Tag Archives: neurology

Implantable brain-computer interface collaborative community (iBCI-CC) launched

That’s quite a mouthful, ‘implantable brain-computer interface collaborative community (iBCI-CC). I assume the organization will be popularly known by its abbreviation.`A March 11, 2024 Mass General Brigham news release (also on EurekAlert) announces the iBCI-CC’s launch, Note: Mass stands for Massachusetts,

Mass General Brigham is establishing the Implantable Brain-Computer Interface Collaborative Community (iBCI-CC). This is the first Collaborative Community in the clinical neurosciences that has participation from the U.S. Food and Drug Administration (FDA).

BCIs are devices that interface with the nervous system and use software to interpret neural activity. Commonly, they are designed for improved access to communication or other technologies for people with physical disability. Implantable BCIs are investigational devices that hold the promise of unlocking new frontiers in restorative neurotechnology, offering potential breakthroughs in neurorehabilitation and in restoring function for people living with neurologic disease or injury.

The iBCI-CC (https://www.ibci-cc.org/) is a groundbreaking initiative aimed at fostering collaboration among diverse stakeholders to accelerate the development, safety and accessibility of iBCI technologies. The iBCI-CC brings together researchers, clinicians, medical device manufacturers, patient advocacy groups and individuals with lived experience of neurological conditions. This collaborative effort aims to propel the field of iBCIs forward by employing harmonized approaches that drive continuous innovation and ensure equitable access to these transformative technologies.

One of the first milestones for the iBCI-CC was to engage the participation of the FDA. “Brain-computer interfaces have the potential to restore lost function for patients suffering from a variety of neurological conditions. However, there are clinical, regulatory, coverage and payment questions that remain, which may impede patient access to this novel technology,” said David McMullen, M.D., Director of the Office of Neurological and Physical Medicine Devices in the FDA’s Center for Devices and Radiological Health (CDRH), and FDA member of the iBCI-CC. “The IBCI-CC will serve as an open venue to identify, discuss and develop approaches for overcoming these hurdles.”

The iBCI-CC will hold regular meetings open both to its members and the public to ensure inclusivity and transparency. Mass General Brigham will serve as the convener of the iBCI-CC, providing administrative support and ensuring alignment with the community’s objectives.

Over the past year, the iBCI-CC was organized by the interdisciplinary collaboration of leaders including Leigh Hochberg, MD, PhD, an internationally respected leader in BCI development and clinical testing and director of the Center for Neurotechnology and Neurorecovery at Massachusetts General Hospital; Jennifer French, MBA, executive director of the Neurotech Network and a Paralympic silver medalist; and Joe Lennerz, MD, PhD, a regulatory science expert and director of the Pathology Innovation Collaborative Community. These three organizers lead a distinguished group of Charter Signatories representing a diverse range of expertise and organizations.

“As a neurointensive care physician, I know how many patients with neurologic disorders could benefit from these devices,” said Dr. Hochberg. “Increasing discoveries in academia and the launch of multiple iBCI and related neurotech companies means that the time is right to identify common goals and metrics so that iBCIs are not only safe and effective, but also have thoroughly considered the design and function preferences of the people who hope to use them”.

Jennifer French, said, “Bringing diverse perspectives together, including those with lived experience, is a critical component to help address complex issues facing this field.” French has decades of experience working in the neurotech and patient advocacy fields. Living with a spinal cord injury, she also uses an implanted neurotech device for daily functions. “This ecosystem of neuroscience is on the cusp to collectively move the field forward by addressing access to the latest groundbreaking technology, in an equitable and ethical way. We can’t wait to engage and recruit the broader BCI community.”

Joe Lennerz, MD, PhD, emphasized, “Engaging in pre-competitive initiatives offers an often-overlooked avenue to drive meaningful progress. The collaboration of numerous thought leaders plays a pivotal role, with a crucial emphasis on regulatory engagement to unlock benefits for patients.”

The iBCI-CC is supported by key stakeholders within the Mass General Brigham system. Merit Cudkowicz, MD, MSc, chair of the Neurology Department, director of the Sean M. Healey and AMG Center for ALS at Massachusetts General Hospital, and Julianne Dorn Professor of Neurology at Harvard Medical School, said, “There is tremendous excitement in the ALS [amyotrophic lateral sclerosis, or Lou Gehrig’s disease] community for new devices that could ease and improve the ability of people with advanced ALS to communicate with their family, friends, and care partners. This important collaborative community will help to speed the development of a new class of neurologic devices to help our patients.”

Bailey McGuire, program manager of strategy and operations at Mass General Brigham’s Data Science Office, said, “We are thrilled to convene the iBCI-CC at Mass General Brigham’s DSO. By providing an administrative infrastructure, we want to help the iBCI-CC advance regulatory science and accelerate the availability of iBCI solutions that incorporate novel hardware and software that can benefit individuals with neurological conditions. We’re excited to help in this incredible space.”

For more information about the iBCI-CC, please visit https://www.ibci-cc.org/.

About Mass General Brigham

Mass General Brigham is an integrated academic health care system, uniting great minds to solve the hardest problems in medicine for our communities and the world. Mass General Brigham connects a full continuum of care across a system of academic medical centers, community and specialty hospitals, a health insurance plan, physician networks, community health centers, home care, and long-term care services. Mass General Brigham is a nonprofit organization committed to patient care, research, teaching, and service to the community. In addition, Mass General Brigham is one of the nation’s leading biomedical research organizations with several Harvard Medical School teaching hospitals. For more information, please visit massgeneralbrigham.org.

About the iBCI-CC Organizers:

Leigh Hochberg, MD, PhD is a neurointensivist at Massachusetts General Hospital’s Department of Neurology, where he directs the MGH Center for Neurotechnology and Neurorecovery. He is also the IDE Sponsor-Investigator and Directorof the BrainGate clinical trials, conducted by a consortium of scientists and clinicians at Brown, Emory, MGH, VA Providence, Stanford, and UC-Davis; the L. Herbert Ballou University Professor of Engineering and Professor of Brain Science at Brown University; Senior Lecturer on Neurology at Harvard Medical School; and Associate Director, VA RR&D Center for Neurorestoration and Neurotechnology in Providence.

Jennifer French, MBA, is the Executive Director of Neurotech Network, a nonprofit organization that focuses on education and advocacy of neurotechnologies. She serves on several Boards including the IEEE Neuroethics Initiative, Institute of Neuroethics, OpenMind platform, BRAIN Initiative Multi-Council and Neuroethics Working Groups, and the American Brain Coalition. She is the author of On My Feet Again (Neurotech Press, 2013) and is co-author of Bionic Pioneers (Neurotech Press, 2014). French lives with tetraplegia due to a spinal cord injury. She is an early user of an experimental implanted neural prosthesis for paralysis and is the Past-President and Founding member of the North American SCI Consortium.

Joe Lennerz, MD PhD, serves as the Chief Scientific Officer at BostonGene, an AI analytics and genomics startup based in Boston. Dr. Lennerz obtained a PhD in neurosciences, specializing in electrophysiology. He works on biomarker development and migraine research. Additionally, he is the co-founder and leader of the Pathology Innovation Collaborative Community, a regulatory science initiative focusing on diagnostics and software as a medical device (SaMD), convened by the Medical Device Innovation Consortium. He also serves as the co-chair of the federal Clinical Laboratory Fee Schedule (CLFS) advisory panel to the Centers for Medicare & Medicaid Services (CMS).

it’s been a while since I’ve come across BrainGate (see Leigh Hochberg bio in the above news release), which was last mentioned here in an April 2, 2021 posting, “BrainGate demonstrates a high-bandwidth wireless brain-computer interface (BCI).”

Here are two of my more recent postings about brain-computer interfaces,

This next one is an older posting but perhaps the most relevant to the announcement of this collaborative community’s purpose,

There’s a lot more on brain-computer interfaces (BCI) here, just use the term in the blog search engine.

Neurons and graphene carpets

I don’t entirely grasp the carpet analogy. Actually, I have no why they used a carpet analogy but here’s the June 12, 2018 ScienceDaily news item about the research,

A work led by SISSA [Scuola Internazionale Superiore di Studi Avanzati] and published on Nature Nanotechnology reports for the first time experimentally the phenomenon of ion ‘trapping’ by graphene carpets and its effect on the communication between neurons. The researchers have observed an increase in the activity of nerve cells grown on a single layer of graphene. Combining theoretical and experimental approaches they have shown that the phenomenon is due to the ability of the material to ‘trap’ several ions present in the surrounding environment on its surface, modulating its composition. Graphene is the thinnest bi-dimensional material available today, characterised by incredible properties of conductivity, flexibility and transparency. Although there are great expectations for its applications in the biomedical field, only very few works have analysed its interactions with neuronal tissue.

A June 12, 2018 SISSA press release (also on EurekAlert), which originated the news item, provides more detail,

A study conducted by SISSA – Scuola Internazionale Superiore di Studi Avanzati, in association with the University of Antwerp (Belgium), the University of Trieste and the Institute of Science and Technology of Barcelona (Spain), has analysed the behaviour of neurons grown on a single layer of graphene, observing a strengthening in their activity. Through theoretical and experimental approaches the researchers have shown that such behaviour is due to reduced ion mobility, in particular of potassium, to the neuron-graphene interface. This phenomenon is commonly called ‘ion trapping’, already known at theoretical level, but observed experimentally for the first time only now. “It is as if graphene behaves as an ultra-thin magnet on whose surface some of the potassium ions present in the extra cellular solution between the cells and the graphene remain trapped. It is this small variation that determines the increase in neuronal excitability” comments Denis Scaini, researcher at SISSA who has led the research alongside Laura Ballerini.

The study has also shown that this strengthening occurs when the graphene itself is supported by an insulator, like glass, or suspended in solution, while it disappears when lying on a conductor. “Graphene is a highly conductive material which could potentially be used to coat any surface. Understanding how its behaviour varies according to the substratum on which it is laid is essential for its future applications, above all in the neurological field” continues Scaini, “considering the unique properties of graphene it is natural to think for example about the development of innovative electrodes of cerebral stimulation or visual devices”.

It is a study with a double outcome. Laura Ballerini comments as follows: “This ‘ion trap’ effect was described only in theory. Studying the impact of the ‘technology of materials’ on biological systems, we have documented a mechanism to regulate membrane excitability, but at the same time we have also experimentally described a property of the material through the biology of neurons.”

Dexter Johnson in a June 13, 2018 posting, on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website), provides more context for the work (Note: Links have been removed),

While graphene has been tapped to deliver on everything from electronics to optoelectronics, it’s a bit harder to picture how it may offer a key tool for addressing neurological damage and disorders. But that’s exactly what researchers have been looking at lately because of the wonder material’s conductivity and transparency.

In the most recent development, a team from Europe has offered a deeper understanding of how graphene can be combined with neurological tissue and, in so doing, may have not only given us an additional tool for neurological medicine, but also provided a tool for gaining insights into other biological processes.

“The results demonstrate that, depending on how the interface with [single-layer graphene] is engineered, the material may tune neuronal activities by altering the ion mobility, in particular potassium, at the cell/substrate interface,” said Laura Ballerini, a researcher in neurons and nanomaterials at SISSA.

Ballerini provided some context for this most recent development by explaining that graphene-based nanomaterials have come to represent potential tools in neurology and neurosurgery.

“These materials are increasingly engineered as components of a variety of applications such as biosensors, interfaces, or drug-delivery platforms,” said Ballerini. “In particular, in neural electrode or interfaces, a precise requirement is the stable device/neuronal electrical coupling, which requires governing the interactions between the electrode surface and the cell membrane.”

This neuro-electrode hybrid is at the core of numerous studies, she explained, and graphene, thanks to its electrical properties, transparency, and flexibility represents an ideal material candidate.

In all of this work, the real challenge has been to investigate the ability of a single atomic layer to tune neuronal excitability and to demonstrate unequivocally that graphene selectively modifies membrane-associated neuronal functions.

I encourage you to read Dexter’s posting as it clarifies the work described in the SISSA press release for those of us (me) who may fail to grasp the implications.

Here’s a link to and a citation for the paper,

Single-layer graphene modulates neuronal communication and augments membrane ion currents by Niccolò Paolo Pampaloni, Martin Lottner, Michele Giugliano, Alessia Matruglio, Francesco D’Amico, Maurizio Prato, Josè Antonio Garrido, Laura Ballerini, & Denis Scaini. Nature Nanotechnology (2018) DOI: https://doi.org/10.1038/s41565-018-0163-6 Published online June 13, 2018

This paper is behind a paywall.

All this brings to mind a prediction made about the Graphene Flagship and the Human Brain Project shortly after the European Commission announced in January 2013 that each project had won funding of 1B Euros to be paid out over a period of 10 years. The prediction was that scientists would work on graphene/human brain research.