Tag Archives: Ning Zhu

Seeing signs of osteoarthritis before joint replacements necessary

A November 29, 2024 Canadian Light Source (CLS) news release (also received via email) by Brian Owens describes research that could benefit people who don’t know they have the beginning signs of osteoarthritis,

An imaging technique currently available only at synchrotrons like the Canadian Light Source at the University of Saskatchewan (USask) could one day enable doctors to detect osteoarthritis while patients can still be treated with medication – before they require joint replacement — thanks to research by USask scientist Brian Eames and colleagues.

In a pair of studies, Eames, a professor of Anatomy, Physiology, and Pharmacology in the USask College of Medicine, found that phase contrast imaging (PCI) detects very subtle changes in cartilage. He says the technique, which takes advantage of the high-energy light produced by the synchrotron, provides “fantastic” imaging of cartilage.

In the most recent study, Eames and colleagues (Daniel Chen, College of Engineering; Ali Honoramooz, Western College of Veterinary Medicine; Bill Dust, College of Medicine; and PhD student Hamed Alizadeh) used PCI to determine how well 3D-bioprinted cartilage could repair damaged joints. They compared the performance of cells impregnated in two different materials – one a squishy material called hydrogel and the other a hybrid construct combining hydrogel with a stiff plastic material. They hypothesized that the hybrid construct would shield the cells from forces in the recovering joint, so that the proper type of cartilage (hyaline) could form.

When they implanted these materials into animal joints, the researchers found that both helped new cartilage form, with the hydrogel doing slightly better by some measures. The hybrid, however, had one advantage: It formed less fibrocartilage, which was consistent with the team’s hypothesis. Fibrocartilage is a tougher form of cartilage that is created when joints are under stress. Having less fibrocartilage provides better joint function.

In an earlier study, Eames found that the superior resolution of PCI enabled more precise mapping of the articular cartilage surface than MRI – currently the “go to” imaging technique for osteoarthritis

Eames says that, while both sets of results are interesting, he’s more excited about the potential they hint at for bringing PCI into the clinical setting. PCI’s precision and ability to detect subtle changes “might be able to increase the ability to detect osteoarthritis earlier than regular clinical monitoring,” giving doctors more options for early treatment and researchers potential new targets for drug development.

While a football-field-sized synchrotron will never be a standard part of a hospital imaging suite, Eames says some companies are already working on ways to adapt the technology to make it portable for clinical use.

“The [CLS] is a nice test case for the technology that others can try to adapt for clinical use in humans,” he says.

Eames is seen discussing the work in this video,

Here are links to both papers mentioned in the news release, with the most recent work being first,

Comparison study on hyaline cartilage versus fibrocartilage formation in a pig model by using 3D-bioprinted hydrogel and hybrid constructs by Hamed Alizadeh Sardroud, Gustavo Dos Santos Rosa, William Dust, Tat-Chuan Cham, Gwen Roy, Sarah Bater, Alan Chicoine, Ali Honaramooz, Xiongbiao Chen and B Frank Eames. Biofabrication, 015014 Volume 17, Number 1 DOI 10.1088/1758-5090/ad88a6 Published 5 November 2024 • © 2024 The Author(s). Published by IOP Publishing Ltd

This paper is open access.

MRI overestimates articular cartilage thickness and volume compared to synchrotron radiation phase-contrast imaging by Suranjan Bairagi, Mohammad-Amin Abdollahifar, Oghenevwogaga J. Atake, William Dust, Sheldon Wiebe, George Belev, L. Dean Chapman, M. Adam Webb, Ning Zhu, David M. L. Cooper, B. Frank Eames. PLOS DOI: https://doi.org/10.1371/journal.pone.0291757 Published: October 3, 2023

This paper is open access.

New $1 test for early stage prostate cancer more sensitive and exact than standard tests

An April 5, 2015 news item on Nanotechnology Now describes an exciting development in testing for cancer,

The simple test developed by University of Central Florida scientist Qun “Treen” Huo holds the promise of earlier detection of one of the deadliest cancers among men. It would also reduce the number of unnecessary and invasive biopsies stemming from the less precise PSA test that’s now used.

“It’s fantastic,” said Dr. Inoel Rivera, a urologic oncologist at Florida Hospital Cancer Institute, which collaborated with Huo on the recent pilot studies. “It’s a simple test. It’s much better than the test we have right now, which is the PSA, and it’s cost-effective.”

An April 3, 2015 University of Central Florida (UCF) news release by Mark Schlueb (also on EurekAlert), which originated the news item, describes the test in more detail,

When a cancerous tumor begins to develop, the body mobilizes to produce antibodies. Huo’s test detects that immune response using gold nanoparticles about 10,000 times smaller than a freckle.

When a few drops of blood serum from a finger prick are mixed with the gold nanoparticles, certain cancer biomarkers cling to the surface of the tiny particles, increasing their size and causing them to clump together.

Among researchers, gold nanoparticles are known for their extraordinary efficiency at absorbing and scattering light. Huo and her team at UCF’s NanoScience Technology Center developed a technique known as nanoparticle-enabled dynamic light scattering assay (NanoDLSay) to measure the size of the particles by analyzing the light they throw off. That size reveals whether a patient has prostate cancer and how advanced it may be.

And although it uses gold, the test is cheap. A small bottle of nanoparticles suspended in water costs about $250, and contains enough for about 2,500 tests.

“What’s different and unique about our technique is it’s a very simple process, and the material required for the test is less than $1,” Huo said. “And because it’s low-cost, we’re hoping most people can have this test in their doctor’s office. If we can catch this cancer in its early stages, the impact is going to be big.”

After lung cancer, prostate cancer is the second-leading killer cancer among men, with more than 240,000 new diagnoses and 28,000 deaths every year. The most commonly used screening tool is the PSA, but it produces so many false-positive results – leading to painful biopsies and extreme treatments – that one of its discoverers recently called it “hardly more effective than a coin toss.”

Pilot studies found Huo’s technique is significantly more exact. The test determines with 90 to 95 percent confidence that the result is not false-positive. When it comes to false-negatives, there is 50 percent confidence – not ideal, but still significantly higher than the PSA’s 20 percent – and Huo is working to improve that number.

The results of the pilot studies were published recently in ACS Applied Materials & Interfaces. Huo is also scheduled to present her findings in June at the TechConnect World Innovation Summit & Expo in suburban Washington, D.C.

Huo’s team is pursuing more extensive clinical validation studies with Florida Hospital and others, including the VA Medical Center Orlando. She hopes to complete major clinical trials and see the test being used by physicians in two to three years.

Huo also is researching her technique’s effectiveness as a screening tool for other tumors.

“Potentially, we could have a universal screening test for cancer,” she said. “Our vision is to develop an array of blood tests for early detection and diagnosis of all major cancer types, and these blood tests are all based on the same technique and same procedure.”

Huo co-founded Nano Discovery Inc., a startup company headquartered in a UCF Business Incubator, to commercialize the new diagnostic test. The company manufacturers a test device specifically for medical research and diagnostic purposes.

Here’s a link to and a citation for the study,

Gold Nanoparticle-Enabled Blood Test for Early Stage Cancer Detection and Risk Assessment by Tianyu Zheng, Nickisha Pierre-Pierre, Xin Yan, Qun Huo, Alvin J.O. Almodovar, Felipe Valerio, Inoel Rivera-Ramirez, Elizabeth Griffith, David D. Decker, Sixue Chen, and Ning Zhu. ACS Appl. Mater. Interfaces, 2015, 7 (12), pp 6819–6827 DOI: 10.1021/acsami.5b00371

Publication Date (Web): March 10, 2015

This paper is behind a paywall.

You can find out more about Huo’s company, Nano Discovery Inc. here.