Tag Archives: NCC

Bio-based standup pouches (food packaging) made from cellulose

CAPTION: VTT has developed lightweight 100% bio-based stand-up pouches with high technical performance. (Photo by VTT)

A March 14, 2017 news item on ScienceDaily describes a new nanocellulose-based product developed by the Technical Research Centre of Finland (VTT),

VTT Technical Research Centre of Finland Ltd has developed lightweight 100% bio-based stand-up pouches with high technical performance. High performance in both oxygen, grease and mineral oil barrier properties has been reached by using different biobased coatings on paper substrate. The pouches exploit VTT’s patent pending high consistency enzymatic fibrillation of cellulose (HefCel) technology.

A March 14, 2017 VTT press release (also on EurekAlert), which originated the news item, describes why the researchers want to change how food is packaged,

“One-third of food produced for human consumption is lost or wasted globally. Packaging with efficient barrier properties is a crucial factor in the reduction of the food loss. Our solution offers an environmentally friendly option for the global packaging industry”, says Senior Scientist Jari Vartiainen of VTT.

VTT’s HefCel technology provides a low-cost method for the production of nanocellulose resulting in a tenfold increase in the solids content of nanocellulose. Nanocellulose has been shown to be potentially very useful for a number of future technical applications. The densely packed structure of nanocellulose films and coatings enable their outstanding oxygen, grease and mineral oil barrier properties.

HefCel technology exploits industrial enzymes and simple mixing technology as tools to fibrillate cellulose into nanoscale fibrils without the need for high energy consuming process steps. The resulting nanocellulose is in the consistency of 15-25% when traditional nanocellulose production methods result in 1-3% consistency.

The stand-up pouch is the fastest growing type of packaging, growing at a rate of 6.5% per year from 2015-2020. Fossil-based plastic films still dominate the packaging market. However, the development of environmentally friendly new materials is of growing importance. Nanocellulose has been shown to be potentially very useful for a number of future technical applications.

VTT has solid expertise in various bio-based raw materials and their application technologies for producing bio-based coatings, films and even multilayered structures both at lab-scale and pilot-scale. A versatile set of piloting facilities are available from raw material sourcing through processing to application testing and demonstration.

I’m glad to hear they’re finding uses for nanocellulose and I keep wondering when Canadian scientists who at one point were leaders in developing crystal nanocellulose (CNC or sometimes known as nanocrystalline cellulose [NCC]) will be making announcements about potential products.

Hopes for nanocellulose in the fields of medicine and green manufacturing

Initially this seemed like an essay extolling the possibilities for nanocellulose but it is also a research announcement. From a Nov. 7, 2016 news item on Nanowerk,

What if you could take one of the most abundant natural materials on earth and harness its strength to lighten the heaviest of objects, to replace synthetic materials, or use it in scaffolding to grow bone, in a fast-growing area of science in oral health care?

This all might be possible with cellulose nanocrystals, the molecular matter of all plant life. As industrial filler material, they can be blended with plastics and other synthetics. They are as strong as steel, tough as glass, lightweight, and green.

“Plastics are currently reinforced with fillers made of steel, carbon, Kevlar, or glass. There is an increasing demand in manufacturing for sustainable materials that are lightweight and strong to replace these fillers,” said Douglas M. Fox, associate professor of chemistry at American University.
“Cellulose nanocrystals are an environmentally friendly filler. If there comes a time that they’re used widely in manufacturing, cellulose nanocrystals will lessen the weight of materials, which will reduce energy.”

A Nov. 7, 2016 American University news release on EurekAlert, which originated the news item, continues into the research,

Fox has submitted a patent for his work with cellulose nanocrystals, which involves a simple, scalable method to improve their performance. Published results of his method can be found in the chemistry journal ACS Applied Materials and Interfaces. Fox’s method could be used as a biomaterial and for applications in transportation, infrastructure and wind turbines.

The power of cellulose

Cellulose gives stems, leaves and other organic material in the natural world their strength. That strength already has been harnessed for use in many commercial materials. At the nano-level, cellulose fibers can be broken down into tiny crystals, particles smaller than ten millionths of a meter. Deriving cellulose from natural sources such as wood, tunicate (ocean-dwelling sea cucumbers) and certain kinds of bacteria, researchers prepare crystals of different sizes and strengths.

For all of the industry potential, hurdles abound. As nanocellulose disperses within plastic, scientists must find the sweet spot: the right amount of nanoparticle-matrix interaction that yields the strongest, lightest property. Fox overcame four main barriers by altering the surface chemistry of nanocrystals with a simple process of ion exchange. Ion exchange reduces water absorption (cellulose composites lose their strength if they absorb water); increases the temperature at which the nanocrystals decompose (needed to blend with plastics); reduces clumping; and improves re-dispersal after the crystals dry.

Cell growth

Cellulose nanocrystals as a biomaterial is yet another commercial prospect. In dental regenerative medicine, restoring sufficient bone volume is needed to support a patient’s teeth or dental implants. Researchers at the National Institute of Standards and Technology [NIST], through an agreement with the National Institute of Dental and Craniofacial Research of the National Institutes of Health, are looking for an improved clinical approach that would regrow a patient’s bone. When researchers experimented with Fox’s modified nanocrystals, they were able to disperse the nanocrystals in scaffolds for dental regenerative medicine purposes.

“When we cultivated cells on the cellulose nanocrystal-based scaffolds, preliminary results showed remarkable potential of the scaffolds for both their mechanical properties and the biological response. This suggests that scaffolds with appropriate cellulose nanocrystal concentrations are a promising approach for bone regeneration,” said Martin Chiang, team leader for NIST’s Biomaterials for Oral Health Project.

Another collaboration Fox has is with Georgia Institute of Technology and Owens Corning, a company specializing in fiberglass insulation and composites, to research the benefits to replace glass-reinforced plastic used in airplanes, cars and wind turbines. He also is working with Vireo Advisors and NIST to characterize the health and safety of cellulose nanocrystals and nanofibers.

“As we continue to show these nanomaterials are safe, and make it easier to disperse them into a variety of materials, we get closer to utilizing nature’s chemically resistant, strong, and most abundant polymer in everyday products,” Fox said.

Here’s a link to and a citation for the paper,

Simultaneously Tailoring Surface Energies and Thermal Stabilities of Cellulose Nanocrystals Using Ion Exchange: Effects on Polymer Composite Properties for Transportation, Infrastructure, and Renewable Energy Applications by Douglas M. Fox, Rebeca S. Rodriguez, Mackenzie N. Devilbiss, Jeremiah Woodcock, Chelsea S. Davis, Robert Sinko, Sinan Keten, and Jeffrey W. Gilman. ACS Appl. Mater. Interfaces, 2016, 8 (40), pp 27270–27281 DOI: 10.1021/acsami.6b06083 Publication Date (Web): September 14, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

Cellulosic nanomaterials in automobile parts and a CelluForce update

The race to find applications for cellulosic nanomaterials continues apace. The latest entrant is from Clemson University in South Carolina (US). From a July 27, 2016 news item on Nanowerk,

Trees that are removed during forest restoration projects could find their way into car bumpers and fenders as part of a study led by Srikanth Pilla of Clemson University.

Pilla is collaborating on the study with researchers from the USDA Forest Service’s Forest Products Laboratory in Madison, Wisconsin.

The Madison researchers are converting some of those trees into liquid suspensions of tiny rod-like structures with diameters 20,000 times smaller than the width of a human hair. Pilla is using these tiny structures, known as cellulosic nanomaterials, to develop new composite materials that could be shaped into automotive parts with improved strength.

The auto parts would also be biorenewable, which means they could go to a composting facility instead of a landfill when their time on the road is done. The research could help automakers meet automotive recycling regulations that have been adopted in Europe and could be on the way to the United States.

Pilla, an assistant professor in the Department of Automotive Engineering at Clemson University, wants to use the composite materials he is creating to make bumpers and fenders that will be less likely to distort or break on impact.

“They will absorb the energy and just stay intact,” he said. “You won’t have to replace them because there will be no damage at all. Parts made with current materials might resist one impact. These will resist three or four impacts.”

A July 27, 2016 Clemson University media release, which originated the news item, describes the project and the reason for the support provides an interesting view of the politics behind the science (Note: A link has been removed),

The U.S. Department of the Agriculture’s National Institute of Food and Agriculture is funding the $481,000 research project for five years. Pilla’s research will be based out of the Clemson University International Center for Automotive Research in Greenville, South Carolina.

Craig Clemons, a materials research engineer at the Forest Products Laboratory and co-principal investigator on the project, said that the Forest Service wants to find large-volume uses for cellulosic nanomaterials.

“We find appropriate outlets for all kinds of forest-derived materials,” he said. “In this case, it’s cellulosic nanomaterials. We’re trying to move up the value chain with the cellulosic nanomaterials, creating high-value products out of what could otherwise be low-value wood. We’ll be producing the cellulosic nanomaterials, which are the most fundamental structural elements that you can get out of wood and pulp fibers. We’ll also be lending our more than 25 years of experience in creating composites from plastics and wood-derived materials to the project.”

The research is environmentally friendly from start to finish.

The cellulosic nanomaterials could come from trees that are removed during forest restoration projects. Removing this material from the forests helps prevent large, catastrophic wildfires. Researchers will have no need to cut down healthy trees that could be used for other purposes, Pilla said.

Ted Wegner, assistant director at the Forest Products Laboratory, said, “The use of cellulosic nanomaterials will help meet the needs of people for sustainable, renewable and lightweight products while helping to improve the health and condition of America’s forests. The United States possesses abundant forest resources and the infrastructure to support a large cellulosic nanomaterials industry. Commercialization of cellulosic nanomaterials has the potential to create jobs, especially in rural America.”

One of the technical challenges Pilla and Clemons face in their work is combining the water-friendly cellulosic nanomaterials with the water-unfriendly polymers. They will need to show that the material can be mass produced because automakers need to make thousands of parts.

“We will use supercritical fluid as a plasticizer, allowing the nanoreinforcements to disperse through the polymer,” Pilla said. “We can help develop a conventional technique that will be scalable in the automotive sector.”

Robert Jones, executive vice president for academic affairs and provost at Clemson, congratulated Pilla on the research, which touches on Jones’ area of expertise.

Jones has a bachelor’s in forest management, a master’s in forestry from Clemson and a doctorate in forest ecology from the State University of New York College of Environmental Science and Forestry, Syracuse University.

“The research that Srikanth Pilla is doing with the USDA Forest Service is a creative way of using what might otherwise be a low-value wood product to strengthen automobile parts,” Jones said. “It’s even better that these parts are biorenewable. The research is good for the Earth in more ways than one.”

This research could grow in importance if the United States were to follow the European Union’s lead in setting requirements on how much of a vehicle must be recovered and recycled after it has seen its last mile on the road.

“In the U.S., such legislation is not yet here,” Pilla said. “But it could make its way here, too.”

Pilla is quickly establishing himself as a leading expert in making next-generation automotive parts. He won the 2016 Robert J. Hocken Outstanding Young Manufacturing Engineer Award from the nonprofit student and professional organization SME.

Pilla is nearing the end of the first year of a separate $5.81-million, five-year grant from the Department of Energy. As part of that research, Pilla and his team are developing ultra-lightweight doors expected to help automakers in their race to meet federal fuel economy standards.

Zoran Filipi, chair of Clemson’s automotive engineering, said that Pilla is playing a key role in making Clemson the premiere place for automotive research.

“Dr. Pilla is doing research that helps Clemson and the auto industry stay a step ahead,” Filipi said. “He is anticipating needs automakers will face in the future and seeking solutions that could be put into place very quickly. His research with the USDA Forest Service is another example of that.”

Congratulations also came from Anand Gramopadhye, dean of Clemson’s College of Engineering, Computing and Applied Sciences.

“Dr. Pilla’s work continues to have an impact on automotive engineering, especially in the area of manufacturing,” Gramopadhye said. “His innovations are positioning Clemson, the state, and the nation for strength into the future.”

This search for applications is a worldwide competition. Cellulose is one of the most abundant materials on earth and can be derived from carrots, bananas, pineapples, and more. It just so happens that much of the research in the northern hemisphere focuses on cellulose derived from trees in an attempt to prop up or reinvigorate the failing forest products industry.

In Canada we have three production facilities for cellulosic nanomaterials. There’s a plant in Alberta (I’ve never seen a name for it), CelluForce in Windsor, Québec, and Blue Goose Biorefineries in Saskatchewan. I believe Blue Goose derives their cellulosic *nanomaterials* from trees and other plant materials while the Alberta and CelluForce plants use trees only.

CelluForce Update

CelluForce represents a big investment by the Canadian federal government. The other companies and production facilities have received federal funds but my understanding is that CelluForce has enjoyed significantly more. As well, the company has had a stockpile of cellulose nanocrystals (CNC) that I first mentioned here in an Oct. 3, 2013 post (scroll down about 75% of the way). A June 8, 2016 CelluForce news release provides more information about CelluForce activities and its stockpile,

  •  In the first half of 2016, Cellulose nanocrystals (CNC) shipments to industrial partners have reached their highest level since company inception.
  • Recent application developments in the oil & gas, the electronics and plastics sectors are expected to lead to commercial sales towards year end.
  • New website to enhance understanding of CelluForce NCCTM core properties and scope of performance in industrial applications is launched.

Montreal, Québec – June 8th 2016 – CelluForce, a clean technology company, is seeing growing interest in its innovative green chemistry product called cellulose nanocrystals (CNC) and has recorded, over the first half of 2016, the largest CNC shipment volumes since the company’s inception.

“Over the past year, we have been actively developing several industry-specific applications featuring CelluForce NCCTM, a form of cellulose nanocrystals which is produced in our Windsor plant.   Three of these applications have now reached a high level of technical and commercial maturity and have been proven to provide cost benefits and sustained performance in the oil & gas, electronics and plastics segments,” said Sebastien Corbeil [emphasis mine], President and CEO of CelluForce. “Our product development teams are extremely pleased to see CelluForce NCCTM [nanocrystalline cellulose; this is a trade name for CNC] now being used in full scale trials for final customer acceptance tests”.

With the current shipment volumes forecast, the company expects to deplete its CelluForce NCCTM inventory by mid-2017 [emphasis mine]. The inventory depletion will pave the way for the company to start commercial production of CNC at its Windsor plant next year.

CelluForce has built a strong network of researchers with academic and industrial partners and continues to invest time and resources to develop, refine and expand applications for CNC in key priority industrial markets. Beyond oil & gas, electronics and plastics, some of these markets are adhesives, cement, paints and coatings, as well as personal and healthcare.

Furthermore, as it progressively prepares for commercial production, CelluForce has revamped its digital platform and presence, with the underlying objective of developing a better understanding of its product, applications and its innovative green technology capabilities.  Its new brand image is meant to convey the innovative, versatile and sustainable properties of CNC.

Nice to see that there is sufficient demand that the stockpile can be eliminated soon. In my last piece about CelluForce (a March 30, 2015 post), I noted an interim president, René Goguen. An April 27, 2015 CelluForce news release announced Sebastien Corbeil’s then new appointment as company president.

One final note, nanocrystalline cellulose (NCC) was the generic name coined by Canadian scientists for a specific cellulose nanomaterial. Over time, cellulose nanocrystals (CNC) became the preferred term for the generic material and CelluForce decided to trademark NCC (nanocrystalline cellulose) as their commercial brand name for cellulose nanocrystals.

*Added *nanomaterials* after the adjective, cellulosic, on March 31, 2023.

Ceapro (a Canadian biotech company) and its pressurized gas expanded technology with a mention of cellulose nanocrystals

At the mention of cellulose nanocrystals (CNC), my interest was piqued. From a Nov. 10, 2015 news item on Nanotechnology Now,

Ceapro Inc. (TSX VENTURE:CZO) (“Ceapro” or the “Company”), a growth-stage biotechnology company focused on the development and commercialization of active ingredients for healthcare and cosmetic industries, announced that Bernhard Seifried, Ph.D., Ceapro’s Senior Research Scientist and a co-inventor of its proprietary Pressurized Gas Expanded Technology (PGX) will present this morning [Nov. 10, 2015] at the prestigious 2015 Composites at Lake Louise engineering conference.

A Nov. 10, 2015 Ceapro press release, which originated the news item, describes the technology in a little more detail and briefly mentions cellulose nanocrystals (Note: A link has been removed),

Dr. Seifried will make a podium presentation entitled, “PGX – Technology: A versatile technology for generating advanced biopolymer materials,” which will feature the unique advantages of Ceapro’s enabling technology for processing aqueous solutions or dispersions of high molecular weight biopolymers, such as starch, polysaccharides, gums, pectins or cellulose nanocrystals, into open-porous morphologies, consisting of nano-scale particles and pores.

Gilles Gagnon, M.Sc., MBA, President and CEO of Ceapro, stated, “Our disruptive PGX enabling technology facilitates biopolymer processing at a new level for generating unique highly porous biopolymer morphologies that can be impregnated with bioactives/APIs or functionalized with other biopolymers to generate exfoliated nano-composites and novel advanced material. We believe this technology will provide transformational solutions not only for our internal programs, but importantly, can be applied much more broadly for Companies with whom we intend to partner globally.”

Utilizing its PGX technology, Ceapro successfully produces its bioactive pharmaceutical grade powder formulation of beta glucan, which is an ingredient in a number of personal care cosmeceutical products as well as a therapeutic agent used for wound healing and a lubricative agent integrated into injectable systems used to treat conditions like urinary incontinence. The Company is developing its enabling PGX platform at the commercial scale level. In order to fully exploit the use of this innovative technology, Ceapro has recently decided to further expand its new world-class manufacturing facility by 10,000 square feet.

“The PGX platform generates unique morphologies that are not possible to produce with other conventional drying systems,” Mr. Gagnon continued. “The ultra-light, highly porous polymer structures produced with PGX have a huge potential for use in an abundant number of applications ranging from functional foods, nutraceuticals, drug delivery and cosmeceuticals, to advanced technical applications.”

Ceapro’s novel PGX Technology can be utilized for a wide variety of bio-industrial processing applications including:

  • Dry aqueous solutions or dispersions of polymers derived from agricultural and/or forestry feedstock, such as polysaccharides, gums, biopolymers at mild processing conditions (40⁰C).
  • Purify biopolymers by removing lipids, salts, sugars and other contaminants, impurities and odours during the precipitation and drying process.
  • Micronize the polymer to a matrix consisting of highly porous fibrils or spherical particles having nano-scale features depending on polymer molecular structure.
  • Functionalize the polymer matrix by generating exfoliated nano-composites of various polymers forming fibers and/or spheres simply by mixing various aqueous polymer solutions/dispersions prior to PGX processing.
  • Impregnate the polymer matrix homogeneously with thermo-sensitive bioactives and/or hydrophobic modifiers to tune solubility of the final polymer bioactive matrix all in the same processing equipment at mild conditions (40⁰C).
  • Extract valuable bioactives at mild conditions from fermentation slurries, while drying the residual biomass.

The highly tune-able PGX process can generate exfoliated nano-composites and highly porous morphologies ranging from sub-micron particles (50nm) to micron-sized granules (2mm), as well as micro- and nanofibrils, granules, fine powders and aerogels with porosities of >99% and specific surface areas exceeding 300 m2/gram. The technology is based on a spray drying method, operating at mild temperatures (40°C) and moderate pressures (100-200 bar) utilizing PGX liquids, which is comprised of a mixture of food grade, recyclable solvents, generally regarded as safe (GRAS), such as pressurized carbon dioxide and anhydrous ethanol. The unique properties of PGX liquids afford single phase conditions and very low or vanishing interfacial tension during the spraying process. This then allows the generation of extremely fine particle morphologies with high porosity and a large specific surface area resulting in favorable solubilisation properties. This platform drying technology has been successfully scaled up from lab scale to pilot scale with a processing capacity of about 200 kg/hr of aqueous solutions.

Ceapro is based in Edmonton in the province of Alberta. This is a province with a CNC (cellulose nanocrytals) pilot production plant as I noted in my Nov. 10, 2013 posting where I belatedly mentioned the plant’s September 2013 commissioning date. The plant was supposed to have had a grand opening in 2014 according to a Sept. 12, 2013 Alberta Innovates Technology Futures [AITF] news release,

“Alberta Innovates-Technology Futures is proud to host and operate Western Canada’s only CNC pilot plant,” said Stephen Lougheed, AITF’s President and CEO. “Today’s commissioning is an important milestone in our ongoing efforts to provide technological know-how to our research and industry partners in their continued applied R&D and commercialization efforts. We’re able to provide researchers with more CNC than ever before, thereby accelerating the development of commercial applications.”

Members of Alberta’s and Western Canada’s growing CNC communities of expertise and interest spent the afternoon exploring potential commercial applications for the cellulose-based ‘wonder material.’

The CNC Pilot Plant’s Grand Opening is planned for 2014. [emphasis mine]

I have not been able to find any online trace of the plant’s grand opening. But I did find a few things. The AITF website has a page dedicated to CNC and its pilot plant and there’s a slide show about CNC and occupational health and safety from members of Alberta’s CNC Pilot Plant Research Team for their project, which started in 2014.

No mention in the Alberta media materials is ever made of CelluForce, a CNC production plant in the province of Québec, which predates the Alberta plant by more than 18 months (my Dec. 15, 2011 posting).

One last comment, CNC or cellulose nanocrystals are sometimes called nanocrystalline cellulose or NCC. This is a result of Canadians who were leaders at the time naming the substance NCC but over time researchers and producers from other countries have favoured the term CNC. Today (2015), the NCC term has been trademarked by Celluforce.

Cellulose nanocrystals and a computational approach to new materials

There’s been a lot of research into cellulose nanomaterials as scientists work to develop applications for cellulose nanocrystals (CNC)* and cellulose nanofibrils (CNF). To date, there have been no such breakthroughs or, as they used to say, no such ‘killer apps’. An Oct. 2, 2015 news item on Nanowerk highlights work which made finally lead the way,

Theoretically, nanocellulose could be the next hot supermaterial.

A class of biological materials found within numerous natural systems, most notably trees, cellulose nanocrystals have captured researchers’ attention for their extreme strength, toughness, light weight, and elasticity. The materials are so strong and tough, in fact, that many people think they could replace Kevlar in ballistic vests and combat helmets for military. Unlike their source material (wood), cellulose nanocrystals are transparent, making them exciting candidates for protective eyewear, windows, or displays.

Although there is a lot of excitement around the idea of nanocellulose-based materials, the reality often falls flat.

“It’s difficult to make these theoretical properties materialize in experiments,” said Northwestern Engineering’s Sinan Keten. “Researchers will make composite materials with nanocellulose and find that they fall short of theory.”

Keten, an assistant professor of mechanical, civil, and environmental engineering at Northwestern University’s McCormick School of Engineering, and his team are bringing the world one step closer to a materials-by-design approach toward developing nanocomposites with cellulose. They have developed a novel, multi-scale computational framework that explains why these experiments do not produce the ideal material and proposes solutions for fixing these shortcomings, specifically by modifying the surface chemistry of cellulose nanocrystals to achieve greater hydrogen bonding with polymers.

An Oct. 2, 2015 (McCormick School of Engineering) Northwestern University news release (also on EurekAlert), which originated the news item, provides more context for the research before describing a new technique for better understanding the materials,

Found within the cellular walls of wood, cellulose nanocrystals are an ideal candidate for polymer nanocomposites — materials where a synthetic polymer matrix is embedded with nanoscale filler particles. Nanocomposites are commonly made synthetic fillers, such as silica, clay, or carbon black, and are used in a myriad of applications ranging from tires to biomaterials.

“Cellulose nanocrystals are an attractive alternative because they are naturally bioavailable, renewable, nontoxic, and relatively inexpensive,” Keten said. “And they can be easily extracted from wood pulp byproducts from the paper industry.”

Problems arise, however, when researchers try to combine the nanocellulose filler particles with the polymer matrix. The field has lacked an understanding of how the amount of filler affects the composite’s overall properties as well as the nature of the nanoscale interactions between the matrix and the filler.

Keten’s solution improves this understanding by focusing on the length scales of the materials rather than the nature of the materials themselves. By understanding what factors influence properties on the atomic scale, his computational approach can predict the nanocomposite’s properties as it scales up in size — with a minimal need for experimentation.

“Rather than just producing a material and then testing it to see what its properties are, we instead strategically tune design parameters in order to develop materials with a targeted property in mind,” Sinko said. “When you are equalizing music, you can turn knobs to adjust the bass, treble, etc. to produce a desired sound. In materials-by-design, we similarly can ‘turn the knobs’ of specific parameters to adjust the resulting properties.”

Here’s a link to and a citation for the paper,

Tuning Glass Transition in Polymer Nanocomposites with Functionalized Cellulose Nanocrystals through Nanoconfinement by Xin Qin, Wenjie Xia, Robert Sinko, and Sinan Keten. Nano Lett., Article ASAP
DOI: 10.1021/acs.nanolett.5b02588 Publication Date (Web): September 4, 2015

Copyright © 2015 American Chemical Society

This paper is open access.

*Cellulose nanocrystals (CNC) are also known as nancellulose crystals (NCC).

Cellulose nanocrystals and supercapacitors at McMaster University (Canada)

Photos: Xuan Yang and Kevin Yager.

Photos: Xuan Yang and Kevin Yager. Courtesy McMaster University

I love that featherlike structure holding up a tiny block of something while balanced on what appears to be a series of medallions. What it has to do with supercapacitors (energy storage) and cellulose nanocrystals is a mystery but that’s one of the images you’ll find illustrating an Oct. 7, 2015 news item on Nanotechnology Now featuring research at McMaster University,

McMaster Engineering researchers Emily Cranston and Igor Zhitomirsky are turning trees into energy storage devices capable of powering everything from a smart watch to a hybrid car.

The scientists are using cellulose, an organic compound found in plants, bacteria, algae and trees, to build more efficient and longer-lasting energy storage devices or supercapacitors. This development paves the way toward the production of lightweight, flexible, and high-power electronics, such as wearable devices, portable power supplies and hybrid and electric vehicles.

A Sept. 10, 2015 McMaster University news release, which originated the news item, describes the research in more detail,

Cellulose offers the advantages of high strength and flexibility for many advanced applications; of particular interest are nanocellulose-based materials. The work by Cranston, an assistant chemical engineering professor, and Zhitomirsky, a materials science and engineering professor, demonstrates an improved three-dimensional energy storage device constructed by trapping functional nanoparticles within the walls of a nanocellulose foam.

The foam is made in a simplified and fast one-step process. The type of nanocellulose used is called cellulose nanocrystals and looks like uncooked long-grain rice but with nanometer-dimensions. In these new devices, the ‘rice grains’ have been glued together at random points forming a mesh-like structure with lots of open space, hence the extremely lightweight nature of the material. This can be used to produce more sustainable capacitor devices with higher power density and faster charging abilities compared to rechargeable batteries.

Lightweight and high-power density capacitors are of particular interest for the development of hybrid and electric vehicles. The fast-charging devices allow for significant energy saving, because they can accumulate energy during braking and release it during acceleration.

For anyone interested in a more detailed description of supercapacitors, there’s my favourite one which involves Captain America’s shield along with some serious science in my April 28, 2014 posting.

Getting back to the research at McMaster, here’s a link to and a citation for the paper,

Cellulose Nanocrystal Aerogels as Universal 3D Lightweight Substrates for Supercapacitor Materials by Xuan Yang, Kaiyuan Shi, Igor Zhitomirsky, and Emily D. Cranston. Advanced Materials DOI: 10.1002/adma.201502284View/save citation First published online 2 September 2015

This paper is behind a paywall.

One final bit, cellulose nanocrystals (CNC) are sometimes referred to as nanocrystalline cellulose (NCC).

Nanocellulose markets report released

I don’t usually feature reports about market conditions as this information lies far outside my understanding. In other words, this post is not an endorsement. However, as I often feature information on nanocellulose and, less frequently, on efforts of commercialize it, this June 3, 2015 news item on Azonano is being added here to provide a more complete picture of the ‘nanocellulose scene’,

The report “Nanocellulose Market by Type (Cellulose nanocrystals [aka nanocellulose nanocrystals {NCC} or {CNC}], Cellulose nanofibrils [CNF], cellulose nanocomposites, and others), Application (Composites and Packaging, Paper and Paper Board, Biomedicine, Rheology Modifier, Flexible Electronics and Sensors, and Others), and Geography – Regional Trends & Forecast to 2019” published by MarketsandMarkets, Nanocellulose Market is projected to register a market size in terms of value of $250 Million by 2019, signifying firm annualized CAGR [compound annual growth rate] of 19% between 2014 and 2019.

Here’s more from the MarketsandMarkets undated news release,

Early buyers will receive 10% customization on reports.

Nanocellulose market is projected to register a market size in terms of value of $250 Million by 2019, signifying firm annualized CAGR of 19% between 2014 and 2019.

The report also identifies the driving and restraining factors for nanocellulose market with an analysis of drivers, restraints, opportunities, and strengths. The market is segmented and the value has been forecasted on the basis of important regions, such as Asia-Pacific, North America, Europe, and Rest of the World (RoW). Further, the market is segmented and the demand and value are forecasted on the basis of various key applications of nano cellulose, such as composites and packaging, paper and paper board, biomedicine, and other applications.

Rising demand for technological advancements in end-user industries is driving the nanocellulose market

The application of nano cellulose [sic for all instances] in the end-user industries is witnessing a revolutionary change mainly due to the commercial development of nano cellulose driven by the increasing petroleum prices and the high-energy intensity in the production of chemicals and synthetic polymers. Nano cellulose is being developed for the novel use in applications ranging from scaffolds in tissue engineering, artificial skin and cartilage, wound healing, and vessel substitutes to biodegradable food packaging.

The nano cellulose is considered as a viable alternative to the more expensive high tech materials such as carbon fibers and carbon nanotubes. Since nano cellulose is made from tightly packed array of needle like crystals, it becomes incredibly tough. This makes it perfect for building future body armors that are both strong and light. Nano cellulose is also being used to make ultra-absorbent aerogels, fuel efficient cars, biofuel, and many more. Nano cellulose has also been used as a tablet binder in the pharmaceutical companies, with gradual increasing applications in tampons, advance wound healing, and developing a vital role in existing healthcare products.

North America is projected to drive the highest demand for nano cellulose in its end-user industries by 2020 [sic]

North America is the largest market for nano cellulose currently and the same is expected to continue till 2019. This is because of continuous technological innovations, advancements in healthcare industry, and rising focus on biodegradable food packaging. Europe market is expected to register second highest growth rate after North America. The Asia-Pacific market is expected to show a steady growth rate but the market is currently lower than North America and Europe. The U.S. and European countries are projected to be the hub of nano cellulose manufacturing in the world and are projected to be the major consumers of nano cellulose by 2019.

You can find the report, published in April 2015, here.

Synthesizing nerve tissues with 3D printers and cellulose nanocrystals (CNC)

There are lots of stories about bioprinting and tissue engineering here and I think it’s time (again) for one which one has some good, detailed descriptions and, bonus, it features cellulose nanocrystals (CNC) and graphene. From a May 13, 2015 news item on Azonano,

The printer looks like a toaster oven with the front and sides removed. Its metal frame is built up around a stainless steel circle lit by an ultraviolet light. Stainless steel hydraulics and thin black tubes line the back edge, which lead to an inner, topside box made of red plastic.

In front, the metal is etched with the red Bio Bot logo. All together, the gray metal frame is small enough to fit on top of an old-fashioned school desk, but nothing about this 3D printer is old school. In fact, the tissue-printing machine is more like a sci-fi future in the flesh—and it has very real medical applications.

Researchers at Michigan Technological University hope to use this newly acquired 3D bioprinter to make synthesized nerve tissue. The key is developing the right “bioink” or printable tissue. The nanotechnology-inspired material could help regenerate damaged nerves for patients with spinal cord injuries, says Tolou Shokuhfar, an assistant professor of mechanical engineering and biomedical engineering at Michigan Tech.

Shokuhfar directs the In-Situ Nanomedicine and Nanoelectronics Laboratory at Michigan Tech, and she is an adjunct assistant professor in the Bioengineering Department and the College of Dentistry at the University of Illinois at Chicago.

In the bioprinting research, Shokuhfar collaborates with Reza Shahbazian-Yassar, the Richard and Elizabeth Henes Associate Professor in the Department of Mechanical Engineering-Engineering Mechanics at Michigan Tech. Shahbazian-Yassar’s highly interdisciplinary background on cellulose nanocrystals as biomaterials, funded by the National Science Foundation’s (NSF) Biomaterials Program, helped inspire the lab’s new 3D printing research. “Cellulose nanocrystals with extremely good mechanical properties are highly desirable for bioprinting of scaffolds that can be used for live tissues,” says Shahbazian-Yassar. [emphases mine]

A May 11, 2015 Michigan Technological University (MTU) news release by Allison Mills, which originated the news item, explains the ‘why’ of the research,

“We wanted to target a big issue,” Shokuhfar says, explaining that nerve regeneration is a particularly difficult biomedical engineering conundrum. “We are born with all the nerve cells we’ll ever have, and damaged nerves don’t heal very well.”

Other facilities are trying to address this issue as well. Many feature large, room-sized machines that have built-in cell culture hoods, incubators and refrigeration. The precision of this equipment allows them to print full organs. But innovation is more nimble at smaller scales.

“We can pursue nerve regeneration research with a simpler printer set-up,” says Shayan Shafiee, a PhD student working with Shokuhfar. He gestures to the small gray box across the lab bench.

He opens the red box under the top side of the printer’s box. Inside the plastic casing, a large syringe holds a red jelly-like fluid. Shafiee replenishes the needle-tipped printer, pulls up his laptop and, with a hydraulic whoosh, he starts to print a tissue scaffold.

The news release expands on the theme,

At his lab bench in the nanotechnology lab at Michigan Tech, Shafiee holds up a petri dish. Inside is what looks like a red gummy candy, about the size of a half-dollar.

Here’s a video from MTU illustrating the printing process,

Back to the news release, which notes graphene could be instrumental in this research,

“This is based on fractal geometry,” Shafiee explains, pointing out the small crenulations and holes pockmarking the jelly. “These are similar to our vertebrae—the idea is to let a nerve pass through the holes.”

Making the tissue compatible with nerve cells begins long before the printer starts up. Shafiee says the first step is to synthesize a biocompatible polymer that is syrupy—but not too thick—that can be printed. That means Shafiee and Shokuhfar have to create their own materials to print with; there is no Amazon.com or even a specialty shop for bioprinting nerves.

Nerves don’t just need a biocompatible tissue to act as a carrier for the cells. Nerve function is all about electric pulses. This is where Shokuhfar’s nanotechnology research comes in: Last year, she was awarded a CAREER grant from NSF for her work using graphene in biomaterials research. [emphasis mine] “Graphene is a wonder material,” she says. “And it has very good electrical conductivity properties.”

The team is extending the application of this material for nerve cell printing. “Our work always comes back to the question, is it printable or not?” Shafiee says, adding that a successful material—a biocompatible, graphene-bound polymer—may just melt, mush or flat out fail under the pressure of printing. After all, imagine building up a substance more delicate than a soufflé using only the point of a needle. And in the nanotechnology world, a needlepoint is big, even clumsy.

Shafiee and Shokuhfar see these issues as mechanical obstacles that can be overcome.

“It’s like other 3D printers, you need a design to work from,” Shafiee says, adding that he will tweak and hone the methodology for printing nerve cells throughout his dissertation work. He is also hopeful that the material will have use beyond nerve regeneration.

This looks like a news release designed to publicize work funded at MTU by the US National Science Foundation (NSF) which is why there is no mention of published work.

One final comment regarding cellulose nanocrystals (CNC). They have also been called nanocrystalline cellulose (NCC), which you will still see but it seems CNC is emerging as the generic term. NCC has been trademarked by CelluForce, a Canadian company researching and producing CNC (or if you prefer, NCC) from forest products.

The shorter, the better for cellulose nanofibres

Cellulose nanomaterials can be derived from any number of plants. In Canada, we tend to think of our trees first but there are other sources such as cotton, bananas, hemp, carrots, and more.

In anticipation that cellulose nanofibres will become increasingly important constituents of various products and having noticed a resemblance to carbon nanotubes, scientists in Switzerland have investigated the possible toxicity issues according to a May 7, 2015 news item on Nanowerk,

Plant-based cellulose nanofibres do not pose a short-term health risk, especially short fibres, shows a study conducted in the context of National Research Programme “Opportunities and Risks of Nanomaterials” (NRP 64). But lung cells are less efficient in eliminating longer fibres.

Similar to carbon nanotubes that are used in cycling helmets and tennis rackets, cellulose nanofibres are extremely light while being extremely tear-resistant. But their production is significantly cheaper because they can be manufactured from plant waste of cotton or banana plants. “It is only a matter of time before they prevail on the market,” says Christoph Weder of the Adolphe Merkle Institute at the University of Fribourg [Switzerland].

A May 7, 2015 Swiss National Science Foundation (SNSF) press release, which originated the news item, provides more detail,

In the context of the National Research Programme “Opportunities and Risks of Nanomaterials” (NRP 64), he collaborated with the team of Barbara Rothen-Rutishauser to examine whether these plant-based nanofibres are harmful to the lungs when inhaled. The investigation does not rely on animal testing; instead the group of Rothen-Rutishauser developped a complex 3D lung cell system to simulate the surface of the lungs by using various human cell cultures in the test tube.

The shorter, the better

Their results (*) show that cellulose nanofibres are not harmful: the analysed lung cells showed no signs of acute stress or inflammation. But there were clear differences between short and long fibres: the lung cell system efficiently eliminated short fibres while longer fibres stayed on the cell surface.

“The testing only lasted two days because we cannot grow the cell cultures for longer,” explains Barbara Rothen-Rutishauser. For this reason, she adds, they cannot say if the longer fibre may have a negative impact on the lungs in the long term. Tests involving carbon nanotubes have shown that lung cells lose their equilibrium when they are faced with long tubes because they try to incorporate them into the cell to no avail. “This frustrated phagocytosis can trigger an inflammatory reaction,” says Rothen-Rutishauser. To avoid potential harm, she recommends that companies developing products with nanofibres use fibres that are short and pliable instead of long and rigid.

National Research Programme “Opportunities and Risks of Nanomaterials” (NRP 64)

The National Research Programme “Opportunities and Risks of Nanomaterials” (NRP 64) hopes to be able to bridge the gaps in our current knowledge on nanomaterials. Opportunities and risks for human health and the environment in relation to the manufacture, use and disposal of synthetic nanomaterials need to be better understood. The projects started their research work in December 2010.

I have a link to and a citation for the paper (Note: They use the term cellulose nanocrystals in the paper’s title),

Fate of Cellulose Nanocrystal Aerosols Deposited on the Lung Cell Surface In Vitro by Carola Endes, Silvana Mueller, Calum Kinnear, Dimitri Vanhecke, E. Johan Foster, Alke Petri-Fink, Christoph Weder, Martin J. D. Clift, and Barbara Rothen-Rutishauser. Biomacromolecules, 2015, 16 (4), pp 1267–1275 DOI: 10.1021/acs.biomac.5b00055 Publication Date (Web): March 19, 2015

Copyright © 2015 American Chemical Society

While tracking down the 2015 paper, I found this from 2011,

Investigating the Interaction of Cellulose Nanofibers Derived from Cotton with a Sophisticated 3D Human Lung Cell Coculture by Martin J. D. Clift, E. Johan Foster, Dimitri Vanhecke, Daniel Studer, Peter Wick, Peter Gehr, Barbara Rothen-Rutishauser, and Christoph Weder. Biomacromolecules, 2011, 12 (10), pp 3666–3673 DOI: 10.1021/bm200865j Publication Date (Web): August 16, 2011

Copyright © 2011 American Chemical Society

Both papers are behind a paywall.

Cellullose nanocrystals (CNC) and better concrete

Earlier this week in a March 30, 2015 post, I was bemoaning the dearth of applications for cellulose nanocrystals (CNC) with concomitant poor prospects for commercialization and problems for producers such as Canada’s CelluForce. Possibly this work at Purdue University (Indiana, US) will help address some of those issues (from a March 31, 2015 news item on Nanowerk),

Cellulose nanocrystals derived from industrial byproducts have been shown to increase the strength of concrete, representing a potential renewable additive to improve the ubiquitous construction material.

The cellulose nanocrystals (CNCs) could be refined from byproducts generated in the paper, bioenergy, agriculture and pulp industries. They are extracted from structures called cellulose microfibrils, which help to give plants and trees their high strength, lightweight and resilience. Now, researchers at Purdue University have demonstrated that the cellulose nanocrystals can increase the tensile strength of concrete by 30 percent.

A March 31, 2015 Purdue University news release by Emil Venere, which originated the news item, further describes the research published in print as of February 2015 (Note: A link has been removed),

One factor limiting the strength and durability of today’s concrete is that not all of the cement particles are hydrated after being mixed, leaving pores and defects that hamper strength and durability.

“So, in essence, we are not using 100 percent of the cement,” Zavattieri [Pablo Zavattieri, an associate professor in the Lyles School of Civil Engineering] said.

However, the researchers have discovered that the cellulose nanocrystals increase the hydration of the concrete mixture, allowing more of it to cure and potentially altering the structure of concrete and strengthening it.  As a result, less concrete needs to be used.

The cellulose nanocrystals are about 3 to 20 nanometers wide by 50-500 nanometers long – or about 1/1,000th the width of a grain of sand – making them too small to study with light microscopes and difficult to measure with laboratory instruments. They come from a variety of biological sources, primarily trees and plants.

The concrete was studied using several analytical and imaging techniques. Because chemical reactions in concrete hardening are exothermic, some of the tests measured the amount of heat released, indicating an increase in hydration of the concrete. The researchers also hypothesized the precise location of the nanocrystals in the cement matrix and learned how they interact with cement particles in both fresh and hardened concrete. The nanocrystals were shown to form little inlets for water to better penetrate the concrete.

The research dovetails with the goals of P3Nano, a public-private partnership supporting development and use of wood-based nanomaterial for a wide-range of commercial products.

“The idea is to support and help Purdue further advance the CNC-Cement technology for full-scale field trials and the potential for commercialization,” Zavattieri said.

The researchers have provided an image,

This transmission electron microscope image shows cellulose nanocrystals, tiny structures derived from renewable sources that might be used to create a new class of biomaterials with many potential applications. The structures have been shown to increase the strength of concrete. (Purdue Life Sciences Microscopy Center)

This transmission electron microscope image shows cellulose nanocrystals, tiny structures derived from renewable sources that might be used to create a new class of biomaterials with many potential applications. The structures have been shown to increase the strength of concrete. (Purdue Life Sciences Microscopy Center)

Here’s a link to and a citation for the paper,

The influence of cellulose nanocrystal additions on the performance of cement paste by Yizheng Cao, Pablo Zavaterri, Jeff Youngblood, Robert Moon, and Jason Weiss. Cement and Concrete Composites, Volume 56, February 2015, Pages 73–83  DOI: 10.1016/j.cemconcomp.2014.11.008 Available online 18 November 2014

The paper is behind a paywall.

One final note, cellulose nanocrystals (CNC) may also be referred to nanocrystalline cellulose (NCC).