Tag Archives: Noejung Park

Eco-friendly nitrogen-doped graphene nanoplatelets from South Korea

South Korean researchers from Ulsan National Institute of Science and Technology (UNIST) have devised a new technique to fix nitrogen to graphene, from the July 24, 2013 news item on Azonano,

A simple, low-cost and eco-friendly method of creating nitrogen-doped graphene nanoplatelets (NGnPs), which could be used in dye-sensitized solar cells and fuel cells, is published in Scientific Reports today.

The work, carried out at Ulsan National Institute of Science and Technology (UNIST) in South Korea, could be a step towards replacing conventional platinum (Pt)-based catalysts for energy conversion.

The UNIST July 23, 2013 news release by Eunhee Song, which originated the news item, provides some context for why the technique is exciting interest,

The search for economically viable alternatives to fossil fuels has attracted attention among energy communities because of increasing energy prices and climate change. Solar cells and fuel cells are to be promising alternatives, but Pt-based (platinum-based) electrodes are expensive and susceptible to environmental damage.

Nitrogen fixation is where nitrogen (N2) in the atmosphere is converted into ammonia (NH3). Fixation processes free up nitrogen atoms from their diatomic form to be used in other ways, but nitrogen does not easily react with other chemicals to form new compounds.

The most common method of industrial nitrogen fixation is the Harber-Bosch process, which requires extremely harsh conditions, 200 atm of pressure and 400 °C of temperature.

The UNIST team previously reported that dry ball-milling can efficiently produce chemically modified graphene particles in large quantities*. This research, in Scientific Reports, presents another innovation to improve the materials. Along the way, the research team discovered a novel nitrogen fixation process.

They focus on modifications with nitrogen, developing a technique with direct nitrogen fixation, carbon-nitrogen bond formation, at the broken edges of graphite frameworks using ball-milling graphite in the presence of nitrogen gas.

In my search for this latest paper I found an earlier piece of work based on a wet-chemical reaction and published in the Journal of the American Chemical Society,

Nitrogen-Doped Graphene Nanoplatelets from Simple Solution Edge-Functionalization for n-Type Field-Effect Transistors by Dong Wook Chang, Eun Kwang Lee, Eun Yeob Park, Hojeong Yu, Hyun-Jung Choi, In-Yup Jeon, Gyung-Joo Sohn, Dongbin Shin, Noejung Park, Joon Hak Oh, Liming Dai, and Jong-Beom Baek. J. Am. Chem. Soc., 2013, 135 (24), pp 8981–8988 DOI: 10.1021/ja402555n Publication Date (Web): May 27, 2013
Copyright © 2013 American Chemical Society

That paper is behind a paywall while this latest work featuring a ‘dry’ technique is open access,

Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion by In-Yup Jeon, Hyun-Jung Choi, Myung Jong Ju, In Taek Choi, Kimin Lim, Jaejung Ko, Hwan Kyu Kim, Jae Cheon Kim, Jae-Joon Lee, Dongbin Shin, Sun-Min Jung, Jeong-Min Seo, Min-Jung Kim, Noejung Park, Liming Dai, & Jong-Beom Baek. Scientific Reports 3, Article number: 2260 doi:10.1038/srep02260 Published 23 July 2013

This team has been quite prolific recently. I last mentioned them in a June 7, 2013 posting highlighting another iteration of this ‘dry’ technique.

Fuel cells break free of metal catalysts (graphene instead of platinum) with research from joint Korea-US research team

Fuel cells—I used to hear a lot about them as there is a company in the region, Ballard Power Systems which specializes in that field. There was a lot of excitement in the late 1990s and into the 2000s and then nothing. Given the hype of the early days, I was expecting fuel-cell-powered-cars by now.  A June 5, 2013 Case Western Reserve University news release on EurekAlert may provide an answer as to why fuel cells have not been adopted more widely,

Researchers from South Korea, Case Western Reserve University and University of North Texas have discovered an inexpensive and easily produced catalyst that performs better than platinum in oxygen-reduction reactions.

The finding, detailed in Nature’s Scientific Reports online today, is a step toward eliminating what industry regards as the largest obstacle to large-scale commercialization of fuel cell technology.

Fuel cells can be more efficient than internal combustion engines, silent, and at least one type produces zero greenhouse emissions at the tail pipe. Car and bus manufacturers as well as makers of residential and small-business-sized generators have been testing and developing different forms of fuel cells for more than a decade but the high cost and insufficiencies of platinum catalysts have been the Achilles heel.

The news release goes on to provide context for the work and details about the new graphene catalyst,

Like a battery, a fuel cell converts chemical energy into electrical energy. It works by removing an electron from a fuel, usually hydrogen or methanol mixed with water, at the cell’s anode, or positive electrode, creating a current.Hydrogen ions produced then pass through a membrane to the cathode, or negative electrode. Here, oxygen molecules from the air are split and reduced by the addition of electrons and combined with the hydrogen ions to form water and heat—the only byproducts.

A better, cheaper catalyst than scarce and costly platinum is required if hydrogen fuel cells and direct methanol fuel cells are to become realistic alternatives to fossil fuels, the authors say.

The technology to make alternative catalysts builds on a simple and cheap industrial process several of the researchers developed to make graphene sheets from graphite.

Inside a ball miller, which is a canister filled with steel balls, the researchers broke graphite down into single-layer graphene nanoparticles. While the canister turned, they injected chlorine, bromine or iodine gas to produce different catalysts.

In each case, gas molecules replaced carbon atoms along the zigzag edges of nanoplatelets created by milling. Not only were the edges then favorable to binding with oxygen molecules, but the bond strength between the two oxygen atoms weakened. The weaker the oxygen bonds became, the more efficiently the oxygen was reduced and converted to water at the cathode.

In testing, a cathode coated with iodine-edged nanoplatelets performed best. A cathode coated with bromine-edged nanoparticles generated 7 percent less current than the commercial cathode coated with platinum, the chlorine-edged nanoplatelets 40 percent less.

In a test of durability, electrodes coated with the nanoplatelets maintained 85.6 percent to 87.4 percent of their initial current after 10,000 cycles while the platinum electrodes maintained only 62.5 percent.

Carbon monoxide was added to replicate the poisoning that many scientists blame for the poor performance of platinum at the cathode. The performance of the graphene-based catalysts was unaffected.

When methanol was added to replicate methanol crossover from the anode to cathode in direct methanol fuel cells, the current density of the platinum catalyst dropped sharply. Again, the graphene-based catalysts were unaffected.

One of the researchers sums up the research (from the news release),

“We made metal-free catalysts using an affordable and scalable process,” said Liming Dai, the Kent Hale Smith Professor of macromolecular science and engineering at Case Western Reserve and one of the report’s authors. “The catalysts are more stable than platinum catalysts and tolerate carbon monoxide poisoning and methanol crossover.”

And, in their initial tests, a cathode coated with one form of catalyst—graphene nanoparticles edged with iodine—proved more efficient in the oxygen reduction reaction, generating 33 percent more current than a commercial cathode coated with platinum generated.

For those who want more,

Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction by In-Yup Jeon, Hyun-Jung Choi, Min Choi, Jeong-Min Seo, Sun-Min Jung, Min-Jung Kim, Sheng Zhang, Lipeng Zhang, Zhenhai Xia, Liming Dai, Noejung Park, & Jong-Beom Baek. Scientific Reports 3, Article number: 1810 doi:10.1038/srep01810 Published 05 June 2013

The paper is open access.