Tag Archives: Nikolay Zheludev

US Air Force wants to merge classical and quantum physics

The US Air Force wants to merge classical and quantum physics for practical purposes according to a May 5, 2014 news item on Azonano,

The Air Force Office of Scientific Research has selected the Harvard School of Engineering and Applied Sciences (SEAS) to lead a multidisciplinary effort that will merge research in classical and quantum physics and accelerate the development of advanced optical technologies.

Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, will lead this Multidisciplinary University Research Initiative [MURI] with a world-class team of collaborators from Harvard, Columbia University, Purdue University, Stanford University, the University of Pennsylvania, Lund University, and the University of Southampton.

The grant is expected to advance physics and materials science in directions that could lead to very sophisticated lenses, communication technologies, quantum information devices, and imaging technologies.

“This is one of the world’s strongest possible teams,” said Capasso. “I am proud to lead this group of people, who are internationally renowned experts in their fields, and I believe we can really break new ground.”

A May 1, 2014 Harvard University School of Engineering and Applied Sciences news release, which originated the news item, provides a description of project focus: nanophotonics and metamaterials along with some details of Capasso’s work in these areas (Note: Links have been removed),

The premise of nanophotonics is that light can interact with matter in unusual ways when the material incorporates tiny metallic or dielectric features that are separated by a distance shorter than the wavelength of the light. Metamaterials are engineered materials that exploit these phenomena, producing strange effects, enabling light to bend unnaturally, twist into a vortex, or disappear entirely. Yet the fabrication of thick, or bulk, metamaterials—that manipulate light as it passes through the material—has proven very challenging.

Recent research by Capasso and others in the field has demonstrated that with the right device structure, the critical manipulations can actually be confined to the very surface of the material—what they have dubbed a “metasurface.” These metasurfaces can impart an instantaneous shift in the phase, amplitude, and polarization of light, effectively controlling optical properties on demand. Importantly, they can be created in the lab using fairly common fabrication techniques.

At Harvard, the research has produced devices like an extremely thin, flat lens, and a material that absorbs 99.75% of infrared light. But, so far, such devices have been built to order—brilliantly suited to a single task, but not tunable.

This project, however,is focused on the future (Note: Links have been removed),

“Can we make a rapidly configurable metasurface so that we can change it in real time and quickly? That’s really a visionary frontier,” said Capasso. “We want to go all the way from the fundamental physics to the material building blocks and then the actual devices, to arrive at some sort of system demonstration.”

The proposed research also goes further. A key thrust of the project involves combining nanophotonics with research in quantum photonics. By exploiting the quantum effects of luminescent atomic impurities in diamond, for example, physicists and engineers have shown that light can be captured, stored, manipulated, and emitted as a controlled stream of single photons. These types of devices are essential building blocks for the realization of secure quantum communication systems and quantum computers. By coupling these quantum systems with metasurfaces—creating so-called quantum metasurfaces—the team believes it is possible to achieve an unprecedented level of control over the emission of photons.

“Just 20 years ago, the notion that photons could be manipulated at the subwavelength scale was thought to be some exotic thing, far fetched and of very limited use,” said Capasso. “But basic research opens up new avenues. In hindsight we know that new discoveries tend to lead to other technology developments in unexpected ways.”

The research team includes experts in theoretical physics, metamaterials, nanophotonic circuitry, quantum devices, plasmonics, nanofabrication, and computational modeling. Co-principal investigator Marko Lončar is the Tiantsai Lin Professor of Electrical Engineering at Harvard SEAS. Co-PI Nanfang Yu, Ph.D. ’09, developed expertise in metasurfaces as a student in Capasso’s Harvard laboratory; he is now an assistant professor of applied physics at Columbia. Additional co-PIs include Alexandra Boltasseva and Vladimir Shalaev at Purdue, Mark Brongersma at Stanford, and Nader Engheta at the University of Pennsylvania. Lars Samuelson (Lund University) and Nikolay Zheludev (University of Southampton) will also participate.

The bulk of the funding will support talented graduate students at the lead institutions.

The project, titled “Active Metasurfaces for Advanced Wavefront Engineering and Waveguiding,” is among 24 planned MURI awards selected from 361 white papers and 88 detailed proposals evaluated by a panel of experts; each award is subject to successful negotiation. The anticipated amount of the Harvard-led grant is up to $6.5 million for three to five years.

For anyone who’s not familiar (that includes me, anyway) with MURI awards, there’s this from Wikipedia (Note: links have been removed),

Multidisciplinary University Research Initiative (MURI) is a basic research program sponsored by the US Department of Defense (DoD). Currently each MURI award is about $1.5 million a year for five years.

I gather that in addition to the Air Force, the Army and the Navy also award MURI funds.

Fish gets invisibility cloak first, cat waits patiently

An invisibility cloak devised by researchers in Singapore and China is receiving a high degree of interest online with a June 14, 2013 news item on Nanowerk, a June 11, 2013 article by Philip Ball for Nature, and a June 13, 2013 article by Sarah Gates for Huffington Post.

The research paper, Natural Light Cloaking for Aquatic and Terrestrial Creatures by Hongsheng Chen, Bin Zheng, Lian Shen, Huaping Wang, Xianmin Zhang, Nikolay Zheludev, Baile Zhang was submitted June 7, 2013 to arXiv.org (arXiv is an e-print service in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance and statistics. Submissions to arXiv must conform to Cornell University academic standards. arXiv is owned and operated by Cornell University, a private not-for-profit educational institution),

A cloak that can hide living creatures from sight is a common feature of mythology but still remains unrealized as a practical device. To preserve the phase of wave, the previous cloaking solution proposed by Pendry \emph{et al.} required transforming electromagnetic space around the hidden object in such a way that the rays bending around it have to travel much faster than those passing it by. The difficult phase preservation requirement is the main obstacle for building a broadband polarization insensitive cloak for large objects. Here, we suggest a simplifying version of Pendry’s cloak by abolishing the requirement for phase preservation as irrelevant for observation in incoherent natural light with human eyes that are phase and polarization insensitive. This allows the cloak design to be made in large scale using commonly available materials and we successfully report cloaking living creatures, a cat and a fish, in front of human eyes.

What they seem to be saying is that it’s possible to create an invisibility cloak perceptible to the human eye that is made of everyday materials.

I’ll show the fish video first. Pay attention as that fish darts behind its invisibility cloak almost as soon as the video starts (from the Nanowerk Youbube channel; June 14, 2013 Nanowerk news item),

Then, there’s the cat (also from the Nanowerk Youtube channel),


The June 11, 2013 article by Philip Ball for Nature describes the device which provides invisibility,

… This latest addition to the science of invisibility cloaks is one of the simplest implementations so far, but there’s no denying its striking impact.

The ‘box of invisibility’ has been designed by a team of researchers at Zhejiang University in Hangzhou, China, led by Hongsheng Chen, and their coworkers. The box is basically a set of prisms made from high-quality optical glass that bend light around any object in the enclosure around which the prisms are arrayed, the researchers describe in a paper posted on the online repository arXiv.

Ball suggests that this latest invisibility cloak is very similar to a Victorian era music hall trick,

As such, the trick is arguably closer to ‘disappearances’ staged in Victorian music hall using arrangements of slanted mirrors than to the modern use of substances called metamaterials to achieve invisibility by guiding light rays in unnatural ways.

As far as I know, the ‘metamaterial’ invisibility cloaks require very sophisticated equipment for their production, are incredibly expensive, and aren’t all that practical.

Gates’s June 13, 2013 article for the Huffington Post provides an overview of some of the recent work on invisibility cloaks and metamaterials, as well as, previous work done by Dr. Hongsheng Chen, an electromagnetics professor at Zhejiang University (China), and Baile Zhang, an assistant physics professor at Singapore’s Nanyang Technological University before they unveiled this latest invisibility cloak.

My most recent posting on the topic was a June 6, 2013 piece on a temporal invisibility cloak.