Tag Archives: Nick Bostrom

A computer simulation inside a computer simulation?

Stumbling across an entry from National Film Board of Canada for the Venice VR (virtual reality) Expanded section at the 77th Venice International Film Festival (September 2 to 12, 2020) and a recent Scientific American article on computer simulations provoked a memory from Frank Herbert’s 1965 novel, Dune. From an Oct. 3, 2007 posting on Equivocality; A journal of self-discovery, healing, growth, and growing pains,

Knowing where the trap is — that’s the first step in evading it. This is like single combat, Son, only on a larger scale — a feint within a feint within a feint [emphasis mine]…seemingly without end. The task is to unravel it.

—Duke Leto Atreides, Dune [Note: Dune is a 1965 science-fiction novel by US author Frank Herbert]

Now, onto what provoked memory of that phrase.

The first computer simulation “Agence”

Here’s a description of “Agence” and its creators from an August 11, 2020 Canada National Film Board (NFB) news release,

Two-time Emmy Award-winning storytelling pioneer Pietro Gagliano’s new work Agence (Transitional Forms/National Film Board of Canada) is an industry-first dynamic film that integrates cinematic storytelling, artificial intelligence, and user interactivity to create a different experience each time.

Agence is premiering in official competition in the Venice VR Expanded section at the 77th Venice International Film Festival (September 2 to 12), and accessible worldwide via the online Venice VR Expanded platform.

About the experience

Would you play god to intelligent life? Agence places the fate of artificially intelligent creatures in your hands. In their simulated universe, you have the power to observe, and to interfere. Maintain the balance of their peaceful existence or throw them into a state of chaos as you move from planet to planet. Watch closely and you’ll see them react to each other and their emerging world.

About the creators

Created by Pietro Gagliano, Agence is a co-production between his studio lab Transitional Forms and the NFB. Pietro is a pioneer of new forms of media that allow humans to understand what it means to be machine, and machines what it means to be human. Previously, Pietro co-founded digital studio Secret Location, and with his team, made history in 2015 by winning the first ever Emmy Award for a virtual reality project. His work has been recognized through hundreds of awards and nominations, including two Emmy Awards, 11 Canadian Screen Awards, 31 FWAs, two Webby Awards, a Peabody-Facebook Award, and a Cannes Lion.

Agence is produced by Casey Blustein (Transitional Forms) and David Oppenheim (NFB) and executive produced by Pietro Gagliano (Transitional Forms) and Anita Lee (NFB). 

About Transitional Forms

Transitional Forms is a studio lab focused on evolving entertainment formats through the use of artificial intelligence. Through their innovative approach to content and tool creation, their interdisciplinary team transforms valuable research into dynamic, culturally relevant experiences across a myriad of emerging platforms. Dedicated to the intersection of technology and art, Transitional Forms strives to make humans more creative, and machines more human.

About the NFB

David Oppenheim and Anita Lee’s recent VR credits also include the acclaimed virtual reality/live performance piece Draw Me Close and The Book of Distance, which premiered at the Sundance Film Festival and is in the “Best of VR” section at Venice this year. Canada’s public producer of award-winning creative documentaries, auteur animation, interactive stories and participatory experiences, the NFB has won over 7,000 awards, including 21 Webbys and 12 Academy Awards.

The line that caught my eye? “Would you play god to intelligent life?” For the curious, here’s the film’s trailer,

Now for the second computer simulation (the feint within the feint).

Are we living in a computer simulation?

According to some thinkers in the field, the chances are about 50/50 that we are computer simulations, which makes “Agence” a particularly piquant experience.

An October 13, 2020 article ‘Do We Live in a Simulation? Chances are about 50 – 50‘ by Anil Ananthaswamy for Scientific American poses the question with an answer that’s unexpectedly uncertain, Note: Links have been removed,

It is not often that a comedian gives an astrophysicist goose bumps when discussing the laws of physics. But comic Chuck Nice managed to do just that in a recent episode of the podcast StarTalk.The show’s host Neil deGrasse Tyson had just explained the simulation argument—the idea that we could be virtual beings living in a computer simulation. If so, the simulation would most likely create perceptions of reality on demand rather than simulate all of reality all the time—much like a video game optimized to render only the parts of a scene visible to a player. “Maybe that’s why we can’t travel faster than the speed of light, because if we could, we’d be able to get to another galaxy,” said Nice, the show’s co-host, prompting Tyson to gleefully interrupt. “Before they can program it,” the astrophysicist said,delighting at the thought. “So the programmer put in that limit.”

Such conversations may seem flippant. But ever since Nick Bostrom of the University of Oxford wrote a seminal paper about the simulation argument in 2003, philosophers, physicists, technologists and, yes, comedians have been grappling with the idea of our reality being a simulacrum. Some have tried to identify ways in which we can discern if we are simulated beings. Others have attempted to calculate the chance of us being virtual entities. Now a new analysis shows that the odds that we are living in base reality—meaning an existence that is not simulated—are pretty much even. But the study also demonstrates that if humans were to ever develop the ability to simulate conscious beings, the chances would overwhelmingly tilt in favor of us, too, being virtual denizens inside someone else’s computer. (A caveat to that conclusion is that there is little agreement about what the term “consciousness” means, let alone how one might go about simulating it.)

In 2003 Bostrom imagined a technologically adept civilization that possesses immense computing power and needs a fraction of that power to simulate new realities with conscious beings in them. Given this scenario, his simulation argument showed that at least one proposition in the following trilemma must be true: First, humans almost always go extinct before reaching the simulation-savvy stage. Second, even if humans make it to that stage, they are unlikely to be interested in simulating their own ancestral past. And third, the probability that we are living in a simulation is close to one.

Before Bostrom, the movie The Matrix had already done its part to popularize the notion of simulated realities. And the idea has deep roots in Western and Eastern philosophical traditions, from Plato’s cave allegory to Zhuang Zhou’s butterfly dream. More recently, Elon Musk gave further fuel to the concept that our reality is a simulation: “The odds that we are in base reality is one in billions,” he said at a 2016 conference.

For him [astronomer David Kipping of Columbia University], there is a more obvious answer: Occam’s razor, which says that in the absence of other evidence, the simplest explanation is more likely to be correct. The simulation hypothesis is elaborate, presuming realities nested upon realities, as well as simulated entities that can never tell that they are inside a simulation. “Because it is such an overly complicated, elaborate model in the first place, by Occam’s razor, it really should be disfavored, compared to the simple natural explanation,” Kipping says.

Maybe we are living in base reality after all—The Matrix, Musk and weird quantum physics notwithstanding.

It’s all a little mind-boggling (a computer simulation creating and playing with a computer simulation?) and I’m not sure how far how I want to start thinking about the implications (the feint within the feint within the feint). Still, it seems that the idea could be useful as a kind of thought experiment designed to have us rethink our importance in the world. Or maybe, as a way to have a laugh at our own absurdity.

Are we and our world a computer simulation?

There is a fascinating Dec. 10, 2012 news item on Nanowerk about a philosophical question that’s being researched by a team of physicists at the University of Washington (Note: I have removed a link),

The concept that current humanity could possibly be living in a computer simulation comes from a 2003 paper published in Philosophical Quarterly (“Are You Living In a Computer Simulation?“) by Nick Bostrom, a philosophy professor at the University of Oxford. In the paper, he argued that at least one of three possibilities is true:

The human species is likely to go extinct before reaching a “posthuman” stage.

Any posthuman civilization is very unlikely to run a significant number of simulations of its evolutionary history.

We are almost certainly living in a computer simulation.

He also held that “the belief that there is a significant chance that we will one day become posthumans who run ancestor simulations is false, unless we are currently living in a simulation.”

Here’s what the University of Washington physicists, from the Dec. 10, 2012 University of Washington news release by Vincent Stricherz, which originated the news item,

With current limitations and trends in computing, it will be decades before researchers will be able to run even primitive simulations of the universe. But the UW team has suggested tests that can be performed now, or in the near future, that are sensitive to constraints imposed on future simulations by limited resources.

Currently, supercomputers using a technique called lattice quantum chromodynamics and starting from the fundamental physical laws that govern the universe can simulate only a very small portion of the universe, on the scale of one 100-trillionth of a meter, a little larger than the nucleus of an atom, said Martin Savage, a UW physics professor.

However, Savage said, there are signatures of resource constraints in present-day simulations that are likely to exist as well in simulations in the distant future, including the imprint of an underlying lattice if one is used to model the space-time continuum.

The supercomputers performing lattice quantum chromodynamics calculations essentially divide space-time into a four-dimensional grid. That allows researchers to examine what is called the strong force, one of the four fundamental forces of nature and the one that binds subatomic particles called quarks and gluons together into neutrons and protons at the core of atoms.

“If you make the simulations big enough, something like our universe should emerge,” Savage said. Then it would be a matter of looking for a “signature” in our universe that has an analog in the current small-scale simulations.

Savage and colleagues Silas Beane of the University of New Hampshire, who collaborated while at the UW’s Institute for Nuclear Theory, and Zohreh Davoudi, a UW physics graduate student, suggest that the signature could show up as a limitation in the energy of cosmic rays.

In a paper they have posted on arXiv, an online archive for preprints of scientific papers in a number of fields, including physics, they say that the highest-energy cosmic rays would not travel along the edges of the lattice in the model but would travel diagonally, and they would not interact equally in all directions as they otherwise would be expected to do.

“This is the first testable signature of such an idea,” Savage said.

If such a concept turned out to be reality, it would raise other possibilities as well. For example, Davoudi suggests that if our universe is a simulation, then those running it could be running other simulations as well, essentially creating other universes parallel to our own.

“Then the question is, ‘Can you communicate with those other universes if they are running on the same platform?’” she said. [emphasis mine]

Here’s the citation for and a link to the arXiv.org paper by Beane, Davoudi, and Savage,

Constraints on the Universe as a Numerical Simulation by Silas R. Beane, Zohreh Davoudi, Martin J. Savage (Submitted on 4 Oct 2012 (v1), last revised 9 Nov 2012 (this version, v2))

Fascinating, yes?