Tag Archives: Nile University

Prawn (shrimp) shopping bags and saving the earth

Using a material (shrimp shells) that is disposed of as waste to create a biodegradable product (shopping bags) can only be described as a major win. A Jan. 10, 2017 news item on Nanowerk makes the announcement,

Bioengineers at The University of Nottingham are trialling how to use shrimp shells to make biodegradable shopping bags, as a ‘green’ alternative to oil-based plastic, and as a new food packaging material to extend product shelf life.

The new material for these affordable ‘eco-friendly’ bags is being optimised for Egyptian conditions, as effective waste management is one of the country’s biggest challenges.

An expert in testing the properties of materials, Dr Nicola Everitt from the Faculty of Engineering at Nottingham, is leading the research together with academics at Nile University in Egypt.

“Non-degradable plastic packaging is causing environmental and public health problems in Egypt, including contamination of water supplies which particularly affects living conditions of the poor,” explains Dr Everitt.

Natural biopolymer products made from plant materials are a ‘green’ alternative growing in popularity, but with competition for land with food crops, it is not a viable solution in Egypt.

A Jan. 10, 2017 University of Nottingham press release, which originated the news item,expands on the theme,

This new project aims to turn shrimp shells, which are a part of the country’s waste problem into part of the solution.

Dr Everitt said: “Use of a degradable biopolymer made of prawn shells for carrier bags would lead to lower carbon emissions and reduce food and packaging waste accumulating in the streets or at illegal dump sites. It could also make exports more acceptable to a foreign market within a 10-15-year time frame. All priorities at a national level in Egypt.”

Degradable nanocomposite material

The research is being undertaken to produce an innovative biopolymer nanocomposite material which is degradable, affordable and suitable for shopping bags and food packaging.

Chitosan is a man-made polymer derived from the organic compound chitin, which is extracted from shrimp shells, first using acid (to remove the calcium carbonate “backbone” of the crustacean shell) and then alkali (to produce the long molecular chains which make up the biopolymer).

The dried chitosan flakes can then be dissolved into solution and polymer film made by conventional processing techniques.

Chitosan was chosen because it is a promising biodegradable polymer already used in pharmaceutical packaging due to its antimicrobial, antibacterial and biocompatible properties. The second strand of the project is to develop an active polymer film that absorbs oxygen.

Enhancing food shelf life and cutting food waste

This future generation food packaging could have the ability to enhance food shelf life with high efficiency and low energy consumption, making a positive impact on food wastage in many countries.

If successful, Dr Everitt plans to approach UK packaging manufacturers with the product.

Additionally, the research aims to identify a production route by which these degradable biopolymer materials for shopping bags and food packaging could be manufactured.

I also found the funding for this project to be of interest (from the press release),

The project is sponsored by the Newton Fund and the Newton-Mosharafa Fund grant and is one of 13 Newton-funded collaborations for The University of Nottingham.

The collaborations, which are designed to tackle community issues through science and innovation, with links formed with countries such as Brazil, Egypt, Philippines and Indonesia.

Since the Newton Fund was established in 2014, the University has been awarded a total of £4.5m in funding. It also boasts the highest number of institutional-led collaborations.

Professor Nick Miles Pro-Vice-Chancellor for Global Engagement said: “The University of Nottingham has a long and established record in global collaboration and research.

The Newton Fund plays to these strengths and enables us to work with institutions around the world to solve some of the most pressing issues facing communities.”

From a total of 68 universities, The University of Nottingham has emerged as the top awardee of British Council Newton Fund Institutional Links grants (13) and is joint top awardee from a total of 160 institutions competing for British Council Newton Fund Researcher Links Workshop awards (6).

Professor Miles added: “This is testament to the incredible research taking place across the University – both here in the UK and in the campuses in Malaysia and China – and underlines the strength of our research partnerships around the world.”

That’s it!

Egypt steps it up nanowise with a Center for Nanotechnology

Dec. 16, 2014 Egypt’s Prime Minister Ibrahim Mahlab along with other ministers and Dr. Ahmed Zewail, Chairman of the board of Zewail City of Science and Technology (this seems to be a campus with a university and a number of research institutes), announced Egypt’s Center for Nanotechnology (from a Zewail City of Science and Technology Dec. 16, 2014 press release),

The Center, funded by the National Bank of Egypt, cost over $ 100 Million and is, till this moment, the biggest research Center Egypt has seen. This center is hailed as a turning point in the development of scientific research in Egypt as it will allow researchers to develop nanoparticles and nanostructured applications that will improve, even revolutionize, many technology and industry sectors including: information technology, energy, environmental science, medicine, and food safety among many others.

During the visit, Dr. Zewail gave Mahlab and the Cabinet members a brief introduction about the City’s constituents, achievements, and how it is going to improve Egypt’s economic development.

Impressed by the magnitude of Zewail City, Mahalab expressed his excitement about the effect this project is going to have on the future of scientific research in Egypt.

Following the opening ceremony, they all moved to the construction site of the soon-to-be Zewail City new premises, in Hadayk October, to evaluate the progress of the construction process. This construction work is the result of the presidential decree issued on April 9, 2014 to allocate 200 acres for Zewail City in 6th of October City. The construction work is expected to be done by the end of 2015, and will approximately cost $ 1.5 billion.

The end of 2015 is a very ambitious goal for completion of this center but these projects can sometimes inspire people to extraordinary efforts and there seems to be quite a bit of excitement about this one if the video is any indication. From a Dec. 22, 2014 posting by Makula Dunbar, which features a CCTV Africa clip, on AFKInsider,

I was interested to learn from the clip that Egypt’s new constitution mandates at least 1% of the GDP (gross domestic product) must be earmarked for scientific research.

As for Ahmed Zewail, in addition to being Chairman of the board of Zewail City of Science and Technology, he is also a professor at the California Institute of Technology (CalTech). From his CalTech biography page (Note: A link has been removed),

Ahmed Zewail is the Linus Pauling Chair professor of chemistry and professor of physics at the California Institute of Technology (Caltech). For ten years, he served as the Director of the National Science Foundation’s Laboratory for Molecular Sciences (LMS), and is currently the Director of the Moore Foundation’s Center for Physical Biology at Caltech.

On April 27, 2009, President Barack Obama appointed him to the President’s Council of Advisors on Science and Technology, and in November of the same year, he was named the First United States Science Envoy to the Middle East.

The CalTech bio page is a bit modest, Zewail’s Wikipedia entry gives a better sense of this researcher’s eminence (Note: Links have been removed),

Ahmed Hassan Zewail (Arabic: أحمد حسن زويل‎, IPA: [ˈæħmæd ˈħæsæn zeˈweːl]; born February 26, 1946) is an Egyptian- American scientist, known as the “father of femtochemistry”, he won the 1999 Nobel Prize in Chemistry for his work on femtochemistry and became the first Egyptian scientist to win a Nobel Prize in a scientific field. …

If you watched the video, you may have heard a reference to ‘other universities’. The comment comes into better focus after reading about the dispute between Nile University and Zewail City (from the Wikipedia entry),

Nile University has been fighting with Zewail City of Science and Technology, established by Nobel laureate Ahmed Zewail, for more than two years over a piece of land that both universities claim to be their own.

A March 22, 2014 ruling turned down challenges to a verdict issued in April 2013 submitted by Zewail City. The court also ruled in favour of the return of Nile University students to the contested buildings.

In a statement released by Nile University’s Student Union before Saturday’s decision, the students stated that the verdict would test the current government’s respect to the judiciary and its rulings.

Zewail City, meanwhile, stressed in a statement released on Saturday that the recent verdict rules on an urgent level; the substantive level of the case is yet to be ruled on. Sherif Fouad, Zewail City’s spokesman and media adviser, said the verdict “adds nothing new.” It is impossible for Zewail City to implement Saturday’s verdict and take Nile University students into the buildings currently occupied by Zewail City students, he said.

If I understand things rightly, the government has pushed forward with this Zewail City initiative (Center for Nanotechnology) while the ‘City’ is still in a dispute over students and buildings with Nile University. This should make for some interesting dynamics (tension) for students, instructors, and administrators of both the institutions and may not result in those dearly hoped for scientific advances that the government is promoting. Hopefully, the institutions will resolve their conflict in the interest of promoting good research.

Nano in Egypt and in Iran

It’s great to get some information about what’s going on in Egypt and Iran with regard to nanotechnology and Julian Taub at the Scientific American blog network has posted a couple of very interesting interviews about what’s happening in those countries.  From Taub’s Jan. 12, 2012 posting (Felafel Tech: Nanotechnology in Egypt), here’s a description of his interview subject,

Dr. Mohamed Abdel-Mottaleb is the leading nanotechnology consultant in Egypt and Director of the Nano Materials Masters Program and the founding director for the Center of Nanotechnology at Nile University. He also helped write a chapter for NATO Science for Peace on nanomaterial consumer applications, as well as numerous research papers and articles on the issue of nanotechnology for developing countries. I sit down with him to discuss the importance of nanotechnology, the state of technological progress and public nanotechnology education after the revolution, and Egypt’s future role in the global nanotechnology landscape.

After talking about the impact that the recent revolution has had on the nanotech industry (briefly: not much since there wasn’t much of a nanotech industry in the first place) in Egypt, Abdel-Mottaleb discusses the impact on nanotechnology research at his center,

It has slowed things significantly, because now our students have to try to use facilities wherever available in Egypt. This always depends on the availability of the equipment and the response costs for us to use the equipment and the facilities at other universities or research centers. We’ve rented some labs from some companies located near the university, which are not even adequate. Our research has slowed down, students are frustrated but committed to finish and go to work, and contribute to the society and to Egypt. It has affected us deeply, negatively, but we are committed to solve it.

A significant hurdle we are facing now is the fact that the Egyptian government has stopped our move into our new campus. Since 2007, we have been operating out of temporary facilities and awaiting the completion the campus. The government has granted Ahmed Zewail (1999 Nobel Laureate in Chemistry) the full use of our campus, and since May 2010, he is refusing to allow the university to move into the facilities. This is despite the fact that the facilities were partly funded by donations to the university and the facilities remain unused to date.  Several rounds of negotiations have failed due to his insistence on shutting down the university. He plans to build a new university (Zewail University). It is very difficult to us to understand his position and intentions. We hope that the international community will support us and not allow the shutting down of a very young and successful university.

In answer to a question from Taub about the best way to advance Egyptian R&D (research and development) in nanotechnology,

I think we need a national nano initiative. It needs specific and measurable targets that all the resources that are going to be allocated for nanotechnology are going to be put into that area, and achieving targets. We need a significant collaboration with the international community. We need to find a way to establish such bi-lateral collaboration schemes, and in the end, we need the facilities. We have a huge untapped human resource power here, I mean, it’s really wonderful to see a fresh graduate from university writing a full proposal and standing up and defending it on a very scientific level, and really holding a sound argument. Unfortunately they are unable to execute these proposals because of the lack of funding and the lack of facilities.

This is really the way out, and nanotechnology can affect the culture in this region. You can use the interdisciplinary thinking and push the idea that you cannot do something on your own, you need collaborations, you need to blend other disciplines, and this is very similar to having foreigners or people in different language speaking countries having to find a way to work together. Nanotechnology really instills that into the minds of the students, and gives them the opportunity to question and challenge the conditions or the dogmas they have, whether it is about science, or culture, or politics. Nanotechnology is a wonderful venue to promote intercultural dialogue, and interfaith dialogue. You can really see the opportunities.

I find that last bit about nanotechnology’s  interdisciplinary nature as having an impact on dialogue in many spheres (Abdel-Mottaleb mentions science, culture, and politics) quite interesting and something I’ve not seen in either the Canadian or US discourses.

Egypt and nanotechnology were previously mentioned  in my Nov. 21, 2011 posting (Egyptian scientists win cash prize for innovation: a nano test for Hepatitis C) and I have also mentioned Egypt, science, and the revolution in my Feb. 4, 2011 posting (Brief bit about science in Egypt and brief bit about Iran’s tech fair in Syria). That gives me a tidy segue to Taub’s Jan. 13, 2012 posting (Science and Sanctions: Nanotechnology in Iran).

Here’s a little bit about  Dr. Abdolreza Simchi, the interview subject, from Taub’s introduction,

Dr. Simchi is a distinguished nanotechnology researcher heading the Research Center for Nanostructured and Advanced Materials (RCNAM) at the Department of Material Science and Engineering of Sharif University, where he focuses on biomedical engineering and sustainable technology. Nanotechnology is a new and interdisciplinary field where scientists can engineer atom and molecules on the nanoscale, fifty thousand times thinner than a human hair.

Dr. Simchi represents a bridge between Iran and the West. He has received many awards for his work, not only from Iran, but also from Germany, the UK, and the UN. He earned his PhD in a joint program between Sharif University and the University of Vienna and then worked at the German technology institute Fraunhofer at the beginning of his career.

Before excerpting a few more items from Taub’s post, I’m going to introduce a little information about Iran and its nanotechnology initiative from Tim Harper, Chief Executive Officer (CEO) of Cientifica. I interviewed Tim in my July 15, 2011 posting (Tim Harper, Cientifica’s CEO, talks about their latest report on global nanotechnology funding and economic impacts), where he mentioned Iran briefly and, after his visit to Iran’s Nano 2011 exhibition, he discussed it more extensively on his own blog. From Tim’s Nov. 17, 2011 posting on TNTLog,

Iran has always been a source of fascination, a place of ancient culture and history and now a country making a lot of noise about science and technology, so I was pleased to be invited by the Iran Nanotechnology Initiative Council to attend the Iran Nano 2011 exhibition in Tehran.

The unique aspect of Iranian nanotechnology is that because of the various international sanctions over the past thirty years it’s not the kind of place where you can just order an AFM or an electron microscope from a major US or Japanese supplier. As a result there was lots of home made kit on display, from sputtering systems, through surface analysis to atomic force microscopes.

So, Iranian scientists have engineered their way around the embargo on selling high tech equipment of Iran – and there was no shortage of high-end laptops on display either – but so often science is not about how much stuff you have in your lab, but what you can do with it.

Here’s what Dr. Simchi had to say about sanctions in Taub’s interview (Jan. 13, 2012 posting),

I believe sanction has two faces. On one hand, it restricts the accessibility to facilities, equipment, and materials. This part is certainly disturbing the progress. However, I see another side that somehow is good! The sanction has limited the mobility of our students and experts. I believe the strength of the country is its talented and brilliant students and well-established academic media. This is the most important difference between Iran and other neighboring countries. Over three million students have now enrolled in Iranian Universities. Hundred thousands are now registered at graduate levels. This is a true strength and advantage of Iran. As far as the American and European banning of the mobility of Iranian students via visa restriction, we enjoy more and more from forced-prohibited brain drain.

What is the wonder in rapid development of Iran in scientific publication when thousands of talented graduate students join the university annually? This is a direct consequence of well-educated students, working hard even in a tough condition.  I am personally an example of this scenario (although I am not belonging to the upper 10% of talented scientists in Iran). I was unable to go to the US to visit Standford University due to the September 11 tragedy and was twice refused a visa to visit UC Berkeley. What would have happened if I had been successful to go to the US and possibly settle down? Up to now, I have graduated many talented students at SUT. They are really brilliant and I am very proud of them. Some of them left the country to continue their studies in Europe and the US but many are living in Iran and truly contribute to nanotechnology development.  Since my research area is not strategic and has no dual applications (mainly biomaterials and green technologies), I enjoy collaborating with many scientists in the US, Canada, Europe, South Korea, and Japan.

Simchi’s research focus is interesting in light of his specialty (from Taub’s Jan. 13, 2012 posting),

I am principally a metallurgist, and specifically a particulate materials scientist. However, I always look at science and technology side-by-side and shoulder-to-shoulder. In fact, it is of prime importance to me, as an engineer, to see where and how my research output might be utilized; the maximum and direct benefit for the nation and human beings are my utmost aims. In simple words, I look towards the national interests. My people suffer from cancer (Iran is a country with high-cancer risk), environmental pollution (for instance, Tehran is one of the most polluted cities in the world), and limited water resources (dry lands). Therefore, I keep trying to combine my knowledge on particulate materials with nanotechnology, i.e. size effect, to improve healthcare via biomedical applications of materials, and to combat environmental problems. I am particularly interested in developing nanoparticles for diagnosis and therapy and to use them in tissue engineering applications.

As for what Iran is doing with regard to commericalization, Tim notes this (from the Nov. 17, 2011 posting at TNTlog),

In terms of commercial products there were many on display. Agriculture was well represented, with fertilisers, pesticides, coatings to reduce fruit spoilage and even catalytic systems to remove ethylene from fruit storage facilities. Construction materials were another large area, with a wide range of building materials on display. Absent were areas such as semiconductors and medical devices, but once again their absence illustrates that INIC [Iran Nanotechnology Initiative Council] is focussing much more on the solutions demanded by Iranian industry rather than trying to compete with more advanced economies.

Tim’s view that the absence of medical devices at the exhibition he visited is evidence that INIC is focussed on industry solutions suggests Dr. Simchi’s interests in biomedical and tissue engineering applications may prove a little challenging to pursue. In any event, I heartily recommend reading Taub’s interviews and Tim’s posting in their entirely.