Tag Archives: Nokia

Shades of the Nokia Morph: a smartphone than conforms to your wrist

A March 16, 2017 news item on Nanowerk brought back some memories for me,

Some day, your smartphone might completely conform to your wrist, and when it does, it might be covered in pure gold, thanks to researchers at Missouri University of Science and Technology.

Nokia, a Finnish telecommunications company, was promoting its idea for a smartphone ‘and more’ that could be worn around your wrist in a concept called the Morph. It was introduced in 2008 at the Museum of Modern Art in New York City (see my March 20, 2010 posting for one of my last updates on this moribund project). Here’s Nokia’s Morph video (almost 6 mins.),

Getting back to the present day, here’s what the Missouri researchers are working on,

An example of a gold foil peeled from single crystal silicon. Reprinted with permission from Naveen Mahenderkar et al., Science [355]:[1203] (2017)

A March 16, 2017 Missouri University of Science and Technology news release, by Greg Katski, which originated the news item, provides more details about this Missouri version (Note: A link has been removed),

Writing in the March 17 [2017] issue of the journal Science, the S&T researchers say they have developed a way to “grow” thin layers of gold on single crystal wafers of silicon, remove the gold foils, and use them as substrates on which to grow other electronic materials. The research team’s discovery could revolutionize wearable or “flexible” technology research, greatly improving the versatility of such electronics in the future.

According to lead researcher Jay A. Switzer, the majority of research into wearable technology has been done using polymer substrates, or substrates made up of multiple crystals. “And then they put some typically organic semiconductor on there that ends up being flexible, but you lose the order that (silicon) has,” says Switzer, Donald L. Castleman/FCR Endowed Professor of Discovery in Chemistry at S&T.

Because the polymer substrates are made up of multiple crystals, they have what are called grain boundaries, says Switzer. These grain boundaries can greatly limit the performance of an electronic device.

“Say you’re making a solar cell or an LED,” he says. “In a semiconductor, you have electrons and you have holes, which are the opposite of electrons. They can combine at grain boundaries and give off heat. And then you end up losing the light that you get out of an LED, or the current or voltage that you might get out of a solar cell.”

Most electronics on the market are made of silicon because it’s “relatively cheap, but also highly ordered,” Switzer says.

“99.99 percent of electronics are made out of silicon, and there’s a reason – it works great,” he says. “It’s a single crystal, and the atoms are perfectly aligned. But, when you have a single crystal like that, typically, it’s not flexible.”

By starting with single crystal silicon and growing gold foils on it, Switzer is able to keep the high order of silicon on the foil. But because the foil is gold, it’s also highly durable and flexible.

“We bent it 4,000 times, and basically the resistance didn’t change,” he says.

The gold foils are also essentially transparent because they are so thin. According to Switzer, his team has peeled foils as thin as seven nanometers.

Switzer says the challenge his research team faced was not in growing gold on the single crystal silicon, but getting it to peel off as such a thin layer of foil. Gold typically bonds very well to silicon.

“So we came up with this trick where we could photo-electrochemically oxidize the silicon,” Switzer says. “And the gold just slides off.”

Photoelectrochemical oxidation is the process by which light enables a semiconductor material, in this case silicon, to promote a catalytic oxidation reaction.

Switzer says thousands of gold foils—or foils of any number of other metals—can be made from a single crystal wafer of silicon.

The research team’s discovery can be considered a “happy accident.” Switzer says they were looking for a cheap way to make single crystals when they discovered this process.

“This is something that I think a lot of people who are interested in working with highly ordered materials like single crystals would appreciate making really easily,” he says. “Besides making flexible devices, it’s just going to open up a field for anybody who wants to work with single crystals.”

Here’s a link to and a citation for the paper,

Epitaxial lift-off of electrodeposited single-crystal gold foils for flexible electronics by Naveen K. Mahenderkar, Qingzhi Chen, Ying-Chau Liu, Alexander R. Duchild, Seth Hofheins, Eric Chason, Jay A. Switzer. Science  17 Mar 2017: Vol. 355, Issue 6330, pp. 1203-1206 DOI: 10.1126/science.aam5830

This paper is behind a paywall.

A 2nd European roadmap for graphene

About 2.5 years ago there was an article titled, “A roadmap for graphene” (behind a paywall) which Nature magazine published online in Oct. 2012. I see at least two of the 2012 authors, Konstantin (Kostya) Novoselov and Vladimir Fal’ko,, are party to this second, more comprehensive roadmap featured in a Feb. 24, 2015 news item on Nanowerk,

In October 2013, academia and industry came together to form the Graphene Flagship. Now with 142 partners in 23 countries, and a growing number of associate members, the Graphene Flagship was established following a call from the European Commission to address big science and technology challenges of the day through long-term, multidisciplinary R&D efforts.

A Feb.  24, 2015 University of Cambridge news release, which originated the news item, describes the roadmap in more detail,

In an open-access paper published in the Royal Society of Chemistry journal Nanoscale, more than 60 academics and industrialists lay out a science and technology roadmap for graphene, related two-dimensional crystals, other 2D materials, and hybrid systems based on a combination of different 2D crystals and other nanomaterials. The roadmap covers the next ten years and beyond, and its objective is to guide the research community and industry toward the development of products based on graphene and related materials.

The roadmap highlights three broad areas of activity. The first task is to identify new layered materials, assess their potential, and develop reliable, reproducible and safe means of producing them on an industrial scale. Identification of new device concepts enabled by 2D materials is also called for, along with the development of component technologies. The ultimate goal is to integrate components and structures based on 2D materials into systems capable of providing new functionalities and application areas.

Eleven science and technology themes are identified in the roadmap. These are: fundamental science, health and environment, production, electronic devices, spintronics, photonics and optoelectronics, sensors, flexible electronics, energy conversion and storage, composite materials, and biomedical devices. The roadmap addresses each of these areas in turn, with timelines.

Research areas outlined in the roadmap correspond broadly with current flagship work packages, with the addition of a work package devoted to the growing area of biomedical applications, to be included in the next phase of the flagship. A recent independent assessment has confirmed that the Graphene Flagship is firmly on course, with hundreds of research papers, numerous patents and marketable products to its name.

Roadmap timelines predict that, before the end of the ten-year period of the flagship, products will be close to market in the areas of flexible electronics, composites, and energy, as well as advanced prototypes of silicon-integrated photonic devices, sensors, high-speed electronics, and biomedical devices.

“This publication concludes a four-year effort to collect and coordinate state-of-the-art science and technology of graphene and related materials,” says Andrea Ferrari, director of the Cambridge Graphene Centre, and chairman of the Executive Board of the Graphene Flagship. “We hope that this open-access roadmap will serve as the starting point for academia and industry in their efforts to take layered materials and composites from laboratory to market.” Ferrari led the roadmap effort with Italian Institute of Technology physicist Francesco Bonaccorso, who is a Royal Society Newton Fellow of the University of Cambridge, and a Fellow of Hughes Hall.

“We are very proud of the joint effort of the many authors who have produced this roadmap,” says Jari Kinaret, director of the Graphene Flagship. “The roadmap forms a solid foundation for the graphene community in Europe to plan its activities for the coming years. It is not a static document, but will evolve to reflect progress in the field, and new applications identified and pursued by industry.”

I have skimmed through the report briefly (wish I had more time) and have a couple of comments. First, there’s an excellent glossary of terms for anyone who might stumble over chemical abbreviations and/or more technical terminology. Second, they present a very interesting analysis of the intellectual property (patents) landscape (Note: Links have been removed. Incidental numbers are footnote references),

In the graphene area, there has been a particularly rapid increase in patent activity from around 2007.45 Much of this is driven by patent applications made by major corporations and universities in South Korea and USA.53 Additionally, a high level of graphene patent activity in China is also observed.54 These features have led some commentators to conclude that graphene innovations arising in Europe are being mainly exploited elsewhere.55 Nonetheless, an analysis of the Intellectual Property (IP) provides evidence that Europe already has a significant foothold in the graphene patent landscape and significant opportunities to secure future value. As the underlying graphene technology space develops, and the GRM [graphene and related materials] patent landscape matures, re-distribution of the patent landscape seems inevitable and Europe is well positioned to benefit from patent-based commercialisation of GRM research.

Overall, the graphene patent landscape is growing rapidly and already resembles that of sub-segments of the semiconductor and biotechnology industries,56 which experience high levels of patent activity. The patent strategies of the businesses active in such sub-sectors frequently include ‘portfolio maximization’56 and ‘portfolio optimization’56 strategies, and the sub-sectors experience the development of what commentators term ‘patent thickets’56, or multiple overlapping granted patent rights.56 A range of policies, regulatory and business strategies have been developed to limit such patent practices.57 In such circumstances, accurate patent landscaping may provide critical information to policy-makers, investors and individual industry participants, underpinning the development of sound policies, business strategies and research commercialisation plans.

It sounds like a patent thicket is developing (Note: Links have been removed. Incidental numbers are footnote references),,

Fig. 13 provides evidence of a relative increase in graphene patent filings in South Korea from 2007 to 2009 compared to 2004–2006. This could indicate increased commercial interest in graphene technology from around 2007. The period 2010 to 2012 shows a marked relative increase in graphene patent filings in China. It should be noted that a general increase in Chinese patent filings across many ST domains in this period is observed.76 Notwithstanding this general increase in Chinese patent activity, there does appear to be increased commercial interest in graphene in China. It is notable that the European Patent Office contribution as a percentage of all graphene patent filings globally falls from a 8% in the period 2007 to 2009 to 4% in the period 2010 to 2012.

The importance of the US, China and South Korea is emphasised by the top assignees, shown in Fig. 14. The corporation with most graphene patent applications is the Korean multinational Samsung, with over three times as many filings as its nearest rival. It has also patented an unrivalled range of graphene-technology applications, including synthesis procedures,77 transparent display devices,78 composite materials,79 transistors,80 batteries and solar cells.81 Samsung’s patent applications indicate a sustained and heavy investment in graphene R&D, as well as collaboration (co-assignment of patents) with a wide range of academic institutions.82,83


image file: c4nr01600a-f14.tif
Fig. 14 Top 10 graphene patent assignees by number and cumulative over all time as of end-July 2014. Number of patents are indicated in the red histograms referred to the left Y axis, while the cumulative percentage is the blue line, referred to the right Y axis.

It is also interesting to note that patent filings by universities and research institutions make up a significant proportion ([similar]50%) of total patent filings: the other half comprises contributions from small and medium-sized enterprises (SMEs) and multinationals.

Europe’s position is shown in Fig. 10, 12 and 14. While Europe makes a good showing in the geographical distribution of publications, it lags behind in patent applications, with only 7% of patent filings as compared to 30% in the US, 25% in China, and 13% in South Korea (Fig. 13) and only 9% of filings by academic institutions assigned in Europe (Fig. 15).


image file: c4nr01600a-f15.tif
Fig. 15 Geographical breakdown of academic patent holders as of July 2014.

While Europe is trailing other regions in terms of number of patent filings, it nevertheless has a significant foothold in the patent landscape. Currently, the top European patent holder is Finland’s Nokia, primarily around incorporation of graphene into electrical devices, including resonators and electrodes.72,84,85

This may sound like Europe is trailing behind but that’s not the case according to the roadmap (Note: Links have been removed. Incidental numbers are footnote references),

European Universities also show promise in the graphene patent landscape. We also find evidence of corporate-academic collaborations in Europe, including e.g. co-assignments filed with European research institutions and Germany’s AMO GmbH,86 and chemical giant BASF.87,88 Finally, Europe sees significant patent filings from a number of international corporate and university players including Samsung,77 Vorbeck Materials,89 Princeton University,90–92 and Rice University,93–95 perhaps reflecting the quality of the European ST base around graphene, and its importance as a market for graphene technologies.

There are a number of features in the graphene patent landscape which may lead to a risk of patent thickets96 or ‘multiple overlapping granted patents’ existing around aspects of graphene technology systems. [emphasis mine] There is a relatively high volume of patent activity around graphene, which is an early stage technology space, with applications in patent intensive industry sectors. Often patents claim carbon nano structures other than graphene in graphene patent landscapes, illustrating difficulties around defining ‘graphene’ and mapping the graphene patent landscape. Additionally, the graphene patent nomenclature is not entirely settled. Different patent examiners might grant patents over the same components which the different experts and industry players call by different names.

For anyone new to this blog, I am not a big fan of current patent regimes as they seem to be stifling rather encouraging innovation. Sadly, patents and copyright were originally developed to encourage creativity and innovation by allowing the creators to profit from their ideas. Over time a system designed to encourage innovation has devolved into one that does the opposite. (My Oct. 31, 2011 post titled Patents as weapons and obstacles, details my take on this matter.) I’m not arguing against patents and copyright but suggesting that the system be fixed or replaced with something that delivers on the original intention.

Getting back to the matter at hand, here’s a link to and a citation for the 200 pp. 2015 European Graphene roadmap,

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems by Andrea C. Ferrari, Francesco Bonaccorso, Vladimir Fal’ko, Konstantin S. Novoselov, Stephan Roche, Peter Bøggild, Stefano Borini, Frank H. L. Koppens, Vincenzo Palermo, Nicola Pugno, José A. Garrido, Roman Sordan, Alberto Bianco, Laura Ballerini, Maurizio Prato, Elefterios Lidorikis, Jani Kivioja, Claudio Marinelli, Tapani Ryhänen, Alberto Morpurgo, Jonathan N. Coleman, Valeria Nicolosi, Luigi Colombo, Albert Fert, Mar Garcia-Hernandez, Adrian Bachtold, Grégory F. Schneider, Francisco Guinea, Cees Dekker, Matteo Barbone, Zhipei Sun, Costas Galiotis,  Alexander N. Grigorenko, Gerasimos Konstantatos, Andras Kis, Mikhail Katsnelson, Lieven Vandersypen, Annick Loiseau, Vittorio Morandi, Daniel Neumaier, Emanuele Treossi, Vittorio Pellegrini, Marco Polini, Alessandro Tredicucci, Gareth M. Williams, Byung Hee Hong, Jong-Hyun Ahn, Jong Min Kim, Herbert Zirath, Bart J. van Wees, Herre van der Zant, Luigi Occhipinti, Andrea Di Matteo, Ian A. Kinloch, Thomas Seyller, Etienne Quesnel, Xinliang Feng,  Ken Teo, Nalin Rupesinghe, Pertti Hakonen, Simon R. T. Neil, Quentin Tannock, Tomas Löfwander and Jari Kinaret. Nanoscale, 2015, Advance Article DOI: 10.1039/C4NR01600A First published online 22 Sep 2014

Here’s a diagram illustrating the roadmap process,

Fig. 122 The STRs [science and technology roadmaps] follow a hierarchical structure where the strategic level in a) is connected to the more detailed roadmap shown in b). These general roadmaps are the condensed form of the topical roadmaps presented in the previous sections, and give technological targets for key applications to become commercially competitive and the forecasts for when the targets are predicted to be met.  Courtesy: Researchers and  the Royal Society's journal, Nanoscale

Fig. 122 The STRs [science and technology roadmaps] follow a hierarchical structure where the strategic level in a) is connected to the more detailed roadmap shown in b). These general roadmaps are the condensed form of the topical roadmaps presented in the previous sections, and give technological targets for key applications to become commercially competitive and the forecasts for when the targets are predicted to be met.
Courtesy: Researchers and the Royal Society’s journal, Nanoscale

The image here is not the best quality; the one embedded in the relevant Nanowerk news item is better.

As for the earlier roadmap, here’s my Oct. 11, 2012 post on the topic.

Flexible, graphene-based display: first ever?

It seems like there’s been a lot of discussion about flexible displays, graphene or not, over the years so the announcement of the first graphene-based flexible display might seem a little anticlimactic. That’s one of the problems with the technology and science communities. Sometimes there’s so much talk about an idea or concept that by the time it becomes reality people think it’s already been done and is not news.

So, kudos to the folks at the University of Cambridge who have been working on this development for a long time. From a Sept. 10, 2014 news release on EurekAlert,

The partnership between the two organisations combines the graphene expertise of the Cambridge Graphene Centre (CGC), with the transistor and display processing steps that Plastic Logic has already developed for flexible electronics. This prototype is a first example of how the partnership will accelerate the commercial development of graphene, and is a first step towards the wider implementation of graphene and graphene-like materials into flexible electronics.

The new prototype is an active matrix electrophoretic display, similar to the screens used in today’s e-readers, except it is made of flexible plastic instead of glass. In contrast to conventional displays, the pixel electronics, or backplane, of this display includes a solution-processed graphene electrode, which replaces the sputtered metal electrode layer within Plastic Logic’s conventional devices, bringing product and process benefits.

Graphene is more flexible than conventional ceramic alternatives like indium-tin oxide (ITO) and more transparent than metal films. The ultra-flexible graphene layer may enable a wide range of products, including foldable electronics. Graphene can also be processed from solution bringing inherent benefits of using more efficient printed and roll-to-roll manufacturing approaches.

The new 150 pixel per inch (150 ppi) backplane was made at low temperatures (less than 100°C) using Plastic Logic’s Organic Thin Film Transistor (OTFT) technology. The graphene electrode was deposited from solution and subsequently patterned with micron-scale features to complete the backplane.

For this prototype, the backplane was combined with an electrophoretic imaging film to create an ultra-low power and durable display. Future demonstrations may incorporate liquid crystal (LCD) and organic light emitting diodes (OLED) technology to achieve full colour and video functionality. Lightweight flexible active-matrix backplanes may also be used for sensors, with novel digital medical imaging and gesture recognition applications already in development.

“We are happy to see our collaboration with Plastic Logic resulting in the first graphene-based electrophoretic display exploiting graphene in its pixels’ electronics,” said Professor Andrea Ferrari, Director of the Cambridge Graphene Centre. “This is a significant step forward to enable fully wearable and flexible devices. This cements the Cambridge graphene-technology cluster and shows how an effective academic-industrial partnership is key to help move graphene from the lab to the factory floor.”

As an example of how long this development has been in the works, I have a Nov. 7, 2011 posting about a University of Cambridge stretchable, electronic skin produced by what was then the university’s Nokia Research Centre. That ‘skin’ was a big step forward to achieving a phone/device/flexible display (the Morph), wrappable around your wrist, first publicized in 2008 as I noted in a March 30, 2010 posting.

According to the news release, there should be some more news soon,

This joint effort between Plastic Logic and the CGC was also recently boosted by a grant from the UK Technology Strategy Board, within the ‘realising the graphene revolution’ initiative. This will target the realisation of an advanced, full colour, OELD based display within the next 12 months.

My colleague Dexter Johnson has offered some business-oriented insight into this development at Cambridge in his Sept. 9, 2014 posting on the Nanoclast blog on the IEEE (Institute of Electrical and Electronics Engineers) website (Note: Links have been removed),

In the UK’s concerted efforts to become a hub for graphene commercialization, one of the key partnerships between academic research and industry has been the one between the Cambridge Graphene Centre located at the University of Cambridge and a number of companies, including Nokia, Dyson, BaE systems, Philips and Plastic Logic. The last on this list, Plastic Logic, was spun out originally from the University of Cambridge in 2000. However, since its beginnings it has required a $200 million investment from RusNano to keep itself afloat back in 2011 for a time called Mountain View, California, home.

The post is well worth reading for anyone interested in the twists and turns of graphene commercialization in the UK.

Skin as art and as haptic device

I stumbled across an essay, Nano-Bio-Info-Cogno Skin by Natasha Vita-More on the IEET (Institute for Ethics & Emerging Technologies) website newly republished on Mar. 19, 2012. (The essay was originally published Jan. 19, 2009 on the Nanotechnology Now website.) No matter the date, it has proved quite timely in light of Nokia’s (Finnish telephone company) application to patent magnetic tattoos. From the Vibrating tattoo alerts patent filed by Nokia in US  March 20, 2012 story on the BBC News online,

Vibrating magnetic tattoos may one day be used to alert mobile phone users to phone calls and text messages if Nokia follows up a patent application.

The Finnish company has described the idea in a filing to the US Patent and Trademark Office.

It describes tattooing, stamping or spraying “ferromagnetic” material onto a user’s skin and then pairing it with a mobile device.

It suggests different vibrations could be used to create a range of alerts.

The application is dated March 15, 2012. From United States Patent Application no. 20120062371 (abstract),

1. An apparatus comprising: a material attachable to skin, the material capable of detecting a magnetic field and transferring a perceivable stimulus to the skin, wherein the perceivable stimulus relates to the magnetic field.

2. An apparatus according to claim 1, wherein the material comprises at least one of a visible image, invisible image, invisible tattoo, visible tattoo, visible marking, invisible marking, visible marker, visible sign, invisible sign, visible label, invisible label, visible symbol, invisible symbol, visible badge and invisible badge.

3. An apparatus according to claim 1, wherein the perceivable stimulus comprises vibration.

4. An apparatus according to claim 1, wherein the magnetic field originates from an electronic device and relates to digital content stored in the electronic device.

5. An apparatus according to claim 1, wherein the perceivable stimulus is related to the magnetic field.

6. An apparatus according to claim 1, wherein the perceivable stimulus relates to a time variation of at least one of a magnetic field pulse, height, width and period.

7. An apparatus according to claim 1, wherein the magnetic field originates from a remote source.

8. An apparatus according to claim 7, wherein the perceivable stimulus relates to digital content of the remote source.

If you want the full listing, there are 13 more claims for a total of 21 listed in the abstract. Nokia’s initial plans are to create a material that you’d wear, the notion of tattoos arises later in the application according to Vlad Bobleanta in his March 15, 2012 article for unwiredview.com. He describes the potential tattoos is some detail,

The tattoo would be applied using ferromagnetic inks. The ink material would first be exposed to high temperatures to demagnetize it. Then the tattoo would be applied. You’ll apparently be able to choose the actual image you want as the tattoo. The procedure is identical to that of getting a ‘normal’ tattoo – only the ink is special.

After the tattoo has been applied, you’ll need to magnetize it. That means bringing the tattooed area in the close proximity of an external magnet, and going “several times over this magnet to magnetize the image material again”. The tattoo will then have enhanced sensitivity towards external alternating magnet fields, and will basically function the same way the aforementioned material attached to your skin did. Only in a more permanent fashion, so to speak.

I suggest reading Bobleanta’s article as he includes diagrams of the proposed tattoo, fabric, and fingernail applications. Yes, this could be attached to your fingernails.

Getting back to Vita-More’s essay, she was exploring the integration of nanotechnology, biotechnology, cognitive and neuro sciences (nano-bio-info-cogno- or NBIC) as applied to skin (from the essay),

NBIC is a far cry from the biological touch, taste and smell of our skin because it suggests a cold, mechanical and invasive integration. While the cognitive and neuro sciences are a bit more familiar from a biological viewpoint, they too suggest tampering with our thoughts and probing our privacy. Nonetheless, the enhancement of our human skin is not only lifesaving; it offers new textures, sensations and smells which will have their own sensorial capabilities. [emphasis mine]

New sensorial capabilities certainly evokes Nokia’s proposed magnetic tattoo. She also comments from an artist’s perspective,

What does this mean for designers and media artists? From the perspective of my own artistic practice, it means that it is natural that humans integrate with other types of organisms, that we will evolve with other types of systems, and that this evolution is essential for our future.

The idea of fusing skin with technology is not new as you can see from Vita-More’s essay and countless science fiction stories, as well, there’s research of this kind being done globally. For example, there’s research on electronic tattoos as I noted in my Aug. 12, 2011 posting (and you can find more references elsewhere online). However, these magnetic tattoos represent the first time I’ve seen interest from a commercial enterprise.

Brits go for the graphene gusto in Warsaw but where are the Swedes?

The Universities of Cambridge, Manchester, and Lancaster (all in the UK) have launched an exhibition extolling graphene in Warsaw (Poland). From the Nov. 25, 2011 news item on physorg.com,

The European programme for research into graphene, for which the Universities of Cambridge, Manchester and Lancaster are leading the technology roadmap, today unveiled an exhibition and new videos communicating the potential for the material that could revolutionise the electronics industries. [emphasis mine]

I’m a little confused as I thought the Swedish partner was either the leader or one of the lead partners.

I found this Nov. 24, 2011 news release from the University of Cambridge where the announcement was made,

An exhibition has been launched in Warsaw today highlighting the development and future of graphene, the ‘wonder substance’ set to change the face of electronics manufacturing, as part of the Graphene Flagship Pilot (GFP), aimed at developing the proposal for a 1 billion European programme conducting research and development on graphene, for which the Universities of Cambridge, Manchester and Lancaster are leading the technology roadmap.

The exhibition covers the development of the material, the present research and the vast potential for future applications. The GFP also released two videos aimed at introducing this extraordinary material to a wider audience, ranging from stakeholders and politicians to the general public. The videos also convey the mission and vision of the graphene initiative.

“Our mission is to take graphene and related layered materials from a state of raw potential to a point where they can revolutionise multiple industries – from flexible, wearable and transparent electronics to high performance computing and spintronics” says Professor Andrea Ferrari, Head of the Nanomaterials and Spectroscopy Group.

“This material will bring a new dimension to future technology – a faster, thinner, stronger, flexible, and broadband revolution. Our program will put Europe firmly at the heart of the process, with a manifold return on the investment of 1 billion Euros, both in terms of technological innovation and economic exploitation.”

Graphene, a single layer of carbon atoms, could prove to be the most versatile substance available to mankind. Stronger than diamond, yet lightweight and flexible, graphene enables electrons to flow much faster than silicon. It is also a transparent conductor, combining electrical and optical functionalities in an exceptional way.

This is connected to the European Union’s FET11 flagship projects initiative (described at more length in my June 13, 2011 graphene roundup posting) where six different research areas have been funded in preparation for a major funding round in late 2012 when two research projects will  be selected for a prize of 1B Euros each.

I find the communications strategy mildly confusing since the original project team listed Jari Kinaret of Chalmers University of Technology in Sweden (as highlighted in my Nov. 9, 2011 posting about funding for the Swedish effort with no mention of the other partners). The flagship group appears to be working both cooperatively and separately on the same project.

I did get a little curious as to the membership for this graphene research group (consortium) and found this,





5  AMO GMBH, Germany



8  NOKIA OYJ, Finland


You can find more information about the Graphene Flagship Project here although they don’t appear to update the information very frequently.

Nokia’s stretchable, electronic skin

It looks like Nokia and Cambridge University are one step closer, with a stretchable, electronic skin, to creating a flexible phone (first promoted as a Morph phone). According to the Nov.7, 2011 posting by Dawinderpal Sahota on telecoms.com,

Nokia has revealed it is using nanotechnology to create a new breed of smartphone that is flexible, stretchable and operated by physical manipulation.

The firm’s research and development arm – Nokia Research Center – has been working with scientists at The University of Cambridge to create products that it hopes will revolutionise the appearance and interface of handsets in the future.

The firm is working on two concepts – one that utilises flexible touchscreen technology, allowing phones to be controlled and navigated by squeezing and twisting the device, and another that allows the user to ‘wear’ the phone, effectively as another layer of their skin.

“Nano-enablers allow us to make products that are really revolutionary devices compared to what we see today. One thing that all designers have dreamed about is free-shape, free-form products that could be more organic and put components in a different places,” explained Tapani Jokinen, head of design technology insights at Nokia.

I last wrote about Nokia’s Morph phone/concept in my Aug. 3, 2011 posting where I noted that the company had made an announcement about graphene as enabling the development of a flexible phone. Sahota’s article goes on to note some of the advantages of what I suspect are graphene-based electronics,

He [Jokinen] added that in today’s smartphones, there are certain prominent features and dominant components; a touch screen has to be big, lithium batteries also need a lot of space and this is why all of the phones in the market have “sandwich structures”; a front cover, a back cover and layered components between those.

“What nanotechnology would bring is that we could have the energy sources in each component, for example, antennas could have their own energy sources, which would be nano-enabled supercapacitor batteries, which are small and flexible. …”

Nokia Research Centre Cambridge has developed a stretchable, electronic skin that you can see in this video,

Graphene dreams of the Morph

For anyone who’s not familiar with the Morph, it’s an idea that Nokia and the University of Cambridge’s Nanoscience Centre have been working on for the last few years. Originally announced as a type of flexible phone that you could wrap around your wrist, the Morph is now called a concept.  Here’s an animation illustrating some of the concepts which include flexibility and self-cleaning,

There have been very few announcements of any kind about the Morph or the technology that will support this concept. A few months ago, they did make an announcement about researching graphene as a means of actualizing the concept (noted in my May 6, 2011 posting [scroll down about 1/2 way]).

Interestingly the latest research published  on graphene and the flexible, transparent screens that are necessary to making something like the Morph a reality has come from a lab at Rice University. From the August 1, 2011 news item on Nanowerk,

The lab of Rice chemist James Tour lab has created thin films that could revolutionize touch-screen displays, solar panels and LED lighting. The research was reported in the online edition of ACS Nano (“Rational Design of Hybrid Graphene Films for High-Performance Transparent Electrodes”).

Flexible, see-through video screens may be the “killer app” that finally puts graphene — the highly touted single-atom-thick form of carbon — into the commercial spotlight once and for all, Tour said. Combined with other flexible, transparent electronic components being developed at Rice and elsewhere, the breakthrough could lead to computers that wrap around the wrist and solar cells that wrap around just about anything. [emphasis mine]

The lab’s hybrid graphene film is a strong candidate to replace indium tin oxide (ITO), a commercial product widely used as a transparent, conductive coating. It’s the essential element in virtually all flat-panel displays, including touch screens on smart phones and iPads, and is part of organic light-emitting diodes (OLEDs) and solar cells.

Here’s James Tour and Yu Zhu, the paper’s lead author, explaining how the flexible screen was developed,

There are other flexible screens and competitors to the Morph notably the PaperPhone mentioned in my May 6,2011 posting (scroll down about 2/3 of the way) and in my May 12, 2011 posting featuring an interview with Roel Vertegaal of Queen’s University, Ontario, Canada, about the PaperPhone. (We did not discuss the role that graphene might or might not play in the development of the Paperphone’s screens.)

I wonder what impact this work at Rice will have not only for the Morph and the PaperPhone but on the European Union’s pathfinder research competition (the prize is $1B Euros), mentioned in my June 13, 2011 posting about graphene (scroll down about 1/3 of the way). Graphene is one of the research areas being considered for the prize.

ETA Aug. 5, 2011: Tour’s team just published another paper on graphene, one that proves you can make it from anything containing carbon according the Aug. 4, 2011 news item, One Box of Girl Scout Cookies Worth $15 Billion: Lab Shows Troop How Any Carbon Source Can Become Valuable Graphene, on Science Daily,

The cookie gambit started on a dare when Tour mentioned at a meeting that his lab had produced graphene from table sugar.

“I said we could grow it from any carbon source — for example, a Girl Scout cookie, because Girl Scout Cookies were being served at the time,” Tour recalled. “So one of the people in the room said, ‘Yes, please do it. … Let’s see that happen.'”

Members of Girl Scouts of America Troop 25080 came to Rice’s Smalley Institute for Nanoscale Science and Technology to see the process. Rice graduate students Gedeng Ruan, lead author of the paper, and Zhengzong Sun calculated that at the then-commercial rate for pristine graphene — $250 for a two-inch square — a box of traditional Girl Scout shortbread cookies could turn a $15 billion profit.

Here’s the full reference for this second paper,

Gedeng Ruan, Zhengzong Sun, Zhiwei Peng, James M. Tour. Growth of Graphene from Food, Insects and Waste. ACS Nano, 2011; 110729113834087 DOI: 10.1021/nn202625c

The article is behind a paywall.

About the BP oil spill, greening the desert, and using bicycle power to recharge your mobile

I found a couple more comments relating to the BP oil spill  in the Gulf. Pasco Phronesis offers this May 30, 2010 blog post, Cleaning With Old Technology, where the blogger, Dave Bruggeman, asks why there haven’t been any substantive improvements to the technology used for clean up,

The relatively ineffective measures have changed little since the last major Gulf of Mexico spill, the Ixtoc spill in 1979. While BP has solicited for other solutions to the problem (Ixtoc was eventually sealed with cement and relief wells after nine months), they appear to have been slow to use them.

It is a bit puzzling to me why extraction technology has improved but cleanup technology has not.

An excellent question.

I commented a while back (here) about another piece of nano reporting form Andrew Schneider. Since then, Dexter Johnson at Nanoclast has offered some additional thoughts (independent of reading Andrew Maynard’s 2020 Science post) about the Schneider report regarding ‘nanodispersants’ in the Gulf. From Dexter’s post,

Now as to the efficacy or dangers of the dispersant, I have to concur that it [nanodispersant] has not been tested. But it seems that the studies on the 118 oil-controlling products that have been approved for use by the EPA are lacking in some details as well. These chemicals were approved so long ago in some cases that the EPA has not been able to verify the accuracy of their toxicity data, and so far BP has dropped over a million gallons of this stuff into the Gulf.

Point well taken.

In the midst of this oil spill, it was good to come across a successful effort at regreening a desert. From the Fast Company article by Cliff Kuang,

Today, the Buckminster Fuller Institute announced the winner of its 2010 Challenge: Allan Savory, who has spent the last 50 years refining and evangelizing for a method of reversing desertification that he calls “holistic management.” The African Center for Holistic Management International, an NGO he helped found, will take home a $100,000 grant.

The Buckminster Fuller Challenge is meant to award big, sweeping solutions to seemingly intractable problems. …

… Savory’s prescription seems shockingly simple–and it’s taken him 50 years of work to convince others that he’s not crazy. The core of Holistic Management is simply grazing local livestock in super dense herds that mimic the grazing patterns of big-game (which have since disappeared). Those livestock in turn till the soil with their hooves and fertilize it with their dung–thus preparing the land for new vegetation in a cycle that was evolved over millions of years.

Savory works in Zimbabwe which is where the greatest success for this method is enjoyed but it has also been employed in the Rockies (between Montana, Wyoming, and Idaho Note: As a Canadian, I would not describe this area as the ‘northern Rockies’ as Kuang’s article does) and in the Australian outback.

… Savory’s African Center for Holistic Management has transformed 6,500 acres of land [in Zimbabwe]. There, even though livestock herds have increased by 400%, open water and fish have been found a half mile above where water had ever been known during dry season.


On a similar good news front, Nokia has announced a mobile phone charger that you can power up while riding your bicycle. From the Fast Company article by Addy Dugdale,

The Finnish firm’s [Nokia] Bicycle Charger Kit consists of a little bottle dynamo that you attach to the wheel of your bicycle to power up your phone as you pedal away. It comes with a phone holder that attaches to the handlebars using a hi-tech system composed of an elastic band and a plastic bag, in case of rain. Its price (in Kenya) is a little over $18 bucks, and it’s a wonder that no other phone manufacturer has thought of this before.

The Nokia Bicycle Charger Kit starts to work when you’re pedaling at just under 4mph and clicks off at 31mph. Hit 7.5mph and your bike will be charging your cell as quickly as a traditional charger would.

This reminds me a little of the projects where they try to create textiles that will harvest energy from your body that can be used to power mobile phones and other battery-powered devices that you carry around.

Nanotechnology and the European Economy; Nokia and IBM’s augmented reality meetings; Don Eigler hypes nanotechnology; physical/virtual/augmented reality meetings with IBM and Nokia

In keeping with my belief that the developments I’m observing are threads in a complex conversation (as per yesterday’s [Oct.20.09] posting), I’m back to highlighting various news items that hint at possible trends.

The European Commission’s Directorate-General for Research has published a call for proposals to study the economic impact of nanotechnology and nanosciences. You can get more details here on Azonano or view the call here.

There’s an interview with Don Eigler, the IBM scientist who’s known for moving Xenon atoms individually so they spell out IBM, in New Scientist here. Interestingly, Mr. Eigler does not have any concerns with regard to health fears related to nanotechnology. He’s aware of toxicology issues but he thinks that if we get it right, there’ll be very few problems, if any.

Following on my ‘nature of reality’ kick, this item about IBM and Nokia developing software that allows virtual reality/augmented reality meetings in physical space caught my attention.From the news item on Physorg.com

With support from IBM Research and Nokia Research Center, the VTT Technical Research Centre of Finland created an experimental system that enables people in multiple locations to interact and collaborate with avatars and objects in a single, virtual meeting . Objects and avatars are located in a “virtual” space that mirrors the corresponding physical room.

There is a video included with the story and it looked like the meeting was taking place in three spaces, two of them were physical and one was virtual. One office (physical) had two people who were interacting with virtual objects while simultaneously meeting in a virtual meeting room with their avatars and the same virtual objects they’d been interacting with in the physical space. A third person (in a geographically removed physical office) joined them in the virtual meeting. Do take a look.

The questions that spring to my mind are these: are all the spaces real? Is one space more real than the others and why? Some might argue that the virtual space is less real because it isn’t physical but then neither are your emotions. Also in the postings here about perception and quantum realities (Oct. 16, 19, and 20, 2009), I noted that our perceptions of reality at the macro level do not coincide with the realities of the quantum world which occasions this questions, What is the nature of reality?