Tag Archives: nose

Locusts inspire new aerosol-based nanoparticle drug delivery system

Getting medication directly to the brain is a worldwide medical research goal and it seems that a team of scientists at the Washington University at St. Louis (WUSTL) has taken a step forward to accomplishing the goal. From an April 12, 2017 news item on ScienceDaily,

Delivering life-saving drugs directly to the brain in a safe and effective way is a challenge for medical providers. One key reason: the blood-brain barrier, which protects the brain from tissue-specific drug delivery. Methods such as an injection or a pill aren’t as precise or immediate as doctors might prefer, and ensuring delivery right to the brain often requires invasive, risky techniques.

A team of engineers from Washington University in St. Louis has developed a new nanoparticle generation-delivery method that could someday vastly improve drug delivery to the brain, making it as simple as a sniff.

“This would be a nanoparticle nasal spray, and the delivery system could allow a therapeutic dose of medicine to reach the brain within 30 minutes to one hour,” said Ramesh Raliya, research scientist at the School of Engineering & Applied Science.

Caption: Engineers at Washington University have discovered a new technique that could change drug delivery to the brain. They were able to apply a nanoparticle aerosol spray to the antenna of locusts, then track the nanoparticles as they traveled through the olfactory nerves, crossed the blood-brain barrier and accumulated in the brain. This new, non-invasive approach could someday make drug delivery as simple as a sniff for patients with brain injuries or tumors.

Credit: Washington University in St. Louis

An April 12, 2017 WUSTL news release by Erika Ebsworth-Goold (also on EurekAlert), which originated the news item, describes the work in more detail,

“The blood-brain barrier protects the brain from foreign substances in the blood that may injure the brain,” Raliya said. “But when we need to deliver something there, getting through that barrier is difficult and invasive. Our non-invasive technique can deliver drugs via nanoparticles, so there’s less risk and better response times.”

The novel approach is based on aerosol science and engineering principles that allow the generation of monodisperse nanoparticles, which can deposit on upper regions of the nasal cavity via diffusion. Working with Assistant Vice Chancellor Pratim Biswas, chair of the Department of Energy, Environmental & Chemical Engineering and the Lucy & Stanley Lopata Professor, Raliya developed an aerosol consisting of gold nanoparticles of controlled size, shape and surface charge. The nanoparticles were tagged with fluorescent markers, allowing the researchers to track their movement.

Next, Raliya and biomedical engineering postdoctoral fellow Debajit Saha exposed locusts’ antennae to the aerosol, and observed the nanoparticles travel from the antennas up through the olfactory nerves. Due to their tiny size, the nanoparticles passed through the brain-blood barrier, reaching the brain and suffusing it in a matter of minutes.

The team tested the concept in locusts because the blood-brain barriers in the insects and humans have anatomical similarities, and the researchers consider going through the nasal regions to neural pathways as the optimal way to access the brain.

“The shortest and possibly the easiest path to the brain is through your nose,” said Barani Raman, associate professor of biomedical engineering. “Your nose, the olfactory bulb and then olfactory cortex: two relays and you’ve reached the cortex. The same is true for invertebrate olfactory circuitry, although the latter is a relatively simpler system, with supraesophageal ganglion instead of an olfactory bulb and cortex.”

To determine whether or not the foreign nanoparticles disrupted normal brain function, Saha examined the physiological response of olfactory neurons in the locusts before and after the nanoparticle delivery. Several hours after the nanoparticle uptake, no noticeable change in the electrophysiological responses was detected.

“This is only a beginning of a cool set of studies that can be performed to make nanoparticle-based drug delivery approaches more principled,” Raman said.

The next phase of research involves fusing the gold nanoparticles with various medicines, and using ultrasound to target a more precise dose to specific areas of the brain, which would be especially beneficial in brain-tumor cases.

“We want to drug target delivery within the brain using this non-invasive approach,” Raliya said.  “In the case of a brain tumor, we hope to use focused ultrasound so we can guide the particles to collect at that particular point.”

Here’s a link to and a citation for the paper,

Non-invasive aerosol delivery and transport of gold nanoparticles to the brain by Ramesh Raliya, Debajit Saha, Tandeep S. Chadha, Baranidharan Raman, & Pratim Biswas. Scientific Reports 7, Article number: 44718 (2017) doi:10.1038/srep44718 Published online: 16 March 2017

This paper is open access.

I featured another team working on delivering drugs directly to the brain via the olfactory system, except their nanoparticles were gelatin and they were testing stroke medication on rats, in my Sept. 24, 2014 posting.

University of Waterloo wins 2nd prize in Global Nano Innovation Contest

Cameron Chai’s Oct. 11, 2011 news article about a Global Nano Innovation contest mentions the University of Waterloo (located in Ontario, Canada),

The second prize has gone to the University of Waterloo for its work titled ‘Nanosensors for X-ray Radiation Dosimetry in a Wireless Network’ and NASA received the third prize for its work titled ’A Nano Chemical Sensor in a Cell Phone’.

1st prize went to IBM for its entry, Graphene Nanoelectronics: Wafer Scale Single Atomic Layer Carbon RF Devices and Circuits.

The contest was initiated by Taiwan’s Industrial Technology Research Institute and coordinated by their POP (Prototype On Prototype) division. From the POP website describing the contest,

Overview

The 2011 Global Nano Innovation Contest–Prototype on Prototype was initiated by Industrial Technology Research Institute (ITRI). In addition to the support from a number of institutions in different countries, both National Nanoscience and Nanotechnology Program (NNP), and Taiwan Nanotechnology Industry Development Association (TANIDA) are severed [sic] as the co-organizers.

The organizers will provide 3-minute videos demonstrating the process of creating a prototype from the concept to final manufacturing based on nanotechnology. The videos are provided as templates for the contestants, but mainly as points of reference.

In the upcoming Global Nano Innovation Contest, participants can submit their own ideas based on concepts from the video to create and design their own products. You may integrate any of the prototypes into a more sophisticated system or application with potential commercial value, which is the spirit of prototype on prototype (POP).

Goals

  • Develop nanotechnology prototyping capability for practical applications with universal appeal.
  • Emphasize higher, system-level integration of prototypes, to spur the creation of a wider diversity of high-value nanotechnology applications.
  • Establish an international platform promoting collaboration on nanotechnology.

Organizers

Initiating organizer:

  • Industrial Technology Research Institute (ITRI)

Co-organizers:

  • Taiwan National Nanoscience and Nanotechnology Program office (NNP)
  • Taiwan Nanotechnology Industry Development Association (TANIDA)
  • National Chiao Tung University (NCTU)
  • National Chung Cheng University (CCU)
  • National Nanotechnology Center, NSTDA,Thailand (NANOTEC)

Congratulations to all the winners!