. This has been very challenging to achieve previously.

Dr Treat says: “Our work clearly shows that these additives are really good at controlling how materials crystallise. We have shown that printed electronics can be fabricated more reliably using this strategy. But what’s particularly exciting about all this is that the additives showed fantastic performance in many different types of conducting plastics. So I’m excited about the possibilities that this strategy could have in a wide range of materials.”

Dr Stingelin and Dr Treat collaborated with scientists from the University of California Santa Barbara (UCSB), and the National Renewable Energy Laboratory in Golden, US, and the Swiss Federal Institute of Technology on this study. The team are planning to continue working together to see if subtle chemical changes to the additives improve their effects – and design new additives.

There are some big plans for this discovery, from the news release,

They [the multinational team from ICL, UCSB, National Renewable Energy Laboratory, and Swiss Federal Institute of Technology]  will be working with the new Engineering and Physical Sciences Research Council (EPSRC)-funded Centre for Innovative Manufacturing in Large Area Electronics in order to drive the industrial exploitation of their process. The £5.6 million of funding for this centre, to be led by researchers from Cambridge University, was announced earlier this year [2013]. They are also exploring collaborations with printing companies with a view to further developing their circuit printing technique.

For the curious, here’s a link to and a citation for the published paper,

Microstructure formation in molecular and polymer semiconductors assisted by nucleation agents by Neil D. Treat, Jennifer A. Nekuda Malik, Obadiah Reid, Liyang Yu, Christopher G. Shuttle, Garry Rumbles, Craig J. Hawker, Michael L. Chabinyc, Paul Smith, & Natalie Stingelin. Nature Materials 12, 628–633 (2013) doi:10.1038/nmat3655 Published online 02 June 2013

This article is open access (at least for now).