A scientific team from Universidad Carlos III de Madrid (UC3M), in collaboration with University College London (England) and the University of California, Davis (USA), has found that smart TVs send viewing data to their servers. This allows brands to generate detailed profiles of consumers’ habits and tailor advertisements based on their behaviour.
The research revealed that this technology captures screenshots or audio to identify the content displayed on the screen using Automatic Content Recognition (ACR) technology. This data is then periodically sent to specific servers, even when the TV is used as an external screen or connected to a laptop.
“Automatic Content Recognition works like a kind of visual Shazam, taking screenshots or audio to create a viewer profile based on their content consumption habits. This technology enables manufacturers’ platforms to profile users accurately, much like the internet does,” explains one of the study’s authors, Patricia Callejo, a professor in UC3M’s Department of Telematics Engineering and a fellow at the UC3M-Santander Big Data Institute. “In any case, this tracking—regardless of the usage mode—raises serious privacy concerns, especially when the TV is used solely as a monitor.”
The findings, presented in November [2024] at the Internet Measurement Conference (IMC) 2024, highlight the frequency with which these screenshots are transmitted to the servers of the brands analysed: Samsung and LG. Specifically, the research showed that Samsung TVs sent this information every minute, while LG devices did so every 15 seconds. “This gives us an idea of the intensity of the monitoring and shows that smart TV platforms collect large volumes of data on users, regardless of how they consume content—whether through traditional TV viewing or devices connected via HDMI, like laptops or gaming consoles,” Callejo emphasises.
To test the ability of TVs to block ACR tracking, the research team experimented with various privacy settings on smart TVs. The results demonstrated that, while users can voluntarily block the transmission of this data to servers, the default setting is for TVs to perform ACR. “The problem is that not all users are aware of this,” adds Callejo, who considers this lack of transparency in initial settings concerning. “Moreover, many users don’t know how to change the settings, meaning these devices function by default as tracking mechanisms for their activity.”
This research opens up new avenues for studying the tracking capabilities of cloud-connected devices that communicate with each other (commonly known as the Internet of Things, or IoT). It also suggests that manufacturers and regulators must urgently address the challenges that these new devices will present in the near future.
This was on the Canadian Broadcasting Corporation’s (CBC) Day Six radio programme and the segment is embedded in a January 19, 2025 article by Philip Drost, Note: A link has been removed,
When a Tesla Cybertruck exploded outside Trump International Hotel in Las Vegas on New Year’s Day [2025], authorities were quickly able to gather information, crediting Elon Musk and Tesla for sending them info about the car and its driver.
But for some, it’s alarming to discover that kind of information is so readily available.
“Most carmakers are selling drivers’ personal information. That’s something that we know based on their privacy policies,” Zoë MacDonald, a writer and researcher focussing on online privacy and digital rights, told Day 6 host Brent Bambury.
The Las Vegas Metropolitan Police Department said the Tesla CEO was able to provide key details about the truck’s driver, who authorities believe died by self-inflicted gun wound at the scene, and its movement leading up to the destination.
With that data, they were able to determine that the explosives came from a device in the truck, not the vehicle itself.
“We have now confirmed that the explosion was caused by very large fireworks and/or a bomb carried in the bed of the rented Cybertruck and is unrelated to the vehicle itself,” Musk wrote on X following the explosion.
To privacy experts, it’s another example of how your personal information can be used in ways you may not be aware of. And while this kind of data can useful in an investigation, it’s by no means the only way companies use the information.
“This is unfortunately not surprising that they have this data,” said David Choffnes, executive director of the Cybersecurity and Privacy Institute at Northeastern University in Boston.
“When you see it all together and know that a company has that information and continues at any point in time to hand it over to law enforcement, then you start to be a little uncomfortable, even if — in this case — it was a good thing for society.”
CBC News reached out to Tesla for comment but did not hear back before publication.
…
I found this to be eye-opening, Note: A link has been removed,
MacDonald says the privacy concerns are a byproduct of all the technology new cars come with these days, including microphones, cameras, and sensors. The app that often accompanies a new car is collecting your information, too, she says.
The former writer for the Mozilla Foundation worked on a report in 2023 that examined vehicle privacy policies. For that study, MacDonald sifted through privacy policies from auto manufacturers. And she says the findings were staggering.
…
Most shocking of all is the information the car can learn from you, MacDonald says. It’s not just when you gas up or start your engine. Your vehicle can learn your sexual activity, disability status, and even your religious beliefs [emphasis mine].
MacDonald says it’s unclear how they car companies do this, because the information in the policies are so vague.
It can also collect biometric data, such as facial geometric features, iris scans, and fingerprints [emphasis mine].
…
This extends far past the driver. MacDonald says she read one privacy policy that required drivers to read out a statement every time someone entered the vehicle, to make them aware of the data the car collects, something that seems unlikely to go down before your Uber ride.
…
If that doesn’t bother you, then this might, Note: A link has been removed,
And car companies aren’t just keeping that information to themselves.
Confronted with these types of privacy concerns, many people simply say they have nothing to hide, Choffnes says. But when money is involved, they change their tune.
According to an investigation from the New York Times in March of 2024, General Motors shared information on how people drive their cars with data brokers that create risk profiles for the insurance industry, which resulted in people’s insurance premiums going up [emphases mine]. General Motors has since said it has stopped sharing those details [emphasis mine].
“The issue with these kinds of services is that it’s not clear that it is being done in a correct or fair way, and that those costs are actually unfair to consumers,” said Choffnes.
For example, if you make a hard stop to avoid an accident because of something the car in front of you did, the vehicle could register it as poor driving.
…
Drost’s January 19, 2025 article notes that the US Federal Trade Commission has proposed a five year moratorium to prevent General Motors from selling geolocation and driver behavior data to consumer report agencies. In the meantime,
“Cars are a privacy nightmare. And that is not a problem that Canadian consumers can solve or should solve or should have the burden to try to solve for themselves,” said MacDonald.
If you have the time, read Drost’s January 19, 2025 article and/or listen to the embedded radio segment.
These days it seems experts are encouraging people wear sunscreen all year round. Anyway, that’s my excuse for claiming that this is a timely announcement, from a July 22, 2024 news item on phys.org,
When Northeastern [Northeastern University; Boston, Massachusetts] graduate Camille Martin and associate professor Leila Deravi co-founded Seaspire, a skincare ingredients company inspired by pigment in octopus and squid, their goal was to create a product that is good for your skin and the environment.
New research shows that they are on the right track.
A paper published in the International Journal of Cosmetic Science says that Xanthochrome, a synthesized version of a molecule found in cephalopods such as squid, octopus and cuttlefish, boosts levels of sunscreen protection in combination with zinc oxide while having no adverse effects on coral cuttings.
The marine safety findings are important because “there’s a lot of toxicities involved with (traditional) UV filters in sunscreens,” says Deravi, who is Seaspire’s scientific adviser and an associate professor of chemistry and chemical biology.
“Some of the chemical UV-filters in particular are known to create reactive oxygen species that are not only bad for the environment but can also seep into our skin and cause systemic toxicities,” she says.
The result is a pressing need for environmentally friendly ingredients, says Martin, who got her Ph.D. in chemistry from Northeastern in 2019 and has served as Seaspire’s CEO since its founding that year.
“The industry is really excited about new materials innovations,” she says. “Everything we do as a biotechnology company is centered around leveraging marine animals as a source of inspiration for the next generation of skin care ingredients.”
From lab to market
The goal of Seaspire, Martin says, is to make Xanthochrome available to skin care product manufacturers and distributors up and down the supply chain so that it ends up in a wide range of ski care and personal care products including sunscreens, anti-aging applications and functional color cosmetics.
“We are just wrapping up the research and development on it now and actively looking for partnerships to bring this to market,” Deravi says.
Produced as a brown, textured powder, Xanthochrome has potent antioxidant and skin restorative properties as well as having light scattering qualities that provide protection against photoaging, Martin and Deravi say.
Martin says Xanthochrome is the trade name for a chemically synthesized version of xanthommatin, which is found in the skin of cuttlefish, octopus and squid and in insects as well.
“The secret to the cephalopods’ unique coloration is derived from its multifunctional chemical compounds, which we identified in our lab at Northeastern,” Deravi says.
“Camille’s Ph.D. work was the first to show that these small molecules inside cephalopod skin that contribute to camouflage in the animal also have really interesting antioxidant properties,” Deravi says.
“They’re free radical scavengers, which are very important for skin health and skin barrier function,” she says.
“And then they also have pretty important optical properties protecting against exposure to sunlight, which is the main function of some UV filters and sunscreens,” Deravi says.
“We didn’t create a new molecule,” Martin says. “We were able to isolate and characterize the properties of the biomolecules found within cephalopods, engineer a bio-identical version of the naturally occurring material and position Xanthochrome as a new active ingredient that provides a wide range of skin care benefits.”
“It’s a really interesting space where you have a single molecule that can have so many functions,” she says.
Previous research showed Xanthochrome, unlike the parabens that often go into sunscreens, is not an endocrine disruptor.
The most recent study shows that it boosts the ultraviolet protection of zinc oxide, which the U.S. Food and Drug Administration considers a safe and effective ingredient in sunscreen, by 28% and the blocking potential of visible light by 45%.
It also showed Xanthochrome did not have an adverse effect on coral cuttings even at concentrations five times higher than what are used in typical formulations.
Martin and Deravi hope that skincare product manufacturers see Xanthochrome as a next-generation ingredient on the heels of retinoids and vitamin C and hyaluronic acid.
“We’re creating products that can really be applied and adopted across a wide range of users,” Martin says. “We are creating something that is not only safe for all people, but also the environment.”
“You have to prove the new raw materials are safe for humans and also for the ocean, where ultimately every product is going to get washed into,” Deravi says.
The Seaspire Skincare website does not have any information about where you might access products with Xanthochrome. I’ll be keeping watch hoping to see some products in the not too distant future.
It seems that physicists are having a moment in the pop culture scene and they are excited about two television series (Fallout and 3 Body Problem) televised earlier this year in US/Canada.
The world ends on Oct. 23, 2077, in a series of radioactive explosions—at least in the world of “Fallout,” a post-apocalyptic video game series that has now been adapted into a blockbuster TV show on Amazon’s Prime Video.
The literal fallout that ensues creates a post-apocalyptic United States that is full of mutated monstrosities, irradiated humans called ghouls and hard scrabble survivors who are caught in the middle of it all. It’s the material of classic Atomic Age sci-fi, the kind of pulp stories “Fallout” draws inspiration from for its retro-futuristic version of America.
But there is more science in this science fiction story than you might think, according to Pran Nath, Matthews distinguished university professor of physics at Northeastern University.
…
“Fallout” depicts a post-apocalyptic world centuries after nuclear war ravaged the United States. Amazon MGM Studios Photo
In the opening moments of “Fallout,” which debuted on April 10 [2024], Los Angeles is hit with a series of nuclear bombs. Although it takes place in a clearly fictional version of La La Land –– the robots and glistening, futuristic skyscrapers in the distance are dead giveaways –– the nuclear explosions themselves are shockingly realistic.
Nath says that when a nuclear device is dropped there are three stages.
“When the nuclear blast occurs, because of the chain reaction, in a very short period of time, a lot of energy and radiation is emitted,” Nath says. “In the first instance, a huge flash occurs, which is the nuclear reaction producing gamma rays. If you are exposed to it, people, for example, in Hiroshima were essentially evaporated, leaving shadows.”
Depending on how far someone is from the blast, even those who are partially protected will have their body rapidly heat up to 50 degrees Celsius, or 122 degrees Fahrenheit, causing severe burns. The scalded skin of the ghouls in “Fallout” are not entirely unheard of (although their centuries-long lifespan stretches things a bit).
The second phase is a shockwave and heat blast –– what Nath calls a “fireball.” The shockwave in the first scene of “Fallout” quickly spreads from the blast, but Nath says it would probably happen even faster and less cinematically. It would travel around the speed of sound, around 760 miles per hour.
The shockwave also has a huge amount of pressure, “so huge … that it can collapse concrete buildings.” It’s followed by a “fireball” that would burn every building in the blast area with an intense heatwave.
“The blast area is defined as the area where the shockwaves and the fireball are the most intense,” Nath says. “For Hiroshima, that was between 1 and 2 miles. Basically, everything is destroyed in that blast area.”
The third phase of the nuclear blast is the fallout, which lasts for much longer and has even wider ranging impacts than the blast and shockwave. The nuclear blast creates a mushroom cloud, which can reach as high as 10 miles into the atmosphere. Carried by the wind, the cloud spreads radioactivity far outside the blast area.
“In a nuclear blast, up to 100 different radioactive elements are produced,” Nath says. “These radioactive elements have lifetimes which could be a few seconds, and they could be up to millions of years. … It causes pollution and damage to the body and injuries over a longer period, causing cancer and leukemia, things like this.”
A key part of the world of “Fallout” is the Vaults, massive underground bunkers the size of small towns that the luckiest of people get to retreat into when the world ends. The Vaults are several steps above most real-world fallout shelters, but Nath says that kind of protection would be necessary if you wanted to stay safe from the kind of radiation released by nuclear weapons, particularly gamma rays that can penetrate several feet of concrete.
“If you are further away and you keep inside and behind concrete, then you can avoid both the initial flash of the nuclear blast and also could probably withstand the shockwaves and the heatwave that follows, so the survivability becomes larger,” Nath says.
But what about all the radioactive mutants wandering around the post-apocalyptic wasteland?
It might seem like the colossal, monstrous mutant salamanders and giant cockroaches of “Fallout” are a science fiction fabrication. But there is a real-world basis for this, Nath says.
“There are various kinds of abnormalities that occur [with radiation,]” Nath says. “They can also be genetic. Radiation can create mutations, which are similar to spontaneous mutation, in animals and humans. In Chernobyl, for example, they are discovering animals which are mutated.”
In the Chernobyl Exclusion Zone, the genetics of wild dogs have been radically altered. Scientists hypothesize that thewolves near Chernobyl may have developed to be more resistant to radiation, which could make them “cancer resistant,” or at least less impacted by cancer. And frogs have adapted to have more melanin in their bodies, a form of protection against radiation, turning them black.
“Fallout” takes the horrifying reality of nuclear war and spins a darkly comic sci-fi yarn, but Nath says it’s important to remember how devastating these real-world forces are.
It’s estimated that as many as 146,000 people in Hiroshima and 80,000 people in Nagasaki were killed by the effects of the bombs dropped by the U.S. Today’s nuclear weapons are so much more powerful that there is very little understanding of the impact these weapons could have. Nath says the fallout could even exacerbate global warming.
“Thermonuclear war would be a global problem,” Nath says.
Although “Fallout” is a piece of science fiction, the reality of its world-ending scenario is terrifyingly real, says Pran Nath, Matthews distinguished university professor of physics at Northeastern University. Photo by Adam Glanzman/Northeastern University
Kudos to the photographer!
3 Body Problem (television series)
This one seems to have a lit a fire in the breasts of physicists everywhere. I have a number of written pieces and a video about this this show, which is based on a book by Liu Cixn. (You can find out more about Cixin and his work in his Wikipedia entry.)
“3 Body Problem,” Netflix’s new big-budget adaptation of Liu Cixin’s book series helmed by the creators behind “Game of Thrones,” puts the science in science fiction.
The series focuses on scientists as they attempt to solve a mystery that spans decades, continents and even galaxies. That means “3 Body Problem” throws some pretty complicated quantum mechanics and astrophysics concepts at the audience as it, sometimes literally, tries to bring these ideas down to earth.
However, at the core of the series is the three-body problem, a question that has stumped scientists for centuries.
What exactly is the three-body problem, and why is it still unsolvable? Jonathan Blazek, an assistant professor of physics at Northeastern University, explains that systems with two objects exerting gravitational force on one another, whether they’re particles or stars and planets, are predictable. Scientists have been able to solve this two-body problem and predict the orbits of objects since the days of Isaac Newton. But as soon as a third body enters the mix, the whole system gets thrown into chaos.
“The three-body problem is the statement that if you have three bodies gravitating toward each other under Newton’s law of gravitation, there is no general closed-form solution for that situation,” Blazek says. “Little differences get amplified and can lead to wildly unpredictable behavior in the future.”
In “3 Body Problem,” like in Cixin’s book, this is a reality for aliens that live in a solar system with three suns. Since all three stars are exerting gravitational forces on each other, they end up throwing the solar system into chaos as they fling each other back and forth. For the Trisolarans, the name for these aliens, it means that when a sun is jettisoned far away, their planet freezes, and when a sun is thrown extremely close to their planet, it gets torched. Worse, because of the three-body problem, these movements are completely unpredictable.
For centuries, scientists have pondered the question of how to determine a stable starting point for three gravitational bodies that would result in predictable orbits. There is still no generalizable solution that can be taken out of theory and modeled in reality, although recently scientists have started to find some potentially creative solutions, including with models based on the movements of drunk people.
“If you want to [predict] what the solar system’s going to do, we can put all the planets and as many asteroids as we know into a computer code and basically say we’re going to calculate the force between everything and move everything forward a little bit,” Blazek says. “This works, but to the extent that you’re making some approximations … all of these things will eventually break down and your prediction is going to become inaccurate.”
Blazek says the three-body problem has captivated scientific minds because it’s a seemingly simple problem. Most high school physics students learn Newton’s law of gravity and can reasonably calculate and predict the movement of two bodies.
Three-body systems, and more than three-body systems, also show up throughout the universe, so the question is incredibly relevant. Look no further than our solar system.
The relationship between the sun, Earth and our moon is a three-body system. But Blazek says since the sun exerts a stronger gravitational force on Earth and Earth does the same on the moon, it creates a pair of two-body systems with stable, predictable orbits –– for now.
Blazek says that although our solar system appears stable, there’s no guarantee that it will stay that way in the far future because there are still multi-body systems at play. Small changes like an asteroid hitting one of Jupiter’s moons and altering its orbit ever so slightly could eventually spiral into larger changes.
That doesn’t mean humanity will face a crisis like the one the Trisolarans face in “3 Body Problem.” These changes happen extremely slowly, but Blazek says it’s another reminder of why these concepts are interesting and important to think about in both science and science fiction.
“I don’t think anything is going to happen on the time scale of our week or even probably our species –– we have bigger problems than the instability of orbits in our solar system,” Blazek says. “But, that said, if you think about billions of years, during that period we don’t know that the orbits will stay as they currently are. There’s a good chance there will be some instability that changes how things look in the solar system.”
An April 12, 2024 news item on phys.org covers some of the same ground, Note: A link has been removed.
The science fiction television series 3 Body Problem, the latest from the creators of HBO’s Game of Thrones, has become the most watched show on Netflix since its debut last month. Based on the bestselling book trilogy Remembrance of Earth’s Past by Chinese computer engineer and author Cixin Liu, 3 Body Problem introduces viewers to advanced concepts in physics in service to a suspenseful story involving investigative police work, international intrigue, and the looming threat of an extraterrestrial invasion.
Yet how closely does the story of 3 Body Problem adhere to the science that it’s based on? The very name of the show comes from the three-body problem, a mathematical problem in physics long considered to be unsolvable.
Virginia Tech physicist Djordje Minic says, “The three-body problem is a very famous problem in classical and celestial mechanics, which goes back to Isaac Newton. It involves three celestial bodies interacting via the gravitational force—that is, Newton’s law of gravity. Unlike mathematical predictions of the motions of two-body systems, such as Earth-moon or Earth-sun, the three-body problem does not have an analytic solution.”
“At the end of the 19th century, the great French mathematician Henri Poincaré’s work on the three-body problem gave birth to what is known as chaos theory and the concept of the ‘butterfly effect.'”
Both the novels and the Netflix show contain a visualization of the three-body problem in action: a solar system made up of three suns in erratic orbit around one another. Virginia Tech aerospace engineer and mathematics expert Shane Ross discussed liberties the story takes with the science that informs it.
“There are no known configurations of three massive stars that could maintain an erratic orbit,” Ross said. “There was a big breakthrough about 20 years ago when a figure eight solution of the three-body problem was discovered, in which three equal-sized stars chase each other around on a figure eight-shaped course. In fact, Cixin Liu makes reference to this in his books. Building on that development, other mathematicians found other solutions, but in each case the movement is not chaotic.”
Ross elaborated, “It’s even more unlikely that a fourth body, a planet, would be in orbit around this system of three stars, however erratically — it would either collide with one or be ejected from the system. The situation in the book would therefore be a solution of the ‘four-body problem,’ which I guess didn’t have quite the right ring to use as a title.
“Furthermore, a stable climate is unlikely even on an Earth-like planet. At last count, there are at least a hundred independent factors that are required to create an Earth-like planet that supports life as we know it,” Ross said. “We have been fortunate to have had about 10,000 years of the most stable climate in Earth’s history, which makes us think climate stability is the norm, when in fact, it’s the exception. It’s likely no coincidence that this has corresponded with the rise of advanced human civilization.”
About Ross A professor of Aerospace and Ocean Engineering at Virginia Tech, Shane Ross directs the Ross Dynamics Lab, which specializes in mathematical modeling, simulation, visualization, and experiments involving oceanic and atmospheric patterns, aerodynamic gliding, orbital mechanics, and many other disciplines. He has made fundamental contributions toward finding chaotic solutions to the three-body problem. Read his bio …
About Minic Djordje Minic teaches physics at Virginia Tech. A specialist in string theory and quantum gravity, he has collaborated on award-winning research related to dark matter and dark energy. His most recent investigation involves the possibility that in the context of quantum gravity the geometry of quantum theory might be dynamical in analogy with the dynamical nature of spacetime geometry in Einstein’s theory of gravity. View his full bio …
For the last ‘3 Body Problem’ essay, there’s this April 5, 2023 article by Tara Bitran and Phillipe Thao for Netflix.com featuring comments from a physicist concerning a number of science questions,, Note: Links have been removed,
If you’ve raced through 3 Body Problem, the new series from Game of Thrones creators David Benioff and D.B. Weiss and True Blood writer Alexander Woo, chances are you want to know more about everything from Sophons and nanofibers to what actually constitutes a three-body problem. After all, even the show’s scientists are stumped when they witness their well-known theories unravel at the seams.
But for physicists like 3 Body Problem’s Jin (Jess Hong) and real-life astrophysicist Dr. Becky Smethurst (who researches how supermassive black holes grow at the University of Oxford and explains how scientific phenomena work in viral videos), answering the universe’s questions is a problem they’re delighted to solve. In fact, it’s part of the fun. “I feel like scientists look at the term ‘problem’ more excitedly than anybody else does,” Smethurst tells Tudum. “Every scientist’s dream is to be told that they got it wrong before and here’s some new data that you can now work on that shows you something different where you can learn something new.”
The eight-episode series, based on writer Cixin Liu’s internationally celebrated Remembrance of Earth’s Past trilogy, repeatedly defies human science standards and forces the characters to head back to the drawing board to figure out how to face humanity’s greatest threat. Taking us on a mind-boggling journey that spans continents and timelines, the story begins in ’60s China, when a young woman makes a fateful decision that reverberates across space and time into the present day. With humanity’s future in danger, a group of tight-knit scientists, dubbed the Oxford Five, must work against time to save the world from catastrophic consequences.
Dr. Matt Kenzie, associate professor of physics at University of Cambridge and 3 Body Problem’s science advisor, sits down with Tudum to dive into the science behind the series. So if you can’t stop thinking about stars blinking and chaotic eras, keep reading for all the answers to your burning scientific questions. Education time!
What is a Cherenkov tank?
In Episode 1, the Oxford Five’s former college professor, Dr. Vera Ye (Vedette Lim), walks out onto a platform at the top of a large tank and plunges to her death in a shallow pool of water below. If you were wondering what that huge tank was, it’s called a particle detector (sometimes also known as a Cherenkov tank). It’s used to observe, measure, and identify particles, including, in this case, neutrinos, a common particle that comes largely from the sun. “Part of the reason that they’re kind of interesting is that we don’t really understand much about them, and we suspect that they could be giving us clues to other types of physics in the universe that we don’t yet understand,” Dr. Kenzie told Netflix.
When a neutrino interacts with the water molecules stored inside the tank, it sets off a series of photomultiplier tubes — the little circles that line the tank Vera jumps into. Because Vera’s experiment is shut down and the water is reduced to a shallow level, the fall ends up killing her.
…
What are nanofibers?
In the show, Auggie’s a trailblazer in nanofiber technology. She runs a company that designs self-assembling synthetic polymer nanofibers and hopes to use her latest innovation to solve world problems, like poverty and disease. But what are nanofibers and how do they work? Dr. Kenzie describes nanofiber technology as “any material with a width of nanometers” — in other words, one millionth of a millimeter in thickness. Nanofibers can be constructed out of graphene (a one-atom thick layer of carbon) and are often very strong. “They can be very flexible,” he adds. “They tend to be very good conductors of both heat and electricity.”
Is nanofiber technology real, and can it actually cut through human flesh?
Nanofiber technology does exist, although Dr. Kenzie says it’s curated and grown in labs under very specific conditions. “One of the difficulties is how you hold them in place — the scaffolding it’s called,” he adds. “You have to design molecules which hold these things whilst you’re trying to build them.”
After being tested on a synthetic diamond cube in Episode 2, we see the real horrors of nanofiber technology when it’s used to slice through human bodies in Episode 5. Although the nanofiber technology that exists today is not as mass produced as Auggie’s — due to the cost of producing and containing it — Dr. Kenzie says it’s still strong enough to slice through almost anything.
What can nanofiber technology be used for?
According to Dr. Kenzie, the nanofiber technology being developed today can be used in several ways within the manufacturing and construction industries. “If you wanted a machine that could do some precision cutting, then maybe [nanofiber] would be good,” he says. “I know they’re also tested in the safety of the munitions world. If you need to bulletproof a room or bulletproof a vest, they’re incredibly light and they’re incredibly strong.” He also adds that nanofiber technology is viewed as a material of the future, which can be used for water filtration — just as we see Auggie use it in the season finale.
…
The Bitran and Thao piece includes another description of the 3 Body Problem but it’s the first I’ve seen that describes some of the other science.
Also mentioned in one of the excerpts in this posting is The Science and Entertainment Exchange (also known as The Science & Entertainment Exchange or Science & Entertainment Exchange) according to its Wikipedia entry, Note: Links have been removed,
The Science & Entertainment Exchange[1] is a program run and developed by the United States National Academy of Sciences (NAS) to increase public awareness, knowledge, and understanding of science and advanced science technology through its representation in television, film, and other media. It serves as a pro-science movement with the main goal of re-cultivating how science and scientists truly are in order to rid the public of false perceptions on these topics. The Exchange provides entertainment industry professionals with access to credible and knowledgeable scientists and engineers who help to encourage and create effective representations of science and scientists in the media, whether it be on television, in films, plays, etc. The Exchange also helps the science community understand the needs and requirements of the entertainment industry, while making sure science is conveyed in a correct and positive manner to the target audience.
Officially launched in November 2008, the Exchange can be thought of as a partnership between NAS and Hollywood, as it arranges direct consultations between scientists and entertainment professionals who develop science-themed content. This collaboration allows for industry professionals to accurately portray the science that they wish to capture and include in their media production. It also provides scientists and science organizations with the opportunity to communicate effectively with a large audience that may otherwise be hard to reach such as through innovative physics outreach. It also provides a variety of other services, including scheduling briefings, brainstorming sessions, screenings, and salons. The Exchange is based in Los Angeles, California.
…
I hadn’t realized the exchange was physics specific. Given the success with physics, I’d expect the biology and chemistry communities would be eager to participate or start their own exchanges.
Back in 2019 Canada was having a problem with Malaysia and the Phillipines over the garbage (this is meant literally) that we were shipping over to those counties, which is why an article about Chinese science fiction writer, Chen Qiufan and his 2013 novel, The Waste Tide, caught my attention and I pubisihed this May 31, 2019 posting, “Chen Qiufan, garbage, and Chinese science fiction stories.” There’s a very brief mention of Liu Cxin in one of the excerpts.
Last week (specifically, Tuesday, March 3, 2020), someone moved away from me during a class. I’d sneezed.
The irony of the situation is that of the two of us, with my lung issues I’d be the one most at risk of getting very ill and/or dying from COVID-19. ([1] Yes, I confirmed that was the reason she’d moved. [2] The therapeutic nanoparticles news item is coming later) Here are the risk factors to take into account (from the US Centers for Disease Control’s People at Risk for Serious Illness from COVID-19 webpage,
Older adults [Note: In one report the age range was stated as ‘people over 70’]
People who have serious chronic medical conditions like:
Heart disease
Diabetes
Lung disease
I’m not suggesting that all precautions be abandoned but it would seem that panic might not be called for. Jeremy Samuel Faust, an emergency medicine physician at Brigham and Women’s Hospital in Boston, faculty in its division of health policy and public health, and an instructor at Harvard Medical School, has written a calming March 4, 2020 article (COVID-19 Isn’t As Deadly As We Think; Don’t hoard masks and food. Figure out how to help seniors and the immunosuppressed stay healthy.) for Slate.com (Note: Links have been removed],
There are many compelling reasons to conclude that SARS-CoV-2, the virus that causes COVID-19, is not nearly as deadly as is currently feared. But COVID-19 panic has set in nonetheless. You can’t find hand sanitizer in stores, and N95 face masks are being sold online for exorbitant prices, never mind that neither is the best way to protect against the virus (yes, just wash your hands). The public is behaving as if this epidemic is the next Spanish flu, which is frankly understandable given that initial reports have staked COVID-19 mortality at about 2–3 percent, quite similar to the 1918 pandemic that killed tens of millions of people.
Allow me to be the bearer of good news. These frightening numbers are unlikely to hold. The true case fatality rate, known as CFR, of this virus is likely to be far lower than current reports suggest. Even some lower estimates, such as the 1 percent death rate recently mentioned by the directors of the National Institutes of Health and the Centers for Disease Control and Prevention, likely substantially overstate the case. [emphases mine]
…
But the most straightforward and compelling evidence that the true case fatality rate of SARS-CoV-2 is well under 1 percent comes not from statistical trends and methodological massage, but from data from the Diamond Princess cruise outbreak and subsequent quarantine off the coast of Japan.
A quarantined boat is an ideal—if unfortunate—natural laboratory to study a virus. Many variables normally impossible to control are controlled. We know that all but one patient boarded the boat without the virus. We know that the other passengers were healthy enough to travel. We know their whereabouts and exposures. While the numbers coming out of China are scary, we don’t know how many of those patients were already ill for other reasons. How many were already hospitalized for another life-threatening illness and then caught the virus? How many were completely healthy, caught the virus, and developed a critical illness? In the real world, we just don’t know.
Here’s the problem with looking at mortality numbers in a general setting: In China, 9 million people die per year, which comes out to 25,000 people every single day, or around 1.5 million people over the past two months alone. A significant fraction of these deaths results from diseases like emphysema/COPD, lower respiratory infections, and cancers of the lung and airway whose symptoms are clinically indistinguishable from the nonspecific symptoms seen in severe COVID-19 cases. And, perhaps unsurprisingly, the death rate from COVID-19 in China spiked precisely among the same age groups in which these chronic diseases first become common. During the peak of the outbreak in China in January and early February, around 25 patients per day were dying with SARS-CoV-2. Most were older patients in whom the chronic diseases listed above are prevalent. Most deaths occurred in Hubei province, an area in which lung cancer and emphysema/COPD are significantly higher than national averages in China, a country where half of all men smoke. How were doctors supposed to sort out which of those 25 out of 25,000 daily deaths were solely due to coronavirus, and which were more complicated? What we need to know is how many excess deaths this virus causes.
…
This all suggests that COVID-19 is a relatively benign disease for most young people, and a potentially devastating one for the old and chronically ill, albeit not nearly as risky as reported. Given the low mortality rate among younger patients with coronavirus—zero in children 10 or younger among hundreds of cases in China, and 0.2-0.4 percent in most healthy nongeriatric adults (and this is still before accounting for what is likely to be a high number of undetected asymptomatic cases)—we need to divert our focus away from worrying about preventing systemic spread among healthy people—which is likely either inevitable, or out of our control—and commit most if not all of our resources toward protecting those truly at risk of developing critical illness and even death: everyone over 70, and people who are already at higher risk from this kind of virus.
This still largely comes down to hygiene and isolation. But in particular, we need to focus on the right people and the right places. Nursing homes, not schools. Hospitals, not planes. We need to up the hygienic and isolation ante primarily around the subset of people who can’t simply contract SARS-CoV-2 and ride it out the way healthy people should be able to.
…
Curtis Kim of Vancouver, Canada, has created a website dedicated to tracking the statistics and information about COVID-19 in Canada and around the world. Here’s more about Kim and the website from a March 8, 2020 article by Megan Devlin for the Daily Hive,
Curtis Kim, who studied Computer Systems Technology at the British Columbia Institute of Technology [BCIT], launched the site this week after getting frustrated he was spending so much time on various websites looking for daily coronavirus updates.
…
The site breaks down the number of cases in Canada, the number of deaths (zero in Canada so far), and the number of people who have recovered. Further down, it provides the same stats for global COVID-19 cases.
There’s also a colour-coded map showing where cases are distributed, and a feed of latest news articles about the virus. Kim also included information about symptoms and how to contact Canadian public health services.
…
Kim is looking for work and given what I’ve seen of his COVID-19 website, he should have no difficulty. Although I think it might be an idea for him to explain how the ‘lethality’ rate on his website has been obtained since Faust who seems to have more directly relevant experience suggests in his article that the numbers are highly problematic,
My name is Curtis, recently graduated from BCIT. I thought it would be a serious worldwide issue considering the speed of the spread of this virus ever since this COVID-19 occurred. I frequently googled to check up the current status by going through many websites and felt I was wasting time repeatedly searching with same keywords and for sure I wasn’t the only one feeling this way. That’s why I started creating this application. It provides up-to-date information on the COVID-19 broken by province and country around the world, key contact information, and latest news. I like to help people, and want them to understand this situation easily using this application. Hopefully this situation improves soon.
If you have any further inquries about the information on this web application, Please reach me at curtisk808@gmail.com
At about 11:45 am (PT) on March 9, 2020, Kim’s COVID-19 website was updated to include one death in Canada. As you might expect, ti was a resident in a long term care home. Wanyee Li’s March 9, 2020 article for The Star presents the news,
A resident at a long-term care home experiencing a COVID-19 outbreak in North Vancouver has died after contracting the virus, B.C. health officials confirmed Monday [March 9, 2020].
It is the first reported death in Canada linked to the virus.
The outbreak at the Lynn Valley Care Centre has so far been linked to three community transmission cases of the virus.
Provincial Health Officer Dr. Bonnie Henry confirmed five new cases of COVID-19 in B.C. on Monday [March 9, 2020], putting the total in the province at 32.
The five new cases include one health-care worker, two people who are close contacts of an existing case, one person who recently returned from travel to Iran and another who was in Italy recently.
Officials are conducting an investigation into the three community transmission cases at the long-term care home to determine how a health care worker contracted the virus.
…
I looked up the population figures for the province of British Columbia (BC; Wikipedia entry for Demographics of British Columbia). As of the 2016 census, there were 4,648,055 people in the province. Assuming that population number holds, 67 cases in all of Canada (with 27 cases in BC) of COVID-19 don’t seem like big numbers.
We should definitely take precautions and be careful but there’s no need to panic.
There is no vaccine or specific treatment for COVID-19, the disease caused by the severe acute respiratory syndrome coronavirus 2, or SARS-CoV-2.
Since the outbreak began in late 2019, researchers have been racing to learn more about SARS-CoV-2, which is a strain from a family of viruses known as coronavirus for their crown-like shape.
Northeastern Ûniversity] chemical engineer Thomas Webster, who specializes in developing nano-scale medicine and technology to treat diseases, is part of a contingency of scientists that are contributing ideas and technology to the Centers for Disease Control and Prevention to fight the COVID-19 outbreak.
The idea of using nanoparticles, Webster says, is that the virus behind COVID-19 consists of a structure of a similar scale as his nanoparticles. At that scale, matter is ultra-small, about ten thousand times smaller than the width of a single strand of hair.
..
This scanning electron microscope image shows SARS-CoV-2 (round gold objects) emerging from the surface of cells cultured in the lab. SARS-CoV-2, also known as 2019-nCoV, is the virus that causes COVID-19. The virus shown was isolated from a patient in the U.S. (Image: NIAID-RML)
Webster is proposing particles of similar sizes that could attach to SARS-CoV-2 viruses, disrupting their structure with a combination of infrared light treatment. That structural change would then halt the ability of the virus to survive and reproduce in the body.
“You have to think in this size range,” says Webster, Art Zafiropoulo Chair of chemical engineering at Northeastern. “In the nanoscale size range, if you want to detect viruses, if you want to deactivate them.”
Finding and neutralizing viruses with nanomedicine is at the core of what Webster and other researchers call theranostics, which focuses on combining therapy and diagnosis. Using that approach, his lab has specialized in nanoparticles to fight the microbes that cause influenza and tuberculosis.
“It’s not just having one approach to detect whether you have a virus and another approach to use it as a therapy,” he says, “but having the same particle, the same approach, for both your detection and therapy.”
…
I wish Webster good luck. As for the rest us, let’s wash our hands and keep calm.
This is a cellulose nanocrystal (CNC) story and in this story it’s derived from trees as opposed to banana skins or carrots or … A February 19, 2020 news item on Nanowerk announces CNC research from Northeastern University (Massachusetts, US),
Nature isn’t always generous with its secrets. That’s why some researchers look into unusual places for solutions to our toughest challenges, from powerful antibiotics hiding in the guts of tiny worms, to swift robots inspired by bats.
Now, Northeastern researchers have taken to the trees to look for ways to make new sustainable materials from abundant natural resources—specifically, within the chemical structure of microfibers that make up wood.
A team led by Hongli (Julie) Zhu, an assistant professor of mechanical and industrial engineering at Northeastern, is using unique nanomaterials derived from cellulose to improve the large and expensive kind of batteries needed to store renewable energy harnessed from sources such as sunlight and the wind.
Cellulose, the most abundant natural polymer on Earth, is also the most important structural component of plants. It contains important molecular structures to improve batteries, reduce plastic pollution, and power the sort of electrical grids that could support entire communities with renewable energy, Zhu says.
“We try to use polymers from wood, from bark, from seeds, from flowers, bacteria, green tea—from these kinds of plants to replace plastic,” Zhu says.
One of the main challenges in storing energy from the sun, wind, and other types of renewables is that variation in factors such as the weather lead to inconsistent sources of power.
That’s where batteries with large capacity come in. But storing the large amounts of energy that sunlight and the wind are able to provide requires a special kind of device.
The most advanced batteries to do that are called flow batteries, and are made with vanadium ions dissolved in acid in two separate tanks—one with a substance of negatively charged ions, and one with positive ones. The two solutions are continuously pumped from the tank into a cell, which functions like an engine for the battery.
These substances are always separated by a special membrane that ensures that they exchange positive hydrogen ions without flowing into each other. That selective exchange of ions is the basis for the ability of the battery to charge and discharge energy.
Flow batteries are ideal devices in which to store solar and wind energy because they can be tweaked to increase the amount of energy stored without compromising the amount of energy that can be generated. The bigger the tanks, the more energy the battery can store from non-polluting and practically inexhaustible resources.
But manufacturing them requires several moving pieces of hardware. As the membrane separating the two flowing substances decays, it can cause the vanadium ions from the solution to mix. That crossover reduces the stability of a battery, along with its capacity to store energy.
Zhu says the limited efficiency of that membrane, combined with its high cost, are the main factors keeping flow batteries from being widely used in large-scale grids.
In a recent paper, Zhu reported that a new membrane made with cellulose nanocrystals demonstrates superior efficiency compared to other membranes used commonly in the market. The team tested different membranes made from cellulose nanocrystals to make flow batteries cheaper.
“The cost of our membrane per square meter is 147.68 US dollars, ” Zhu says, adding that her calculations do not include costs associated with marketing. “The price quote for the commercialized Nafion membrane is $1,321 per square meter.”
Their tests also showed that the membranes, made with support from the Rogers Corporation and its Innovation Center at Northeastern’s Kostas Research Institute, can offer substantially longer battery lifetimes than other membranes.
Zhu’s naturally derived membrane is especially efficient because its cellular structure contains thousands of hydroxyl groups, which involve bonds of hydrogen and oxygen that make it easy for water to be transported in plants and trees.
In flow batteries, that molecular makeup speeds the transport of protons as they flow through the membrane.
The membrane also consists of another polymer known as poly(vinylidene fluoride-hexafluoropropylene), which prevents the negatively and positively charged acids from mixing with each other.
“For these materials, one of the challenges is that it is difficult to find a polymer that is proton conductive and that is also a material that is very stable in the flowing acid,” Zhu says.
Because these materials are practically everywhere, membranes made with it can be easily put together at large scales needed for complex power grids.
Unlike other expensive artificial materials that need to be concocted in a lab, cellulose can be extracted from natural sources including algae, solid waste, and bacteria.
“A lot of material in nature is a composite, and if we disintegrate its components, we can use it to extract cellulose,” Zhu says. “Like waste from our yard, and a lot of solid waste that we don’t always know what to do with.”
Here’s a link to and a citation for the paper mentioned in the news release,
Caption: Audio map of vocal bursts across 24 emotions. To visit the online map and hear the sounds, go to https://s3-us-west-1.amazonaws.com/vocs/map.html# and move the cursor across the map. Credit: Courtesy of Alan Cowen
The real map, not the the image of the map you see above, offers a disconcerting (for me, anyway) experience. Especially since I’ve just finished reading Lisa Feldman Barrett’s 2017 book, How Emotions are Made, where she presents her theory of ‘constructed emotion. (There’s more about ‘constructed emotion’ later in this post.)
Ooh, surprise! Those spontaneous sounds we make to express everything from elation (woohoo) to embarrassment (oops) say a lot more about what we’re feeling than previously understood, according to new research from the University of California, Berkeley.
Proving that a sigh is not just a sigh [a reference to the song, As Time Goes By? The lyric is “a kiss is still a kiss, a sigh is just a sigh …”], UC Berkeley scientists conducted a statistical analysis of listener responses to more than 2,000 nonverbal exclamations known as “vocal bursts” and found they convey at least 24 kinds of emotion. Previous studies of vocal bursts set the number of recognizable emotions closer to 13.
The results, recently published online in the American Psychologist journal, are demonstrated in vivid sound and color on the first-ever interactive audio map of nonverbal vocal communication.
“This study is the most extensive demonstration of our rich emotional vocal repertoire, involving brief signals of upwards of two dozen emotions as intriguing as awe, adoration, interest, sympathy and embarrassment,” said study senior author Dacher Keltner, a psychology professor at UC Berkeley and faculty director of the Greater Good Science Center, which helped support the research.
For millions of years, humans have used wordless vocalizations to communicate feelings that can be decoded in a matter of seconds, as this latest study demonstrates.
“Our findings show that the voice is a much more powerful tool for expressing emotion than previously assumed,” said study lead author Alan Cowen, a Ph.D. student in psychology at UC Berkeley.
On Cowen’s audio map, one can slide one’s cursor across the emotional topography and hover over fear (scream), then surprise (gasp), then awe (woah), realization (ohhh), interest (ah?) and finally confusion (huh?).
Among other applications, the map can be used to help teach voice-controlled digital assistants and other robotic devices to better recognize human emotions based on the sounds we make, he said.
As for clinical uses, the map could theoretically guide medical professionals and researchers working with people with dementia, autism and other emotional processing disorders to zero in on specific emotion-related deficits.
“It lays out the different vocal emotions that someone with a disorder might have difficulty understanding,” Cowen said. “For example, you might want to sample the sounds to see if the patient is recognizing nuanced differences between, say, awe and confusion.”
Though limited to U.S. responses, the study suggests humans are so keenly attuned to nonverbal signals – such as the bonding “coos” between parents and infants – that we can pick up on the subtle differences between surprise and alarm, or an amused laugh versus an embarrassed laugh.
For example, by placing the cursor in the embarrassment region of the map, you might find a vocalization that is recognized as a mix of amusement, embarrassment and positive surprise.
A tour through amusement reveals the rich vocabulary of laughter and a spin through the sounds of adoration, sympathy, ecstasy and desire may tell you more about romantic life than you might expect,” said Keltner.
Researchers recorded more than 2,000 vocal bursts from 56 male and female professional actors and non-actors from the United States, India, Kenya and Singapore by asking them to respond to emotionally evocative scenarios.
Next, more than 1,000 adults recruited via Amazon’s Mechanical Turk online marketplace listened to the vocal bursts and evaluated them based on the emotions and meaning they conveyed and whether the tone was positive or negative, among several other characteristics.
A statistical analysis of their responses found that the vocal bursts fit into at least two dozen distinct categories including amusement, anger, awe, confusion, contempt, contentment, desire, disappointment, disgust, distress, ecstasy, elation, embarrassment, fear, interest, pain, realization, relief, sadness, surprise (positive) surprise (negative), sympathy and triumph.
For the second part of the study, researchers sought to present real-world contexts for the vocal bursts. They did this by sampling YouTube video clips that would evoke the 24 emotions established in the first part of the study, such as babies falling, puppies being hugged and spellbinding magic tricks.
This time, 88 adults of all ages judged the vocal bursts extracted from YouTube videos. Again, the researchers were able to categorize their responses into 24 shades of emotion. The full set of data were then organized into a semantic space onto an interactive map.
“These results show that emotional expressions color our social interactions with spirited declarations of our inner feelings that are difficult to fake, and that our friends, co-workers, and loved ones rely on to decipher our true commitments,” Cowen said.
The writer assumes that emotions are pre-existing. Somewhere, there’s happiness, sadness, anger, etc. It’s the pre-existence that Lisa Feldman Barret challenges with her theory that we construct our emotions (from her Wikipedia entry),
She highlights differences in emotions between different cultures, and says that emotions “are not triggered; you create them. They emerge as a combination of the physical properties of your body, a flexible brain that wires itself to whatever environment it develops in, and your culture and upbringing, which provide that environment.”
You can find Barrett’s December 6, 2017 TED talk here wheres she explains her theory in greater detail. One final note about Barrett, she was born and educated in Canada and now works as a Professor of Psychology at Northeastern University, with appointments at Harvard Medical School and Massachusetts General Hospital at Northeastern University in Boston, Massachusetts; US.
A February 7, 2019 by Mark Wilson for Fast Company delves further into the 24 emotion audio map mentioned at the outset of this posting (Note: Links have been removed),
Fear, surprise, awe. Desire, ecstasy, relief.
These emotions are not distinct, but interconnected, across the gradient of human experience. At least that’s what a new paper from researchers at the University of California, Berkeley, Washington University, and Stockholm University proposes. The accompanying interactive map, which charts the sounds we make and how we feel about them, will likely persuade you to agree.
At the end of his article, Wilson also mentions the Dalai Lama and his Atlas of Emotions, a data visualization project, (featured in Mark Wilson’s May 13, 2016 article for Fast Company). It seems humans of all stripes are interested in emotions.
Here’s a link to and a citation for the paper about the audio map,
In discussions about water desalination and carbon nanomaterials, it’s graphene that’s usually mentioned these days. By contrast, scientists from the US Department of Energy’s Lawrence Livermore National Laboratory (LLNL) have turned to carbon nanotubes,
There are two news items about the work at LLNL on ScienceDaily, this first one originated by the American Association for the Advancement of Science (AAAS) offers a succinct summary of the work (from an August 24, 2017 news item on ScienceDaily,
At just the right size, carbon nanotubes can filter water with better efficiency than biological proteins, a new study reveals. The results could pave the way to new water filtration systems, at a time when demands for fresh water pose a global threat to sustainable development.
A class of biological proteins, called aquaporins, is able to effectively filter water, yet scientists have not been able to manufacture scalable systems that mimic this ability. Aquaporins usually exhibit channels for filtering water molecules at a narrow width of 0.3 nanometers, which forces the water molecules into a single-file chain.
Here, Ramya H. Tunuguntla and colleagues experimented with nanotubes of different widths to see which ones are best for filtering water. Intriguingly, they found that carbon nanotubes with a width of 0.8 nanometers outperformed aquaporins in filtering efficiency by a factor of six.
These narrow carbon nanotube porins (nCNTPs) were still slim enough to force the water molecules into a single-file chain. The researchers attribute the differences between aquaporins and nCNTPS to differences in hydrogen bonding — whereas pore-lining residues in aquaporins can donate or accept H bonds to incoming water molecules, the walls of CNTPs cannot form H bonds, permitting unimpeded water flow.
The nCNTPs in this study maintained permeability exceeding that of typical saltwater, only diminishing at very high salt concentrations. Lastly, the team found that by changing the charges at the mouth of the nanotube, they can alter the ion selectivity. This advancement is highlighted in a Perspective [in Science magazine] by Zuzanna Siwy and Francesco Fornasiero.
Lawrence Livermore scientists, in collaboration with researchers at Northeastern University, have developed carbon nanotube pores that can exclude salt from seawater. The team also found that water permeability in carbon nanotubes (CNTs) with diameters smaller than a nanometer (0.8 nm) exceeds that of wider carbon nanotubes by an order of magnitude.
The nanotubes, hollow structures made of carbon atoms in a unique arrangement, are more than 50,000 times thinner than a human hair. The super smooth inner surface of the nanotube is responsible for their remarkably high water permeability, while the tiny pore size blocks larger salt ions.
There’s a rather lovely illustration for this work,
An artist’s depiction of the promise of carbon nanotube porins for desalination. The image depicts a stylized carbon nanotube pipe that delivers clean desalinated water from the ocean to a kitchen tap. Image by Ryan Chen/LLNL
Increasing demands for fresh water pose a global threat to sustainable development, resulting in water scarcity for 4 billion people. Current water purification technologies can benefit from the development of membranes with specialized pores that mimic highly efficient and water selective biological proteins.
“We found that carbon nanotubes with diameters smaller than a nanometer bear a key structural feature that enables enhanced transport. The narrow hydrophobic channel forces water to translocate in a single-file arrangement, a phenomenon similar to that found in the most efficient biological water transporters,” said Ramya Tunuguntla, an LLNL postdoctoral researcher and co-author of the manuscript appearing in the Aug. 24 [2017]edition of Science.
Computer simulations and experimental studies of water transport through CNTs with diameters larger than 1 nm showed enhanced water flow, but did not match the transport efficiency of biological proteins and did not separate salt efficiently, especially at higher salinities. The key breakthrough achieved by the LLNL team was to use smaller-diameter nanotubes that delivered the required boost in performance.
“These studies revealed the details of the water transport mechanism and showed that rational manipulation of these parameters can enhance pore efficiency,” said Meni Wanunu, a physics professor at Northeastern University and co-author on the study.
“Carbon nanotubes are a unique platform for studying molecular transport and nanofluidics,” said Alex Noy, LLNL principal investigator on the CNT project and a senior author on the paper. “Their sub-nanometer size, atomically smooth surfaces and similarity to cellular water transport channels make them exceptionally suited for this purpose, and it is very exciting to make a synthetic water channel that performs better than nature’s own.”
This discovery by the LLNL scientists and their colleagues has clear implications for the next generation of water purification technologies and will spur a renewed interest in development of the next generation of high-flux membranes.
Earth is 70 percent water, but only a tiny portion—0.007 percent—is available to drink.
As potable water sources dwindle, global population increases every year. One potential solution to quenching the planet’s thirst is through desalinization—the process of removing salt from seawater. While tantalizing, this approach has always been too expensive and energy intensive for large-scale feasibility.
Now, researchers from Northeastern have made a discovery that could change that, making desalinization easier, faster and cheaper than ever before. In a paper published Thursday [August 24, 2017] in Science, the group describes how carbon nanotubes of a certain size act as the perfect filter for salt—the smallest and most abundant water contaminant.
Filtering water is tricky because water molecules want to stick together. The “H” in H2O is hydrogen, and hydrogen bonds are strong, requiring a lot of energy to separate. Water tends to bulk up and resist being filtered. But nanotubes do it rapidly, with ease.
A carbon nanotube is like an impossibly small rolled up sheet of paper, about a nanometer in diameter. For comparison, the diameter of a human hair is 50 to 70 micrometers—50,000 times wider. The tube’s miniscule size, exactly 0.8 nm, only allows one water molecule to pass through at a time. This single-file lineup disrupts the hydrogen bonds, so water can be pushed through the tubes at an accelerated pace, with no bulking.
“You can imagine if you’re a group of people trying to run through the hallway holding hands, it’s going to be a lot slower than running through the hallway single-file,” said co-author Meni Wanunu, associate professor of physics at Northeastern. Wanunu and post doctoral student Robert Henley collaborated with scientists at the Lawrence Livermore National Laboratory in California to conduct the research.
Scientists led by Aleksandr Noy at Lawrence Livermore discovered last year [2016] that carbon nanotubes were an ideal channel for proton transport. For this new study, Henley brought expertise and technology from Wanunu’s Nanoscale Biophysics Lab to Noy’s lab, and together they took the research one step further.
In addition to being precisely the right size for passing single water molecules, carbon nanotubes have a negative electric charge. This causes them to reject anything with the same charge, like the negative ions in salt, as well as other unwanted particles.
“While salt has a hard time passing through because of the charge, water is a neutral molecule and passes through easily,” Wanunu said. Scientists in Noy’s lab had theorized that carbon nanotubes could be designed for specific ion selectivity, but they didn’t have a reliable system of measurement. Luckily, “That’s the bread and butter of what we do in Meni’s lab,” Henley said. “It created a nice symbiotic relationship.”
“Robert brought the cutting-edge measurement and design capabilities of Wanunu’s group to my lab, and he was indispensable in developing a new platform that we used to measure the ion selectivity of the nanotubes,” Noy said.
The result is a novel system that could have major implications for the future of water security. The study showed that carbon nanotubes are better at desalinization than any other existing method— natural or man-made.
To keep their momentum going, the two labs have partnered with a leading water purification organization based in Israel. And the group was recently awarded a National Science Foundation/Binational Science Foundation grant to conduct further studies and develop water filtration platforms based on their new method. As they continue the research, the researchers hope to start programs where students can learn the latest on water filtration technology—with the goal of increasing that 0.007 percent.
As is usual in these cases there’s a fair degree of repetition but there’s always at least one nugget of new information, in this case, a link to Israel. As I noted many times, the Middle East is experiencing serious water issues. My most recent ‘water and the Middle East’ piece is an August 21, 2017 post about rainmaking at the Masdar Institute in United Arab Emirates. Approximately 50% of the way down the posting, I mention Israel and Palestine’s conflict over water.
These ‘robomussels’ are not voting but they are being used to monitor mussel bed habitats according to an Oct. 17, 2016 news item on ScienceDaily,
Tiny robots have been helping researchers study how climate change affects biodiversity. Developed by Northeastern University scientist Brian Helmuth, the “robomussels” have the shape, size, and color of actual mussels, with miniature built-in sensors that track temperatures inside the mussel beds.
Caption: This is a robomussel, seen among living mussels and other sea creatures. Credit: Allison Matzelle
For the past 18 years, every 10 to 15 minutes, Helmuth and a global research team of 48 scientists have used robomussels to track internal body temperature, which is determined by the temperature of the surrounding air or water, and the amount of solar radiation the devices absorb. They place the robots inside mussel beds in oceans around the globe and record temperatures. The researchers have built a database of nearly two decades worth of data enabling scientists to pinpoint areas of unusual warming, intervene to help curb damage to vital marine ecosystems, and develop strategies that could prevent extinction of certain species.
Housed at Northeastern’s Marine Science Center in Nahant, Massachusetts, this largest-ever database is not only a remarkable way to track the effects of climate change, the findings can also reveal emerging hotspots so policymakers and scientists can step in and relieve stressors such as erosion and water acidification before it’s too late.
“They look exactly like mussels but they have little green blinking lights in them,” says Helmuth. “You basically pluck out a mussel and then glue the device to the rock right inside the mussel bed. They enable us to link our field observations with the physiological impact of global climate change on these ecologically and economically important animals.”
…
For ecological forecasters such as Helmuth, mussels act as a barometer of climate change. That’s because they rely on external sources of heat such as air temperature and sun exposure for their body heat and thrive, or not, depending on those conditions. Using fieldwork along with mathematical and computational models, Helmuth forecasts the patterns of growth, reproduction, and survival of mussels in intertidal zones.
Over the years, he and his colleagues have found surprises: “Our expectations of where to look for the effects of climate change in nature are more complex than anticipated,” says Helmuth. For example, in an earlier paper in the journal Science, his team found that hotspots existed not only at the southern end of the species’ distribution, in this case, southern California; they also existed at sites up north, in Oregon and Washington state.
“These datasets tell us when and where to look for the effects of climate change,” he says. “Without them we could miss early warning signs of trouble.”
The robomussels’ near-continuous measurements serve as an early warning system. “If we start to see sites where the animals are regularly getting to temperatures that are right below what kills them, we know that any slight increase is likely to send them over the edge, and we can act,” says Helmuth.
It’s not only the mussels that may be pulled back from the brink. The advance notice could inform everything from maintaining the biodiversity of coastal systems to determining the best–and worst–places to locate mussel farms.
“Losing mussel beds is essentially like clearing a forest,” says Helmuth. “If they go, everything that’s living in them will go. They are a major food supply for many species, including lobsters and crabs. They also function as filters along near-shore waters, clearing huge amounts of particulates. So losing them can affect everything from the growth of species we care about because we want to eat them to water clarity to biodiversity of all the tiny animals that live on the insides of the beds.”
Before presenting information about the current Ebola crisis and issues with vaccines and curatives, here’s a description of the disease from its Wikipedia entry,
Ebola virus disease (EVD) or Ebola hemorrhagic fever (EHF) is a disease of humans and other primates caused by an ebola virus. Symptoms start two days to three weeks after contracting the virus, with a fever, sore throat, muscle pain, and headaches. Typically nausea, vomiting, and diarrhea follow, along with decreased functioning of the liver and kidneys. Around this time, affected people may begin to bleed both within the body and externally. [1]
As for the current crisis in countries situated on the west coast of the African continent, there’s this from an Aug. 14, 2014 news item on ScienceDaily,
The outbreak of Ebola virus disease that has claimed more than 1,000 lives in West Africa this year poses a serious, ongoing threat to that region: the spread to capital cities and Nigeria — Africa’s most populous nation — presents new challenges for healthcare professionals. The situation has garnered significant attention and fear around the world, but proven public health measures and sharpened clinical vigilance will contain the epidemic and thwart a global spread, according to a new commentary by Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.
Dr. Fauci’s Aug. 13, 2014 commentary (open access) in the New England Journal of Medicine provides more detail (Note: A link has been removed),
An outbreak of Ebola virus disease (EVD) has jolted West Africa, claiming more than 1000 lives since the virus emerged in Guinea in early 2014 (see figure) Ebola Virus Cases and Deaths in West Africa (Guinea, Liberia, Nigeria, and Sierra Leone), as of August 11, 2014 (Panel A), and Over Time (Panel B).). The rapidly increasing numbers of cases in the African countries of Guinea, Liberia, and Sierra Leone have had public health authorities on high alert throughout the spring and summer. More recent events including the spread of EVD to Nigeria (Africa’s most populous country) and the recent evacuation to the United States of two American health care workers with EVD have captivated the world’s attention and concern. Health professionals and the general public are struggling to comprehend these unfolding dynamics and to separate misinformation and speculation from truth.
…
In early 2014, EVD emerged in a remote region of Guinea near its borders with Sierra Leone and Liberia. Since then, the epidemic has grown dramatically, fueled by several factors. First, Guinea, Sierra Leone, and Liberia are resource-poor countries already coping with major health challenges, such as malaria and other endemic diseases, some of which may be confused with EVD. Next, their borders are porous, and movement between countries is constant. Health care infrastructure is inadequate, and health workers and essential supplies including personal protective equipment are scarce. Traditional practices, such as bathing of corpses before burial, have facilitated transmission. The epidemic has spread to cities, which complicates tracing of contacts. Finally, decades of conflict have left the populations distrustful of governing officials and authority figures such as health professionals. Add to these problems a rapidly spreading virus with a high mortality rate, and the scope of the challenge becomes clear.
Although the regional threat of Ebola in West Africa looms large, the chance that the virus will establish a foothold in the United States or another high-resource country remains extremely small. Although global air transit could, and most likely will, allow an infected, asymptomatic person to board a plane and unknowingly carry Ebola virus to a higher-income country, containment should be readily achievable. Hospitals in such countries generally have excellent capacity to isolate persons with suspected cases and to care for them safely should they become ill. Public health authorities have the resources and training necessary to trace and monitor contacts. Protocols exist for the appropriate handling of corpses and disposal of biohazardous materials. In addition, characteristics of the virus itself limit its spread. Numerous studies indicate that direct contact with infected bodily fluids — usually feces, vomit, or blood — is necessary for transmission and that the virus is not transmitted from person to person through the air or by casual contact. Isolation procedures have been clearly outlined by the Centers for Disease Control and Prevention (CDC). A high index of suspicion, proper infection-control practices, and epidemiologic investigations should quickly limit the spread of the virus.
Fauci’s article makes it clear that public concerns are rising in the US and I imagine that’s true of Canada too and many other parts of the world, not to mention the countries currently experiencing the EVD outbreak. In the midst of all this comes a US Food and Drug Administration (FDA) warning as per an Aug. 15, 2014 news item (originated by Reuters reporter Toni Clarke) on Nanowerk,
The U.S. Food and Drug Administration said on Thursday [Aug. 14, 2014] it has become aware of products being sold online that fraudulently claim to prevent or treat Ebola.
The FDA’s warning comes on the heels of comments by Nigeria’s top health official, Onyebuchi Chukwu, who reportedly said earlier Thursday [Aug. 14, 2014] that eight Ebola patients in Lagos, the country’s capital, will receive an experimental treatment containing nano-silver.
Erica Jefferson, a spokeswoman for the FDA, said she could not provide any information about the product referenced by the Nigerians.
The U.S. Food and Drug Administration is advising consumers to be aware of products sold online claiming to prevent or treat the Ebola virus. Since the outbreak of the Ebola virus in West Africa, the FDA has seen and received consumer complaints about a variety of products claiming to either prevent the Ebola virus or treat the infection.
There are currently no FDA-approved vaccines or drugs to prevent or treat Ebola. Although there are experimental Ebola vaccines and treatments under development, these investigational products are in the early stages of product development, have not yet been fully tested for safety or effectiveness, and the supply is very limited. There are no approved vaccines, drugs, or investigational products specifically for Ebola available for purchase on the Internet. By law, dietary supplements cannot claim to prevent or cure disease.
As per the FDA’s reference to experimental vaccines, an Aug. 6, 2014 article by Caroline Chen, Mark Niquette, Mark Langreth, and Marie French for Bloomberg describes the ZMapp vaccine/treatment (Note: Links have been removed),
On a small plot of land incongruously tucked amid a Kentucky industrial park sit five weather-beaten greenhouses. At the site, tobacco plants contain one of the most promising hopes for developing an effective treatment for the deadly Ebola virus.
The plants contain designer antibodies developed by San Diego-based Mapp Biopharmaceutical Inc. and are grown in Kentucky by a unit of Reynolds American Inc. Two stricken U.S. health workers received an experimental treatment containing the antibodies in Liberia last week. Since receiving doses of the drug, both patients’ conditions have improved.
Tobacco plant-derived medicines, which are also being developed by a company whose investors include Philip Morris International Inc., are part of a handful of cutting edge plant-based treatments that are in the works for everything from pandemic flu to rabies using plants such as lettuce, carrots and even duckweed. While the technique has existed for years, the treatments have only recently begun to reach the marketplace.
…
Researchers try to identify the best antibodies in the lab, before testing them on mice, then eventually on monkeys. Mapp’s experimental drug, dubbed ZMapp, has three antibodies, which work together to alert the immune system and neutralize the Ebola virus, she [Erica Ollman Saphire, a molecular biologist at the Scripps Research Institute,] said.
This is where the tobacco comes in: the plants are used as hosts to grow large amounts of the antibodies. Genes for the desired antibodies are fused to genes for a natural tobacco virus, Charles Arntzen, a plant biotechnology expert at Arizona State University, said in an Aug. 4 [2014] telephone interview.
The tobacco plants are then infected with this new artificial virus, and antibodies are grown inside the plant. Eventually, the tobacco is ground up and the antibody is extracted, Arntzen said.
The process of growing antibodies in mammals risks transferring viruses that could infect humans, whereas “plants are so far removed, so if they had some sort of plant virus we wouldn’t get sick because viruses are host-specific,” said Qiang Chen, a plant biologist at Arizona State University in Tempe, Arizona, in a telephone interview.
…
There is a Canadian (?) company working on a tobacco-based vaccines including one for EVD but as the Bloomberg writers note the project is highly secret,
Another tobacco giant-backed company working on biotech drugs grown in tobacco plants is Medicago Inc. in Quebec City, which is owned by Mitsubishi Tanabe Pharma Corp. and Philip Morris. [emphasis mine]
Medicago is working on testing a vaccine for pandemic influenza and has a production greenhouse facility in North Carolina, said Jean-Luc Martre, senior director for government affairs at Medicago. Medicago is planning a final stage trial of the pandemic flu vaccine for next year, he said in a telephone interview.
The plant method is flexible and capable of making antibodies and vaccines for numerous types of viruses, said Martre. In addition to influenza, the company’s website says it is in early stages of testing products for rabies and rotavirus.
…
Medicago ‘‘is currently closely working with partners for the production of an Ebola antibody as well as other antibodies that are of interest for bio-defense,” he said in an e-mail. He would not disclose who the partners were. [emphasis mine]
I have checked both the English and French language versions of Medicago’s website and cannot find any information about their work on ebola. (The Bloomberg article provides a good overview of the ebola situation and more. I recommend reading it and/or the Aug. 15, 2014 posting on CTV [Canadian Television Network] which originated from an Associated Press article by Malcolm Ritter).
Moving on to more research and ebola, Dexter Johnson in an Aug. 14, 2014 posting (on his Nanoclast blog on the IEEE [Institute of Electrical and Electronics Engineers] website,) describes some work from Northeastern University (US), Note: Links have been removed,
With the Ebola virus death toll now topping 1000 and even the much publicized experimental treatment ZMapp failing to save the life of a Spanish missionary priest who was treated with it, it is clear that scientists need to explore new ways of fighting the deadly disease. For researchers at Northeastern University in Boston, one possibility may be using nanotechnology.
“It has been very hard to develop a vaccine or treatment for Ebola or similar viruses because they mutate so quickly,” said Thomas Webster, the chair of Northeastern’s chemical engineering department, in a press release. “In nanotechnology we turned our attention to developing nanoparticles that could be attached chemically to the viruses and stop them from spreading.”
Webster, along with many researchers in the nanotechnology community, have been trying to use gold nanoparticles, in combination with near-infrared light, to kill cancer cells with heat. The hope is that the same approach could be used to kill the Ebola virus.
… According to Webster, gold nanoparticles are currently being used to treat cancer. Infrared waves, he explained, heat up the gold nanoparticles, which, in turn, attack and destroy everything from viruses to cancer cells, but not healthy cells.
Recognizing that a larger surface area would lead to a quicker heat-up time, Webster’s team created gold nanostars. “The star has a lot more surface area, so it can heat up much faster than a sphere can,” Webster said. “And that greater surface area allows it to attack more viruses once they absorb to the particles.” The problem the researchers face, however, is making sure the hot gold nanoparticles attack the virus or cancer cells rather than the healthy cells.
At this point, there don’t seem to be any curative measures generally available although some are available experimentally in very small quantities.
A Jan. 24, 2014 news item on Nanowerk has a beautiful and timely (given the snowy, frigid weather in Eastern Canada and the US) opening for a story about crystals and metallic nanorods,
This time of year it’s not hard to imagine the world buried under a smooth blanket of snow. A picnic table on a flat lawn eventually vanishes as trillions of snowflakes collect around it, a crystalline sheet obscuring the normall – visible peaks and valleys of our summertime world.
This is basically how scientists understand the classical theory of crystalline growth. Height steps gradually disappear as atoms of a given material—be it snow or copper or aluminum—collect on a surface and then tumble down to lower heights to fill in the gaps. The only problem with this theory is that it totally falls apart when applied to extremely small situations—i.e., the nanoscale.
Hanchen Huang, professor and chair of the Department of Mechanical and Industrial Engineering [Northeastern University located in Massachusetts, US], has spent the last 10 years revising the classical theory of crystal growth that accounts for his observations of nanorod crystals. His work has garnered the continued support of the U.S, Department of Energy’s Basic Energy Science Core Program.
Nanorods are miniscule fibers grown perpendicular to a substrate, each one about 100,000 times thinner than a human hair. Surface steps, or the minor variations in the vertical landscape of that substrate, determine how the rods will grow.
“Even if some surface steps are closer and others more apart at the start, with time the classical theory predicts they become more equalized,” Huang said. “But we found that the classical theory missed a positive feedback mechanism.”
This mechanism, he explained, causes the steps to “cluster,” making it more difficult for atoms to fall from a higher step to a lower one. So, instead of filling in the height gaps of a variable surface, atoms in a nanorod crystal localize to the highest levels.
“The taller region gets taller,” Huang said. “It’s like, if you ever play basketball, you know the taller guys will get more rebounds.” That’s basically what happens with nanorod growth.
Huang’s theory, which was published in the journal Physical Review Letters this year, represents the first time anyone has provided a theoretical framework for understanding nanorod crystal growth. “Lots of money has been spent over the past decades on nanoscience and nanotechnology,” Huang said. “But we can only turn that into real-world applications if we understand the science.”
Indeed, his contribution to understanding the science allowed him and his colleagues to predict the smallest possible size for copper nanorods and then successfully synthesize them. Not only are they the smallest nanorods ever produced, but with Huang’s theory he can confidently say they are the smallest nanorods possible using physical vapor deposition.
Here’s a link to and a citation for the paper,
Smallest Metallic Nanorods Using Physical Vapor Deposition by Xiaobin Niu, Stephen P. Stagon, Hanchen Huang, J. Kevin Baldwin, and Amit Misra. Phys. Rev. Lett. 110 (no. 13), 136102 (2013) [5 pages] DoI:
10.1103/PhysRevLett.110.136102