Tag Archives: New York State

Corruption charges for New York state’s nanotechnology chief

I used to write about New York state and its College of Nanoscale Science and Engineering quite frequently as I was fascinated with their public outreach programs and the quantity of funding for nanotechnology education and research they received. Sadly, it seems the college has gotten caught up in a corruption scandal. Here’s more from a Sept. 22, 2016 article by Nathan Tempey for gothamist.com,

Alain Kaloyeros, longtime head of SUNY Polytechnic Institute and ally of Governor Andrew Cuomo, was arrested this morning along with several developers who were big-time donors to Cuomo, and two longtime members of Cuomo’s inner circle, Todd Howe and Joseph Percoco. Kaloyeros has for years been one of (if not the) highest-paid state employee, making at least $1.17 million last year in dual roles with the college and the Research Foundation for SUNY, which channels state funding to the school. In addition to boosting nanotechnology and allegedly fixing bids for signature Cuomo development projects around the state, Kaloyeros has a taste for John Varvatos threads, Italian sportscars, and misogynistic Facebook memes.

Most pertinent today is his alleged participation in rigging the Buffalo Billions project, which dedicated $1 billion in state funds to Buffalo factories, research facilities, and other developments, and the Central New York Hub for Emerging Nano Industries, a $15 million, high-tech film studio that was supposed to bring jobs to the Syracuse area (by and large, it hasn’t). The feds are charging Kaloyeros with conspiracy to commit wire fraud for allegedly helping to tailor requests for proposals in the two projects to two specific developers who were allegedly paying off Howe and Percoco, and had given hundreds of thousands of dollars to Cuomo’s campaign.

The federal charge against Kaloyeros carries as many as 20 years in prison.

“I really do hope there is a trial in this case so New Yorkers can see, in gory detail, what their state government has been up to,” U.S. Attorney for the Southern District of New York Preet Bharara said at a press conference this afternoon [Sept. 22, 2016].

Kaloyeros is also being hit with three felony state anti-trust charges for similar alleged schemes related to dorm construction and other SUNY real estate arrangements, Attorney General Eric Schneiderman announced this afternoon [Sept. 22, 2016]. The charges carry 4 to 12 years in prison.

“There’s a long history of public corruption in New York state, going back to the days of Alexander Hamiltion and Aaron Burr, but it feels like we are living in a golden age of graft recently,” Schneiderman said at his own press conference.

There’s a lot more detail in Tempey’s article.

I can’t make too many comments about these allegations other than to note that the prosecutors seem to be relishing their roles.

The latest news has Kaloyeros resigning from his position in New York state and job hunting (from an Oct. 19, 2016 article by Tom Precious for The Buffalo News,

Alain Kaloyeros, accused in an alleged bid rigging in New York, is going job hunting in Pennsylvania.

Kaloyeros, the nanotechnology expert whose tasks once included overseeing Buffalo Billion projects like the SolarCity development, sought permission from a federal magistrate to travel to Pennsylvania “for employment purposes.

Science diplomacy: high school age Pakistani students (terror attack survivors) attend NanoDiscovery Institute in New York State

The visiting students are from the Peshawar Army School in Pakistan, which suffered a terrorist attack in 2014. From the Peshawar School Massacre Wikipedia entry (Note: Links have been removed),

On 16 December 2014, seven gunmen affiliated with the Tehrik-i-Taliban (TTP) conducted a terrorist attack on the Army Public School in the northwestern Pakistani city of Peshawar. The militants, all of whom were foreign nationals, included one Chechen, three Arabs and two Afghans. They entered the school and opened fire on school staff and children,[8][9] killing 145 people, including 132 schoolchildren, ranging between eight and eighteen years of age.[10][11] A rescue operation was launched by the Pakistan Army’s Special Services Group (SSG) special forces, who killed all seven terrorists and rescued 960 people.[9][12][13] Chief military spokesman Major General Asim Bajwa said in a press conference that at least 130 people had been injured in the attack.[8]

As of July 29, 2015 seven of the student survivors are visiting New York State to attend a NanoDiscovery Institute program, according to a July 29, 2015 news item on Nanotechnology Now,

In support of Governor Andrew M. Cuomo’s commitment to provide high-tech educational opportunities in New York State, SUNY Polytechnic Institute’s Colleges of Nanoscale Science and Engineering (SUNY Poly CNSE), in partnership with Meridian International Center (Meridian) and with the support of the U.S. Embassy in Islamabad, today announced that SUNY Poly CNSE will host a group of students from Peshawar, Pakistan, from July 29 through August 4 [2015] at the institution’s world-class $20 billion Albany NanoTech Complex. The weeklong “NanoDiscovery Institute” will follow a custom-tailored curriculum designed to inspire the students with the limitless potential of the nanosciences. The students, who will take part in a number of nanotechnology-themed activities, presentations, and tours, survived a brutal attack on their school by terrorists last December when more than 140 students and teachers were killed in their classrooms.

A July 29, 2015 SUNY (State University of New York) Polytechnic Institute’s Colleges of Nanoscale Science and Engineering (SUNY Poly CNSE), news release, which originated the news item, describes the purpose of the visit to CNSE in more detail,

“Governor Andrew Cuomo’s innovation-based educational blueprint not only offers unprecedented opportunities for students in New York State, it also enables the exchange of scientific know-how far beyond its borders and we are thrilled to be able to host these students from Pakistan and engage and inspire them through the power of nanotechnology,” said Dr. Alain Kaloyeros, President and CEO of SUNY Poly. “It has been a pleasure to work with Meridian to create this positive educational experience for these students who have endured more in their young lives than most of us will see in a lifetime. We hope their visit will give them a greater understanding of the nanosciences, as well as an appreciation for America and New York State and our commitment to progress through education, the cornerstone of a better world.”

“We are proud to connect these science-oriented students from Pakistan with the globally recognized educational resources of SUNY Poly CNSE,” said Bonnie Glick, Senior Vice President of Meridian. “This exchange will expose these students to the nanotechnology world through a weeklong visit to SUNY Poly CNSE’s unmatched facilities. This is a perfect way to show Meridian’s mission in action as we seek to share ideas and engage people across borders and cultures to promote global leadership and to help to form future leaders. For these students in particular, this first-of-a-kind opportunity will not erase what happened, but we hope it will provide them with tools to enhance their educations and to foment global collaboration. Through the Nanotechnology Institute at SUNY Poly CNSE, these students will see, concretely, that there is more that unites us than divides us – science will be a powerful unifier.”

During their visit to SUNY Poly CNSE, the visiting Peshawar Army Public School students will create business plans as part of a Nanoeconomics course designed by SUNY Poly CNSE staff members, and they will also participate in nanotechnology career briefings. Two Pakistani high school teachers and a military liaison are accompanying the students as they attend the five-day NanoDiscovery Institute facilitated by SUNY Poly CNSE professors. Four students from the U.S. with similar academic interests will join the group, encouraging cross-cultural interactions. The group will become immersed in the nanosciences through hands on experiments and engaging presentations; they will learn how small a nanometer is and see first-hand New York State’s unique high-tech ecosystem to better understand what is underpinning technological progress and how an education focused on science, technology, engineering, and mathematics (STEM) can lead to exciting opportunities. As part of the U.S.-Pakistan Global Leadership and STEM program designed by Meridian to promote global collaboration through the sciences, the students will also engage in a global leadership skills training in Washington, D.C., and participate in cultural activities in New York City.

For a description of all of the activities planned for the students’ two week visit to the US, Shivani Gonzalez offers more detail in a July 29, 2015 article for timesunion.com,

“I am so thankful for this opportunity,” said Hammad, one of the students. (Organizers of the trip asked that the student’s last names not be used by the media.) “I know that this education will help us in the future.”

In December [2014[, the Peshawar school was attacked …

International outrage over the attack prompted the Pakistani government, which has been criticized for its lackluster pursuit of violent extremists, to strengthen its military and legal efforts.

The students are in the country for two weeks, and are being hosted by the Meridian International Center in Washington, D.C., where their packed itinerary began earlier this week. In addition to tours of the Pentagon and Capitol, the group met Secretary of State John Kerry.

After that [NanoDiscovery Institute], the students will go to the Baseball Hall of Fame in Cooperstown for a different kind of cultural exchange: The visitors will learn how to play baseball, and their U.S. counterparts will learn the fundamentals of cricket. A dual-sports tournament is planned.

The students will also visit West Point to see the similarities and differences with their military school back home.

To finish up the trip, the students will present their final nanotech projects to SUNY Poly staff, and will fly back to Washington to present the projects to U.S. military officials.

What a contrast for those students. In six months they go from surviving a terrorist attack at school to being part of a science diplomacy initiative where they are being ‘wined and dined’.

If you are interested in the Meridian International Center, there is this brief description at the end of the CNSE July 29, 2015 news release about the visit,

Meridian is a non-profit, non-partisan organization based in Washington, DC. For more than 50 years, Meridian has brought international visitors to the United States to engage with their counterparts in government, industry, academia, and civil society. Meridian promotes global leadership through the exchange of ideas, people, and culture. Meridian creates innovative education, cultural, and policy programs that strengthen U.S. engagement with the world through the power of exchange, that prepare public and private sector leaders for a complex global future, and that provide a neutral forum for international collaboration across sectors. For more information, visit meridian.org.

The Meridian website is strongly oriented to visual communication (lots of videos) which is a bit a disadvantage for me at the moment since my web browser, Firefox, has disabled Adobe Flash due to security concerns.

Frozen smoke from Union College (New York state)

I’m always a sucker for a good metaphor or analogy and this February 3, 2014 news item on ScienceDaily nicely fit the bill,

One day, Union College’s [New York state] Aerogel Team’s novel way of making “frozen smoke” could improve some of our favorite machines, including cars.

“When you hold aerogel it feels like nothing — like frozen smoke. It’s about 95 to 97 percent air,” said Ann Anderson, professor of mechanical engineering. “Nano-porous, solid and very low density, aerogel is made by removing solvents from a wet-gel. It’s used for many purposes, like thermal insulation (on the Mars Rover), in windows or in extreme-weather clothing and sensors.”

It seems the researchers have developed a new technique for fabricating aerogel which they are wanting to commercialize (from a Feb. 2014 [?] news release originally published as an article in the Union College Magazine’s Fall 2013 issue),

Together with Brad Bruno, Mary Carroll and others, Anderson is studying the feasibility of commercializing their aerogel fabrication process. A time and money-saver, it could appeal to industries already using aerogel made in other ways.

During rapid supercritical extraction (RSCE), chemicals gel together (like Jell-O) in a hot press; the resulting wet-gel is dried by removing solvents (the wet part). The remaining aerogel (dried gel), is created in hours, rather than the days or weeks alternative methods take.

RSCE, Anderson said, is also approximately seven times cheaper, requiring one hour of labor for every 8 hours the other methods need.

A good place for such a process, and Union aerogel, is the automotive industry.

“Our 3-way catalytic aerogels promote chemical reactions that convert the three major pollutants in automotive exhaust – unburned hydrocarbons, nitrogen oxides and carbon monoxide – into less harmful water, nitrogen and carbon dioxide,” Anderson said. “Because aerogels have very high surface areas and good thermal properties, we think they could replace precious metals, like platinum, used in current catalytic converters.”

Indeed, the surface area of one 0.5-gram bit of aerogel equals 250 square meters.

“That’s a lot of surface area for gases to come in contact with, facilitating very efficient pollution mitigation,” Anderson said.

I have mentioned aerogel before in several postings including this Aug. 20, 2012 posting titled: Solid smoke; a new generation of aerogels.

Florida and its Advanced Development and Manufacturing (NANO-ADM) Center

A new ‘nano’ manufacturing facility to be located in Florida state is featured in a November 25, 2013 news item on Azonano,

Nanotherapeutics, Inc. announced today that on November 20, 2013, the Company held a Type C meeting with the U.S. Food and Drug Administration (“FDA”), providing an opportunity for the FDA to review and provide feedback on Nanotherapeutics’ plans for its Advanced Development and Manufacturing (NANO-ADM) Center facility to be located in Copeland Park, Alachua, FL.

The review and subsequent discussions with the FDA focused on its cGMP [Current Good Manufacturing Practice] manufacturing space, which will provide Nanotherapeutics with capabilities to develop and produce bulk vaccines and biologics for the Department of Defense (DOD), other government agencies and industry. The Company expressed its appreciation to the FDA for granting the meeting, which represents the achievement of a major milestone in the ongoing design of a successful NANO-ADM Center.

You can find out more about Nanotherapeutics, Inc. here and for anyone curious about cGMPs, there’s this page on the FDA website,

Current Good Manufacturing Practices (cGMPs) for human pharmaceuticals affect every American.  Consumers expect that each batch of medicines they take will meet quality standards so that they will be safe and effective.  Most people, however, are not aware of cGMPs, or how FDA assures that drug manufacturing processes meet these basic objectives.  Recently, FDA has announced a number of regulatory actions taken against drug manufacturers based on the lack of cGMPs.  This paper discusses some facts that may be helpful in understanding how cGMPs establish the foundation for drug product quality.

What are cGMPs?

cGMP refers to the Current Good Manufacturing Practice regulations enforced by the US Food and Drug Administration (FDA).  cGMPs provide for systems that assure proper design, monitoring, and control of manufacturing processes and facilities….

Prior to this latest announcement about the NANO-ADM, there was some information offered in the company’s Oct. 23, 2013 news release about the groundbreaking event,

Nanotherapeutics, Inc. today announced that a groundbreaking ceremony for its Advanced Development and Manufacturing Center (NANO-ADM) in Copeland Park, Alachua, FL, will be held this morning [Oct. 23, 2013] at 9:00 am ET. …

The ceremony celebrates the groundbreaking of the 30-acre NANO-ADM center being constructed through privately secured financing to fulfill the contract awarded to Nanotherapeutics by the US Department of Defence (DOD) earlier this year. … The goal of the contract is to enable faster and more effective development of medical countermeasures designed to treat and protect military populations against chemical, biological, radiological and nuclear attacks and outbreaks of naturally occurring, emerging and genetically engineered infectious diseases.

Nanotherapeutics and its network of 16 world-class teaming partners and collaborators for this project are currently able to furnish core services in response to the DOD’s requirements, should the need arise. … single-use equipment of one-of-a-kind, 165,000 square foot facility. The NANO-ADM Center will integrate new biomanufacturing technologies with existing capabilities enabling the development of both small molecule and biologic products. …

The Nov. 21, 2013 news release, which originated the news item on Azonano, provided this additional detail,

Construction of the NANO-ADM Center is scheduled for completion in early 2015, with commissioning, qualification and full occupancy expected by mid-March 2015.

It seems to me that while New York State has garnered a lot of attention for its nanotechnology model, as evidenced by a book on the topic: New York’s Nanotechnology Model: Building the Innovation Economy: Summary of a Symposium (2013), and much more, Florida has been quietly establishing itself as another center for nanotechnology and innovation.

New York state, a second nanotechnology hub with a $1.5B US investment, and computer chip technology

New York State announced, In an Oct. 10, 2013 news item on Nanowerk, a new investment in nanotechnology,

Governor Andrew M. Cuomo today announced that six leading global technology companies will invest $1.5 billion to create ‘Nano Utica,’ the state’s second major hub of nanotechnology research and development. The public-private partnership, to be spearheaded by the SUNY College of Nanoscale Science and Engineering (SUNY CNSE) and the SUNY Institute of Technology (SUNYIT), will create more than 1,000 new high-tech jobs on the campus of SUNYIT in Marcy.

The consortium of leading global technology companies that will create Nano Utica are led by Advanced Nanotechnology Solutions Incorporated (ANSI), SEMATECH, Atotech, and SEMATECH and CNSE partner companies, including IBM, Lam Research and Tokyo Electron. The consortium will be headquartered at the CNSE-SUNYIT Computer Chip Commercialization Center, and will build on the research and development programs currently being conducted by ANSI, SEMATECH, and their private industry partners at the SUNY CNSE campus in Albany, further cementing New York’s international recognition as the preeminent hub for 21st century nanotechnology innovation, education, and economic development.

“With today’s announcement, New York is replicating the tremendous success of Albany’s College of Nanoscale Science and Engineering right here in Utica and paving the way for more than a billion dollars in private investment and the creation of more than 1,000 new jobs,” Governor Cuomo said. “The new Nano Utica facility will serve as a cleanroom and research hub for Nano Utica whose members can tap into the training here at SUNYIT and local workforce, putting the Mohawk Valley on the map as an international location for nanotechnology research and development. This partnership demonstrates how the new New York is making targeted investments to transition our state’s economy to the 21st century and take advantage of the strengths of our world class universities and highly trained workforce.”

The Oct. 10, 2013 SUNY College of Nanoscale Science and Engineering news release, which originated the news item, describes some of the investment’s specifics,

The computer chip packaging consortium will work inside the complex now under construction on the SUNYIT campus, which is due to open in late 2014. As a result of the commitment of the major companies to locate at Nano Utica, the $125 million facility is being expanded to accommodate the new collaboration, with state-of-the-art cleanrooms, laboratories, hands-on education and workforce training facilities, and integrated offices encompassing 253,000 square feet. The cleanroom will be the first-of-its-kind in the nation: a 56,000-square-foot cleanroom stacked on two levels, providing more than five times the space that was originally planned. To support the project, New York State will invest $200 million over ten years for the purchasing of new equipment for the Nano Utica facility; no private company will receive any state funds as part of the initiative.

Research and development to be conducted includes computer chip packaging and lithography development and commercialization. These system-on-a-chip innovations will drive a host of new technologies and products in the consumer and business marketplace, including smart phones, tablets, and laptops; 3D systems for gaming; ultrafast and secure computer servers and IT systems; and sensor technology for emerging health care, clean energy and environmental applications.

Interestingly (to me if no one else), there was a Sept. 2011 announcement from New York state about a new investment in nanoscale computer chip technology and a consortium of companies which also included IBM. From my Sept. 29, 2011 posting,

$4.4B is quite the investment(especially considering the current international economic gyrations) and it’s the amount that IBM (International Business Machines), Intel, and three other companies announced that they are investing to “create the next generation of computer chip technology.” From the Sept. 28, 2011 news item on Nanowerk,

The five companies involved are Intel, IBM, GLOBALFOUNDRIES, TSMC and Samsung. New York State secured the investments in competition with countries in Europe, Asia and the Middle East. The agreements mark an historic level of private investment in the nanotechnology sector in New York. [emphasis mine]

….

IBM has long invested in New York state and its nanotechnology initiatives. I mentioned a $1.5B IBM investment (greater than the US federal government’s annual funding that year for its National Nanotechnology Initiative) in a July 17, 2008 posting.

I wish these announcements would include information as to how the money is being paid out, e.g., one lump sum or an annual disbursement over five years or … .

One last bit. the College of Nanoscale Science and Engineering had a somewhat controversial change of status and change of relationship to what I was then calling the University of Albany (mentioned in my July 26, 2013 posting).

Lomiko Metals, batteries, graphite/graphene, and a strategic alliance with the Research Foundation of Stony Brook University and Graphene Laboratories, Inc.

Lomiko Metals, a Vancouver-based (Canada)  company, has been mentioned here with respect to a property in Québec (Quatre Milles) containing graphite flakes in an April 17, 2013 posting, which also mentioned the company’s strategic alliance with Graphene Laboratories Inc.

Building on that previous announcement Lomiko Metals has announced a new member to the strategic alliance in a May 30, 2013 news item on Azonano,

LOMIKO METALS INC. (the “Company”) announces that the Research Foundation of Stony Brook University (RF), Graphene Laboratories, Inc. (Graphene Labs) and Lomiko Metals, Inc. have agreed to investigate novel, energy-focused applications for graphene.

“This new agreement with Stony Brook University’s researchers means Lomiko is participating in the development of the technology graphene makes possible,” commented Paul Gill, CEO of Lomiko. “Using graphene to achieve very high energy densities in super capacitors and batteries is a transfomative technology. Strategically, Lomiko needs to be participating in this vital research to achieve the goal of creating a vertically integrated graphite and graphene business.”

The May 29, 2013 Lomiko Metals news release, which originated the news item, has more details,

Under its Strategic Alliance Agreement with Lomiko, Graphene Labs — a leading graphene manufacturer — will process graphite samples from Lomiko’s Quatre Milles property into graphene. The Research Foundation, through Stony Brook University’s Advanced Energy Research and Technology Center (AERTC) and the Center for Advanced Sensor Technology (Sensor CAT), will then examine the most efficient methods of using this graphene for energy storage applications. There is no certainty the roposed [sic]  operaton [sic] will be economically viable.

For all parties involved, the goal of this collaboration is to map commercially viable routes for the fabrication of graphene-based energy storage devices. By participating in these projects, the partners will address the cost of graphene production, as well as how best to integrate the material into commercial energy storage devices.

As I find the various business/academic partnerships interesting, I’m including the About section of the news release,

About Graphene Laboratories Inc.

Graphene Laboratories, Inc. primary focus is to apply fundamental science and technology to bring functional advanced materials and devices to market.
Graphene Laboratories Inc. operates the Graphene Supermarket® (www.graphene-supermarket.com), and is a leading supplier of advanced 2D materials to customers around the globe. In addition to the retail offering of advanced 2D materials, it offers analytical services, prototype development and consulting.

Located in Calverton NY, Graphene Labs benefits from the unique high tech community on Long Island. Efforts by Graphene Laboratories are supported by Brookhaven National Laboratory, Stony Brook Business Incubator, and the Clean Energy Business Incubator Program (CEBIP), hosted by the New York State Energy Research and Development Authority (NYSERDA).

For more information on Graphene Laboratories, Inc, visit www.graphenelabs.com or contact them at (516)-382-8649 or via email at info@graphenelabs.com

About AERTC

Located in the Research and Development Park on the campus of Stony Brook University, the Advanced Energy Incubator is space that is home to companies within the Advanced Energy Center. The Advanced Energy Center (www.aertc.org) is a true partnership of academic institutions, research institutions, energy providers and companies. Its mission is innovative energy research, education and technology deployment with a focus on efficiency, conservation,renewable energy and nanotechnology applications for new and novel sources of energy.

About Sensor CAT

The New York State Center for Advanced Technology at Stony Brook University provides intellectual, logistical, and material resources for the development of new product technologies – by facilitating R&D partnerships between New York companies with an in-state footprint and university researchers. The important outcomes are new jobs, new patents, training of students in company product matters, and improved competitiveness for New York State businesses.

About Lomiko Metals Inc.

Lomiko Metals Inc. is a Canadian based exploration-stage company. Its mineral properties include the Quatre Milles Graphite Property and the Vines Lake property which both have had recent major discoveries. On October 22 and November, 13 2012, Lomiko Metals Inc. announced 11 drill holes had intercepted high grade graphite at the 3,780 Ha Quatre Milles Property. On March 15, 2013 Lomiko reported 75.3% of graphite tested was >200 mesh and classified as graphite flake with 38.36% in the >80 mesh, large flake category. 85.3% of test results higher than the 94% carbon purity considered high carbon content, with the median test result being 98.35%.

The highlight of Lomiko’s testing was nine (9) sieve samples which captured flakes of varying sizes which tested 100.00% carbon. Both fine and flake material may be amenable to graphene conversion by Lomiko Metals Inc. partner Graphene Laboratories.

The project is located 175 km north of the Port of Montreal and 26 km from a major highway on a well-maintained gravel road.

For more information on Lomiko Metals Inc., review the website at www.lomiko.com or contact A. Paul Gill at 604-729-5312 or email: info@lomiko.com

On Behalf of the Board

“A. Paul Gill” Chief Executive Officer

We seek safe harbor. Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

I couldn’t resist that last bit either. As I understand it, this means ‘caveat emptor’ or buyer beware. In short do your research.

Self-cleaning schools

I’m all for self-cleaning, which is why this Apr. 19, 2013 news item on Azonano caught my attention,

“We’re always trying to create a cleaner environment for students and teachers in an effort to reduce absenteeism and the associated costs,” says Dr. Henry Kiernan, Superintendent with the Bellmore-Merrick School District in New York. “The NanoTouch® products provide an additional benefit of communicating our commitment, which plays an important role in our relationship with parents.”

Bellmore-Merrick has installed facility touch points, including door push pads and handle wraps, on all bathroom doors in an initial 5 high schools. Other schools have brought the portable NanoSeptic surfaces into the classroom in the form of snack mats and desk mats.

“The pre-school students were fascinated by the snack mats and what they did. The children focused intently on keeping their snacks on the mat,” says Bonny Phillips , teacher at Liberty Christian Academy’s Early Learning Center. “It also provided an additional opportunity for learning about cleanliness and food handling.”

“Schools will continue to use one-time kill products like disinfectants, but NanoTouch enhances their cleaning efforts by working to eliminate even hard-to-kill microbes such as C. Diff, 24 hours a day, seven days a week,” says Mark Sisson , co-founder of NanoTouch. “And because alcohol based hand sanitizers pose a risk of fire around kids, NanoTouch products help to fill that void in schools.”

In today’s world of shrinking budgets, it’s sometimes difficult for schools to find funding for advanced technologies like NanoTouch, even when these products are inexpensive. However, some innovative thinking by a community bank has led to several classrooms being equipped with NanoSeptic snack mats. SelectBank, headquartered in Forest, Virginia, donates snack mats to area pre-schools and day cares as a way to give back to their community.

“When we can help area schools and children, and get some positive recognition from parents, that’s good for our community and for our business,” says Sherri Sackett , Marketing Manager at SelectBank.

And the parents at these schools are enthusiastically embracing the use of this new nanotechnology.

“We were very excited to hear that our son’s school has started using this new product,” says Robert Thomas, parent of a student at the Blue Ridge Montessori School. “Not only is this creating a cleaner classroom environment for our child, but it’s doing so in a healthier way, without poisons or heavy metals. And it’s such a unique product line that the school is considering selling the travel kits as a fundraiser.”

“NanoTouch is out to make the world a better and healthier place to live, work, and play. This is particularly important for sensitive populations, such as our youth,” says NanoTouch co-founder, Dennis Hackemeyer. “And, what can’t be understated is the communications ability of NanoTouch products to educate and change behavior.'”

It’s unusual these days to see a company market a ‘nanotechnology’ product by incorporating nano into  product names (e.g., NanoSeptic) and the company name (NanoTouch).

The NanoTouch website does not offer information about its management team (I was not able to find either co-founder although it is possible to find a listing for the company’s advisory board) nor is there much information about the technology. Here’s the best technology description I could find on the website, from the NanoTouch NanoSeptic versus other antimicrobials page,

NanoTouch products utilize several complex components which all work together. Our specialized fabrication process not only provides products that are durable enough to withstand routine cleaning, but also helps to accentuate the effectiveness of the antimicrobial ingredients and maximize the surface’s self-cleaning action. Our products contain widely used, harmless, “green” chemistry, which does not include diluted poisons or heavy metals. The antimicrobial technology we deploy, molecularly bonded on a nano-scale, provides a non-leaching, self-cleaning surface that constantly traps and kills bacteria, viruses and fungi through a catalytic oxidation process using available light.

All of these solutions approach the problem of bacteria, viruses and fungus by cleaning surfaces…which is absolutely necessary. NanoTouch is not meant to replace these methods, but instead, it is a perfect complement and another step in the reduction of germ transfer. While the these approaches clean a touchpoint or a person’s hand, contamination happens with the next contact or from airborne microbes. NanoTouch self-cleans…constantly killing bacteria, viruses and fungi.

I did find some details about the company co-founders on their respective  LinkedIn pages, Dennis Hackemeyer and Mark Sisson. Both men are associated with another company, KiteString, from the Our Approach page,

KiteString uses innovative technological solutions in the service of creative to achieve Marketing Relevance. Yes, we deliver traditional creative services like design, Web development, and direct mail, but we also provide technology-based marketing solutions and client service processes and systems that deliver measurably better operational efficiency, enhanced brand management, improved collaboration and greater marketing response rates.

I’m not sure what the KiteString description of their approach means but it looks like KiteString’s main activity is marketing. Anyway, that’s not so important given that my main interest is NanoTouch. For that matter, it would have been nice to have found more technical information. For example, How precisely is this product nanotechnology-enabled? Are there scientists working for or associated in some fashion with NanoTouch? What kind of testing has the product undergone? These are a few of the questions that leap to mind.

Nano success in NY State breeds competition for credit as US election nears

It’s been a while since I’ve posted any items about nanotechnology efforts in New York state. In general, I’ve found the efforts at communication and public engagement quite impressive as they’ve been important to the overall strategy (I suspect some credit should be given to serendipity) of making New York state a center for nanotechnology research, training, and industry.

Yesterday, May 8, 2012, on the occasion of a visit from President Barack Obama there was a bit of a kerfuffle regarding who should get the credit for New York state’s leadership, Democrats or Republicans. Since this is an election year in the US, this was perhaps predictable.

From the May 8, 2012 article by Tom Precious for BuffaloNews.com,

In Albany [New York state capital] today, it’s “who is the greater visionary” time.

On Monday, an aide to Gov. Andrew Cuomo told an Albany radio station it was first the idea of the governor’s father, former Gov. Mario Cuomo, to pump state money into what has become a center with more than $13 billion of private investment and that today is undergoing a major new expansion partnering with the likes of IBM and Intel.

Hours later on Monday, Assembly Speaker Sheldon Silver, a Manhattan Democrat, noted that he has led the charge for two decades to support the university center that is helping to make Albany a high-tech center for nanoscience engineering, and now, chip manufacturing.

So today, a couple hours before Air Force One was set to leave Washington for Albany for the Obama stop, it was “take credit time” for the Republicans.

State Republican Party Chairman Ed Cox said the nanoscale center in Albany was “developed about 10 years ago by a Republican governor based on Republican principles.” In a conference call with reporters, Cox said the Albany facility was a result of the “leadership” of former Gov. George E. Pataki.

“Arguing over credit is something for small-minded people who get bogged down in the political headlines of the day. What I tried to do was put in place policies that speak for themselves,” Pataki said in the phone call this morning. He then pointed, for a second time in the call, to the timeline of its important events on the nanoscale facility’s web site that begins in 2001 — when Pataki was in office.

I think there’s enough credit to go around, although perhaps not during an election year. In any event, I think their initiative has been quite impressive.

* In headline ‘breed’ corrected to ‘breeds’ on Oct. 11, 2013.

IBM, Intel, and New York state

$4.4B is quite the investment(especially considering the current international economic gyrations) and it’s the amount that IBM (International Business Machines), Intel, and three other companies announced that they are investing to “create the next generation of computer chip technology.” From the Sept. 28, 2011 news item on Nanowerk,

The five companies involved are Intel, IBM, GLOBALFOUNDRIES, TSMC and Samsung. New York State secured the investments in competition with countries in Europe, Asia and the Middle East. The agreements mark an historic level of private investment in the nanotechnology sector in New York. [emphasis mine]

Research and development facilities will be located in Albany, Canandaigua, Utica, East Fishkill and Yorktown Heights. In addition, Intel separately agreed to establish its 450mm East Coast Headquarters to support the overall project management in Albany. [emphasis mine]

The money is being spent on two projects,

The investment in the state is made up of two projects. The first project, which will be led by IBM and its partners, will focus on making the next two generations of computer chips. These new chips will power advanced systems of all sizes, including, among other things computers and national security applications. This new commitment by IBM brings its total investment in chip technology in New York to more than $10 billion in the last decade.

The second project, which is a joint effort by Intel, IBM, TSMC, Global Foundries and Samsung, will focus on transforming existing 300mm technology into the new 450mm technology. [emphasis mine] The new technology will produce more than twice the number of chips processed on today’s 300 mm wafers thus lowering costs to deliver future generations of technology with greater value and lower environmental impact.

I had to read that bit about increasing the size of the chips a few times since the news items I come across usually crow about decreasing the size.

I have been intermittently following news about the nanotechnology sector in New York state for some time (scroll about 1/2 way down my January 29, 2010 posting). In 2008, IBM announced a $1.5B investment toward the nanotechnology sector in that state.

I wish there had been some description of the investments in the nanotechnology sector as opposed to the generalized statements about jobs, purchasing ‘Made in NY’ technology, and the reference to millimeter (mm) scale computer chips. As for the “450mm East Coast Headquarters,” they may want to rethink that name.