Tag Archives: NSERC

Nanoelectronics at the University of British Columbia (UBC located in Vancouver, Canada)

Hidden in a Jan. 9, 2014 University of British Columbia (UBC) announcement abut funding from Canada’s Natural Sciences and Engineering Research Council (NSERC) was some information about a nano electronics laboratory,

  • Flexible, efficient solar-battery nano-textile, led by Peyman Servati, funded for $514,000.
  • Bio-inspired soft epidermal and wearable nanofiber electronics for wireless health monitoring, led by Peyman Servati, funded for $516,000. [emphases mine]

Peryman Servati leads FEEL, the flexible electronics and energy lab according to his faculty bio page. The two FEEL project s listed in the announcement have received a total of $1.3* (corrected to $1.03M, Jan. 30, 2014) in funding, over 1/3* (it’s closer to 1/4; corrected Jan. 30, 2014)  of the $4.3M earmarked* (spelling corrected Jan. 30, 2014) for nine UBC projects. Here’s more about the lab’s current roster of four ‘research areas’ from the Research Projects webpage,

1. Transparent Electrodes for Photovoltaic (PV) Devices:

Solar energy, as a clean and renewable resource, is heavily untapped, mainly due to the high cost (>$2 per watt) and low conversion efficiency (~20% for silicon) of today’s PV devices. This project aims at reducing the manufacturing cost of PV devices, by finding a scalable transparent electrode for replacing metal fingers or indium tin oxide (ITO) electrodes of conventional devices. We deposit nanocomposite fibers (NFs) with embedded conductive nanotubes (NTs) and nanowires (NWs) using novel electrospinning process that provides multiscale ordering and alignment in the structure of the NF mesh, similar to veins of a leaf (below). The process is scalable to substrates including plastic, paper and fabric, in a roll-to-roll manufacturing system. Challenges for integration of the NF mesh with Si and thin-film PV panels are being investigated to achieve the required properties at low cost.

2. Nanowire (NW) Growth and Device Fabrication:

Semiconductor and metallic NWs have unique electrical and optical properties not present in the bulk. We grow different NWs with controlled morphology using chemical vapour deposition and other growth techniques. We also work on integration of these nanomaterials into large area electronic devices, including transistors, strain sensors, bio-sensors, photodetectors, and solar cells. Materials of interest include Si, Ge, ZnO, and GaAs.

3. Flexible Organic Solar Cells:

Organic semiconductors can be deposited at low temperature on a variety of substrates. We investigate the aging and annealing effects in these materials and how the morphology of these semiconductors and blends change with time. The goal is to improve efficiency and stability of these devices.

4. Modeling of Nanomaterials and Nanocomposites:

We investigate the electron transport and band structure of novel electronic materials such as nanowires, nanotubes and graphene using atomistic modeling and simulation. [emphasis mine] Our work points out the delicacy of the surface properties of silicon nanowires (NWs) (below) and the dependence of electronic properties on surface composition and reconstruction. In addition, we work on developing analytical models that connect properties of single nanostrucutres to the properties of materials and devices made by using a large number of these nanostrucutures.

My guess is that the two projects which have received money are being investigated via the lab’s four ‘research areas’.

I am glad to have found this nanoeletronics laboratory. Sadly, they’re not investigating the memristors which so fascinate me but I can now say with certainty that there’s at least one laboratory in Canada researching, the world’s currently trendiest nanomaterial, graphene.

Visualizing how your online behaviour is being tracked—Emily Carr University’s (Canada) Lightbeam

Before you got too excited this visualization tool is an add-on for Mozilla’s Firefox. That said, this seems pretty nifty, from the Oct. 30, 2013 Emily Carr University news release (Note: A link was removed),

“Emily Carr University’s visualization research for Lightbeam enables users to understand their personal relationship to online tracking,” says Emily Carr’s Amber Frid-Jimenez, Associate Professor, Faculty of Design + Dynamic Media.  She continues: “Our visualizations for Lightbeam will contribute to increased transparency about how personal information is collected and propagated by third parties, a key issue of online privacy.”

Here’s what one of the visualizations looks like,

Hypothesis 1: Browsing History [downloaded from http://research.ecuad.ca/simcentre/2013/10/28/press-package-lightbeam/]

Hypothesis 1: Browsing History [downloaded from http://research.ecuad.ca/simcentre/2013/10/28/press-package-lightbeam/]

The design team has this to say about the visualization (from their Hypothesis 1 webpage),

hypothesis #1
The Clock design aims to engage people who aren’t currently interested in privacy issues. The tool allows people to explore their own personal internet browsing history in daily, weekly, monthly and more longterm views.

There are more details about the Lightbeam project and the research team, from the news release,

Emily Carr University Research announces the launch of Lightbeam, a new Add-on for the popular Firefox browser that enables users to visualize online data tracking in real time. Mozilla, the developer of Firefox, partnered with the University on a year-long research project to improve Lightbeam’s interactive visualizations. The Emily Carr University team was led by Associate Professor Amber Frid-Jimenez, who worked with student design researchers Sabrina Ng, Joakim Sundal and Heather Tsang and a group of developers at Mozilla, led by Dethe Elza, to develop the visualizations of of the tool which will shed light on the online collection of information by third parties. This research was supported by the Ford Foundation, the National Sciences and Engineering Research Council of Canada (NSERC) and the Mozilla Foundation, and is a project of the Social + Interactive Media (SIM) Centre, headed by Kate Armstrong.

The research team focused on three key areas of the visualization:

  • Browsing history: to interest users in privacy issues with an interface that facilitates exploration of their past browsing history and the third party connections that have been involved in this data;
  • Deep dive into time: to provide experts, power-users and those already interested in privacy issues with an interface that explores their relationships with trackers, and their enabling Web sites, to reveal patterns in the near term or over larger anonymized, aggregated datasets in the future;
  • Metrics as widgets: to provide users with an interface that displays simple figures and browsing history in real-time as single numbers and visual graphs.

The Lightbeam visualizations demonstrate the forward-looking research in social and interactive design provided by Emily Carr University. The Lightbeam visualizations will be important to helping web users understand the role of third party data tracking that shapes so much of the web and make informed choices about their data collection practices.

For anyone who wants to see the press package, you can find everything including the news release and images here.

While Emily Carr University is well known locally, it should be said that it’s located in Vancouver, Canada and it’s official name is Emily Carr University of Art + Design.

Simon Fraser University scientists peer deeply into fuel cells while University of Toronto experts debate nanotechnoloy: revolution or evolution?

An Oct. 25, 2013 Simon Fraser University (SFU; Vancouver, Canada) news release touts a new centre and a very snazzy piece of equipment (Nano X-ray Computed Tomography [NXCT]) that scientists will be able to build and purchase courtesy of a new grant (Note: Links have been removed),

Powerful scanners that give scientists a direct line of sight into hydrogen fuel cells are the latest tools Simon Fraser University researchers will use to help Ballard Power Systems Inc create more durable, lower-cost fuel cells. Use of these fuel cells in vehicles can substantially reduce harmful emissions in the transportation sector.

The new Nano X-ray Computed Tomography (NXCT) tools will become part of a nationally unique fuel cell testing and characterization facility. The new four-year, $6.5 million project is receiving $3.39 million in funding from Automotive Partnership Canada (APC).

It’s one of 10 university-industry partnerships receiving a total of more than $52 million ($30 million from APC, leveraged by more than $22 million from industry and other partners) announced today by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Research carried out in the new visualization facility, expected to be operational by spring, will further the ongoing research collaboration between Ballard and SFU.

“This will be an unprecedented, world-class testing facility dedicated entirely to this project over the next four years,” says principal investigator Erik Kjeang, an internationally known fuel cell expert and director of SFU’s Fuel Cell Research Laboratory (FCRel). “Beyond its capabilities, that’s a strength in itself.”

Says Ballard’s Research Manager Shanna Knights: “It’s a unique opportunity, to have dedicated access to highly specialized equipment and access to university experts who are focused on Ballard’s needs.”

Researchers will use the facility to develop and advance the technology required for the company’s next generation of fuel cell products, helping to meet its targets related to extending fuel cell life while improving efficiency.

Kjeang, an assistant professor in SFU’s School of Mechatronic Systems Engineering, says the new, sophisticated nano-scale scanning capabilities will enable researchers to see inside the fuel cell micro-structure and track how its components degrade over time. The research will play an important role in the university’s focus on advancing clean energy initiatives.

“Partnerships with leading companies such as Ballard solidify SFU’s reputation as a world-class innovator in fuel cell research,” says Nimal Rajapakse, dean and professor, Faculty of Applied Sciences. “This unique fuel cell testing facility will be used for cutting edge research and training of HQP (highly qualified personnel) that will help to strengthen the competitiveness of the Canadian automotive and clean energy industry. We are grateful that Automotive Partnership Canada has provided this second round of funding to support the SFU-Ballard research collaboration.”

Adds Kjeang: “Thanks to the APC program, and the support NSERC has provided over the years, I have been able to both explore the fundamentals of fuel cell technology and to successfully work with companies who are making globally leading advances in green automotive technology.”

A former research engineer who began his career at Ballard in 2008, Kjeang came to SFU to continue his own research interests while keeping a foot in industry. He also continues to lead a complementary project with Ballard that involves nearly 40 students and researchers working to improve the durability of heavy-duty bus fuel cells.

You can find the news release with all its links intact here.  I am a little surprised that there isn’t any mention of SFU’s 4D Labs (their nanotechnology showcase project), especially since one of the areas of interest is this (from the 4D Labs Research Areas webpage),

Cleaner Energy
New materials innvovation is critical to lower the costs and improve the performance of promising technologies such as photovoltaics, fuel cells and passive energy control sytems. [emphasis mine]

Meanwhile, experts gathered at the University of Toronto debated nanotechnology by asking this question: revolution or evolution? as  part of a celebratory event extending from Oct. 23 to Oct. 24, 2013. From a University of Toronto Oct. 23, 2013 news release (H/T Hispanic Business.com),

A panel of nanotechnology experts, moderated by U of T Materials Science & Engineering Professor Doug Perovic will explore the possibilities of the technology as part of a celebration marking the University of Toronto’s  Department of Materials Science & Engineering’s 100-year anniversary.

Nanotechnology is the science of manipulating atoms and molecules on a scale so small they can’t be seen with an ordinary microscope. It’s about coaxing them into displaying unusual properties, such as a material 10 times as strong as steel, but a fraction of its weight, or solar panels that produce fuel rather than electricity.

While nanotech has the potential to transform society in ways no one ever thought of before, it’s also been the subject of much hype.

“Some would say it has not met expectations,” says Professor Perovic, Canada’s ‘nabob of nanotechnology.’ “While it hasn’t taken off in the areas people predicted it would take off, it has become huge in unpredictable areas.”

Some of the world’s top nanotechnology experts will be part of the panel and give the big picture.

WHAT: Nanotechnology panel featuring several experts

WHERE: Room#: BA 1130, Bahen Centre for Information Technology, University of Toronto, 40 St. George Street (Google map: http://goo.gl/maps/tXBxP)

WHEN: 10am, Thursday (October 24)

WHO:
Michael F. Ashby
Royal Society Research Professor
Department of Engineering
University of Cambridge

Shawn Qu | MMS PhD 9T5
Chairman, President & CEO
Canadian Solar Inc.

Polina Snugovsky
Chief Metallurgist, Celestica Inc.
Robert B. Storey | MMS 7T7
Managing Partner, Bereskin & Parr LLP

Gino Palumbo
MMS 8T3, MASc 8T5, PhD 8T9
President & CEO, Integran Technologies Inc

Donald R. Sadoway
EngSci 7T2, MMS MASc 7T3, PhD 7T7
John F. Elliot Professor of Materials Chemistry
Department of Materials Science & Engineering, MIT

David S. Wilkinson
EngSci 7T2, MMS MASc 7T4
Vice-President & Provost, Academic
McMaster University

I wonder if the experts came to any conclusions.

Mathematics, Mexico, and Canada’s Banff International Research Station (BIRS) for Mathematical Innovation and Discovery

Thanks to Nassif Ghoussoub’s July 4, 2013 posting on his Piece of Mind blog where I found this information about a a possible Canada-Mexico mathematics initiative,

Oaxaca to join Banff as a hotbed for the mathematical sciences

The Banff International Research Station for Mathematical Innovation and Discovery (BIRS) is now accepting proposals for its 2015 program. BIRS will again be hosting a 48-week scientific program at its station in Banff. There is also a possibility (to be confirmed later) that BIRS will be running an additional 20-25 workshops at its developing new station in Oaxaca, Mexico. [emphasis mine]

The status and state of readiness of the new research station at Oaxaca is still awaiting final commitments from various private and public sponsors. We are aiming to have the facility open and ready to host an augmented BIRS program as soon as 2015. We shall keep the scientific community informed about this exciting potential to increase the BIRS opportunities.

Here’s a little background information about why BIRS wants to expand its offerings and why they hope to expand the programming to Mexico in particular. From Nassif Ghoussoub’s April 19, 2013 posting (Note: links have been removed),

Once again, I had to perform the unpleasant annual task of writing to more than 120 colleagues and their co-applicants all over the world to inform them that their proposals to run a research workshop at the Banff International Research Station (BIRS) in 2014 were not successful. Many of these declined proposals were excellent and some of the disappointed researchers were repeat applicants. The problem? 170 applications received in 2012 (more than double the number of the 2003 competition) for the available 48 weeks of programming at BIRS. The private sector has obvious answers to such increases in customers’ demand. But what do you do if your product is research capacity, your capital is scientific credibility, and your financier is the public sector?

Every year, BIRS hosts over 2000 researchers from 400 institutions in more than 60 countries who participate in its annual series of 48 weekly workshops, each hosting up to 42 researchers in disciplines in which mathematics, computer science and statistics are used in novel ways.  ….

A unique aspect of BIRS is that it is a joint Canada-US-Mexico initiative, which is funded by Mexico’s National Council for Science and Technology (CONACYT), Alberta Innovation, the US National Science Foundation (NSF), and Canada’s Natural Science and Engineering Research Council (NSERC).

Another remarkable feature of the Station is that it is located on the site of the world-renowned Banff Centre in Alberta, which is already internationally recognized as a place of high culture with programs in music and sound, the written, visual and performing arts, leadership and management that draw in many hundreds of artists, students, and intellectual leaders from around the world.

It had been clear to me for a while now that we need to increase the opportunities offered at BIRS by expanding its capacity to no less than 75 workshops per year. In other words, we need an additional research facility, where BIRS can support 25-30 workshops in addition to the 48 programs that currently run in Banff every year.

That special confluence of the arts and mathematics at Banff is something the BIRS organizers want to maintain in any new facilities and it’s why Francisco Toledo’s  CASA (El Centro de las Artes San Augustín) seems ideal for a new mathematics hosting space. From Nassif’s April 2013 posting (Note: Links have been removed),

 CASA, which opened its doors on March 21, 2006, is committed to be a public space, where education, artistic creation and experimentation could thrive. It was founded by Francisco Toledo, a prominent Mexican painter and graphic designer, who purchased the property in 2000 in order to create the first eco-arts center in Latin America. CASA is funded through the National Center for the Arts, the State Government of Oaxaca, and private foundations including the Harp Helú Foundation.

“Today CASA is comprised of a set of spaces providing for artistic initiation and creation. It has spaces equipped for the production of digital graphics, traditional graphic and dyeing workshops and textile design, photographic developing and organic printing. Under the assumption that the interaction with people from different lands stimulates creativity, promotes tolerance and strengthens a community, CASA invites artists to perform residencies giving priority to projects of ecological and community care.”

Francisco Toledo is convinced that mathematical scientists from all over the world can/should be part of these interactions in order to help stimulate another level of creativity, right there in his beloved Oaxaca. Toledo has consequently offered to donate a parcel of land adjacent to CASA on which could be built a facility, where some of the BIRS programs can run. Recent meetings with the Director of CONACYT, the Governor of the State of Oaxaca, and the Harp Helú Foundation were extremely promising.

Here’s more about CASA from the website homepage,

Recently restored, the 1883 textile hacienda founded by Jose Zorrila Trapaga was converted into the most beautiful Centre for the Arts of San Agustin (CASA). This is an outstanding contribution led by Maestro Francisco Toledo, to open a cultural opportunity for all interested in the many art workshops the center offers. Also, it brings extraordinary temporary exhibitions for all to marvel at, musical concerts at the weekends and most recently the former Pochote Cinema Club has moved here where the public can come to see cultural films for free most afternoons and special presentations on weekends.

While I note there’s no mention of mathematics on the CASA homepage, it (CASA) is mentioned in the BIRS 2015 Scientific Programme Call for Proposals (in a BIRS blog June 27, 2013 posting),

The Banff International Research Station for Mathematical Innovation and Discovery (BIRS) is now accepting proposals for its 2015 program. BIRS will again be hosting a 48-week scientific program at its station in Banff. There is also a possibility (to be confirmed later) that BIRS will be running an additional 20-25 workshops at its developing new station in Oaxaca, Mexico.

The status and state of readiness of the new research station at Oaxaca is still awaiting final commitments from various private and public sponsors. We are aiming to have the facility open and ready to host an augmented BIRS program as soon as 2015. We shall keep the scientific community informed about this exciting potential to increase the BIRS opportunities. …

The Station at Banff (and eventually the one in Oaxaca) provides an environment for creative interaction and the exchange of ideas, knowledge, and methods within the mathematical, statistical, and computing sciences, and with related disciplines and industrial sectors. Each week, the station hosts either a full workshop (42 people for 5 days) or two half-workshops (each with 21 people for 5 days). As usual, BIRS provides full accommodation, board, and research facilities at no cost to the invited participants, in a setting conducive to research and collaboration.

Full information, guidelines, and online forms are available at the BIRS website: http://www.birs.ca

The deadline for 5-day Workshop and Summer School proposals is Friday September 27, 2013.

In addition BIRS will operate its Research in Teams and Focused Research Groups programs, which allow smaller groups of researchers to get together for several weeks of uninterrupted work at the station. September 27, 2013 is also the preferred date to apply for these programs. However, proposals for projects involving Research in Teams or Focused Research Groups can be submitted at any time — subject to availability — they must be received at least 4 months before their requested start date.

Proposal submissions should be made using the online submission form. Please use: https://www.birs.ca/proposals

Nassif Ghoussoub, Scientific Director,
The Banff International Research Station

La version française suit ci-dessous. La versión española sigue abajo.

You’ll note the blogger Nassif Ghoussoub is also the BIRS’ scientific director.  He was recently reappointed to his position according to a June 18, 2013 posting on the BIRS blog,

Nassif Ghoussoub has been re-appointed to a five-year term as Scientific Director of the Banff International Research Station (BIRS) beginning July 1, 2013.

“Under Ghoussoub’s leadership BIRS has evolved to become one of the leading research institutions in the world,” said Doug Mitchell, Chair of the BIRS Board of Directors. “BIRS is currently looking for ways to further expand opportunities for the mathematical sciences and we are extremely fortunate that Dr. Ghoussoub has agreed to continue to lead us into this next phase.”

Dr. Ghoussoub is a Professor of Mathematics and a Distinguished University Scholar at the University of British Columbia. He has been a fellow of the Royal Society of Canada since 1993 and a fellow of the American Mathematical Society since 2012. For his research contributions he has received many awards including the Coxeter-James prize and the Jeffrey-Williams prize of the Canadian Mathematical Society.

Dr. Ghoussoub has been acknowledged worldwide for his many contributions to building Canadian and international research capacity and infrastructure, such as his role in the founding of the Pacific Institute for the Mathematical Sciences, the Mitacs network of centres of excellence and the Banff International Research Station. Among his most recent awards are the Queen Elizabeth Diamond Jubilee Medal and the David Borwein Distinguished Career Award. He is a recipient of a Doctorat Honoris Causa from the Université Paris-Dauphine, and was recently invited to receive the degree of Doctor of Science from the University of Victoria.

Congratulations to Nassif! As for this initiative in Mexico, I wish you, Francisco Toledo, BIRS, and CASA all the best. This is a very exciting development.

Waterloo Institute of Nanotechnology/EcoSynthetix industrial partnership and an interlaced relationship

The EcoSynthetix and Waterloo Institute for Nanotechnology partnership announced today (Mar. 13, 2013) is an example of how tightly interlaced the relationships between academic institutions and their graduates’ start-up companies can be. A Mar. 13, 2013 news item on Nanowerk describes the partnership,

EcoSynthetix Inc. and the Waterloo Institute for Nanotechnology at the University of Waterloo have joined forces through an industrial partnership to collaborate on new applications for EcoSynthetix’ EcoSphere® technology. The five-year agreement will be jointly funded through an EcoSynthetix and NSERC (National Sciences and Engineering Research Council) Collaborative Research and Development Grant. The project matches the scientific expertise from the University of Waterloo in macromolecular science with the sustainability benefits of EcoSphere® bio-based nanoparticles which are based on green chemistry. The goal of the project is to broaden the scientific knowledge base of the EcoSphere® technology to support its introduction into new application areas.

The Mar. 13, 2013 EcoSynthetix news release, which originated the news item, mentions the relationship in passing while extolling the virtues of the partnership,

“As a global centre of excellence for nanotechnology research, this project represents a great opportunity for our institute, faculty and students at the University, to collaborate with a local innovator to further our understanding of the technology and its potential applications,” said Dr. Arthur J. Carty, Executive Director of the Waterloo Institute for Nanotechnology (“WIN”) and an independent director of the board of EcoSynthetix. [emphasis mine] “Nanotechnology is a leading-edge, enabling technology that holds the promise of a lasting economic benefit for jobs and investment in the materials, energy and healthcare sectors. EcoSynthetix’s innovative nanotechnology has the potential to impact a wide-array of markets that would benefit from a sustainable alternative to petroleum-based products.”

“This ECO-WIN collaboration involves four professors and eight graduate students at the Waterloo Institute for Nanotechnology and is a great example of how industry and universities can work together to advance an exciting new area of science to benefit the community,” said Dr. Steven Bloembergen, Executive Vice President, Technology of EcoSynthetix. “Our EcoSphere® technology is already commercial and providing sustainable benefits in three separate markets today. Our team’s primary focus at this stage is near-term product development and product enhancements of carbohydrate-based biopolymers. By working with the Institute of Nanotechnology to deepen our understanding of the basic science, we can identify new future applications that could benefit from our sustainable biobased materials.”

The EcoSphere® technology is being commercially utilized as biobased latex products providing alternatives to petroleum-based binders in the coated paper and paperboard market. [emphasis mine] The goal of this project is to generate a greater understanding of the properties of EcoSphere® biolatex® binders by establishing a knowledge base that could enable tailor-made novel particles with the desired properties for a given application. The project team will be chemically modifying the nanoparticles and then characterizing how the properties of the novel particles are affected by these changes.

I don’t understand what “independent director” means in this context. Is the term meant to suggest that it’s a coincidence Carty is WIN’s executive director and a member of the EcoSynthetix board? Or, does it mean that he’s not employed by the company? If any readers care to clarify the matter, please do leave a comment. In any event, the EcoSynthetix timeline suggests the company has a close relationship with the University of Waterloo as it was founded in 1996 by graduates  (from the company’s About Us History Timeline webpage),

EcosynthetixTimeline

As for the product line which birthed this partnership, there’s a disappointing lack of technical detail about Ecosphere biolatex binders. Here’s the best I can find on the company website (from the Ecosphere Biolatex Binders Performance page),

The smaller particle size characteristic of biolatex binders results in increased binder strength and performance. In coated paper, it provides improved aesthetics; a rich, bright finish; enhanced open structure and excellent printability across all grades.

I wonder if some of this new work will be focused on ways to use CNC (cellulose nanocrytals or NCC, nanocrystalline cellulose) in addition to the company’s previously developed “bio-based nanoparticles”  to enhance the product which, as I highlighted earlier, sells to the “coated paper and paperboard market.” From the CelluForce (the CNC/NCC production plant in Quebec) Applications page,

NCC’s properties and many potential forms enable many uses, including:

  • Biocomposites for bone replacement and tooth repair
  • Pharmaceuticals and drug delivery
  • Additives for foods and cosmetics
  • Improved paper and building products
  • Advanced or “intelligent” packaging
  • High-strength spun fibres and textiles
  • Additives for coatings, paints, lacquers and adhesives
  • Reinforced polymers and innovative bioplastics
  • Advanced reinforced composite materials
  • Recyclable interior and structural components for the transportation industry
  • Aerospace and transportation structures
  • Iridescent and protective films
  • Films for optical switching
  • Pigments and inks
  • Electronic paper printers
  • Innovative coatings and new fillers for papermaking

Since I’m already speculating, I will note I’ve had a couple of requests for information on how to access NCC/CNC from entrepreneurs who’ve not been successful at obtaining the material from the few existing production plants such as CelluForce and the one in the US. It seems only academics can get access.

One last comment about this ‘partnership’, I’d dearly love to know what relationships, if any exist, between the proponents and the NSERC committee which approved the funding.

Interestingly, Carty is the chair for the recently convened expert panel for the Council of Canadian Academies’ The State of Canada’s Science Culture assessment, as per my Dec. 19, 2012 post about the announcement of his appointment. This latest development casts a new light on the panel (my Feb. 22, 2013 post notes my reaction to the expert panel’s membership) and the meaning of science culture in Canada.

Science, women and gender in Canada (part 2 of 2)

The material in the executive summary for Strengthening Canada’s Research Capacity: The Gender Dimension; The Expert Panel on Women in University Research, which was released on Nov. 21, 2012 by the Council of Canadian Academies (CCA) is developed throughout the report. (Part 1 of my commentary is here.)

The passage about the economic importance of diversity supported by a quote from University of Alberta President Indira Samarasekera hearkens back to the executive summary,

From an economic perspective, the underrepresentation of female researchers in academia raises many potential problems, not least the effects of a labour pool that operates at considerably less than full capacity. University of Alberta President Indira Samarasekera noted:

“I think our society isn’t balanced if we don’t have the contribution of both genders, in addition to people of different ethnic origins and different racial backgrounds. We all know that diversity is a strength. That’s what you see in nature. So why would we rob ourselves of ensuring that we have it?” (in Smith, 2011).

U.S. researchers Hong and Page (2004) found that diverse groups tend to outperform homogeneous groups, even when the homogeneous groups are composed of the most talented problem solvers. They attribute this to the notion that individuals in homogeneous groups often think in similar ways, whereas diverse groups approach problems from multiple perspectives (Hong & Page, 2004). Considering that varied groups are “invariably more creative, innovative and productive” than homogeneous groups, the argument for encouraging women to be active in decision-making groups is similar to that for minority populations in general (Calnan & Valiquette, 2010). Similarly, the European Commission’s Expert Group on Structural Change (2011) analyzed a number of studies indicating that group creativity is fed by gender balance,25 and collective intelligence is positively correlated with the proportion of women in a group.26 As the McKinsey (2008) Report Women Matter 2 pointed out, since half of the talent pool is made up of women, it makes economic and social sense to bring the best minds of both sexes together to address the challenges that face society. (p. 60/1 PDF; p. 30/1 print)

One  of the more interesting aspects of this report is how the panel broke down the categories,

For the Panel’s analyses, fields of study were organized into three large categories: humanities, social sciences, and education (HSE); life sciences (LS); and physical sciences, computer science, mathematics and engineering (PCEM).31 The HSE, PCEM and LS categories are somewhat different from the categories commonly used in other reports, such as the well-known science, technology, engineering and mathematics classification (STEM);32 however, the Panel decided that the former classification was best suited to the Canadian context. For example, HSE, LS, and PCEM reflect the priorities of the three major Canadian granting agencies (SSHRC, CIHR, and NSERC). Considering the Tri-Council’s high level of involvement in funding available to researchers, it is logical to use a uniquely Canadian framework to define disciplines at the aggregate level. (pp. 68/9 PDF; pp. 38/9 print)

This categorization is not one I’ve seen before and I find it quite intriguing and compelling. Already noted in part 1 of my commentary is that the arts have no place in this report even though they are mentioned as an area of excellence in the State of Science and Technology in Canada, 2012 report released by the CCA in Sept. 2012.

The section following the description of the research categories is filled with data about salaries over time and across various fields of interest. Briefly, women have not done as well as men historically. While the gaps have narrowed in some ways, there is still a disparity today. There’s also a discussion about the difficulty of comparing numbers over time.

Given that women entered the academic sphere in serious numbers during the 1960s and each successive wave has dealt with different social imperatives, e.g. the drive to encourage women to study the science and mathematics in particular doesn’t gain momentum until decades after the 1960s. When a career timeframe (someone who entered an undergraduate programme in 2000 may have just finished their PhD in 2011 and, if lucky, would have started their career in the last 1.5 years) is added to this data, it becomes clear that we won’t understand the impact of higher enrollment and higher numbers of graduates for some years to come. From report,

The Panel recognizes that time is needed to see whether the higher numbers of women in the student population will translate into correspondingly higher numbers in tenure track or tenured positions. However, the Panel also questioned whether those changes would occur as quickly as one could expect considering the growth of female students among the general student population. Published by CAUT (2011), new appointment data on full-time university teachers38 from Statistics Canada and UCASS indicate that of the 2,361 new appointments in 2008–2009, 57.7 per cent were men, and 42.3 per cent were women. While this represents an increase from 2001–2002, when 62.7 per cent of the 2,634 new appointees were men and 37.3 per cent were women (CAUT, 2005), parity in new hires has not yet been achieved.39 (pp. 80/1 PDF; pp. 50/1 print)

Canada is not alone,

The higher one looks in university ranks, the fewer women are present in comparison to men. This trend is not unique to Canada. In general, the Canadian profile is similar to that found in other economically advanced nations including the U.S., and to the average profile seen in European Union (EU) countries. For example, in both Canada and the EU, women held slightly over 40 per cent of grade C45 research positions [approximately assistant professor level] and about 18 per cent of grade A46 positions [the highest research level] (Figure 3.8) in 2007 (Cacace, 2009).47 This global similarity reinforces the systemic nature of the under representation of women in academia. (p. 85 PDF; p. 55 print) Note:  The descriptions of grade C and grade A were taken from the footnotes.)

The difference is most striking when comparing C grade (assistant professor) to A grade (full professor) positions and their gendering,

The percentage of women at the Grade B level is generally lower than at the Grade C level, with the exception of Sweden (47 per cent) (please see also Figures A2.3 and A2.4 in Appendix 2). Finland also boasts a comparatively higher percentage of women at this rank, at 49 per cent. However, the greatest difference in women’s representation is noticeable between the ranks of associate professor and full professor. Again, there is some variation across countries (e.g., Finland at 23 per cent; Canada at 18 per cent; Germany at 12 per cent), which indicates that some nations have farther to go to achieve gender parity in research than others. In general though, the relatively low proportion of women at the full professor level suggests that the glass ceiling remains intact in Canada as well as in several comparator countries. (p. 87 PDF; p. 57 print) [emphasis mine]

In an earlier section of the report, there was discussion of  the impact that maternity, which forces an interruption, has on a career.  There was also discussion of the impact that stereotypes have,

The effects of stereotypes are cumulative. The desire for peer acceptance plus the influence of stereotypes make it difficult for anyone to escape powerful “cultural messages” (Etzkowitz et al., 2000). This is one of the reasons why gendered trends emerge in girls’ and boys’ choices and, combined with the lack of policy change, a reason why it is still difficult for women to advance in some university departments. Later on in the life course, these messages can make it harder for women’s professional experience to be valued in academia, as evidenced by findings that demonstrate that curricula vitae are evaluated differently based on whether the applicant’s name is male or female (Steinpreis et al., 1999), or that blind auditions increase the chances that women musicians will be hired in orchestras … (p. 95 PDF; p. 65 print)

What I find fascinating about stereotypes is that since we are all exposed to them, we are all inclined to discriminate along those stereotypical lines.  For example, I wrote about some research into wages for graduate students in a Sept. 24, 2012 posting where I pointed out that a female graduate student was better off seeking employment with a male professor, despite the fact that she would still be offered less money than her male counterpart,

I tracked down the paper (which is open access), Science faculty’s subtle gender biases favor male students by Corinne A. Moss-Racusin, John F. Dovidio, Victoria L. Bescroll, Mark J. Graham, and Jo Handelsman and found some figures in a table which I can’t reproduce here but suggest the saying ‘we women eat their own’ isn’t far off the mark. In it, you’ll see that while women faculty members will offer less to both genders, they offer significantly less to female applicants.

For a male applicant, here’s the salary offer,

Male Faculty               Female Faculty

30,520.82                    29, 333.33

For a female applicant, here’s the salary offer,

Male Faculty               Female Faculty

27,111.11                    25,000.00

To sum this up, the men offered approximately $3000 (9.25%) less to female applicants while the women offered approximately $4000 (14.6%) less. It’s uncomfortable to admit that women may be just as much or even more at fault as men where gender bias is concerned. However, it is necessary if the situation is ever going to change.

The researchers did not mention this aspect of the disparity in their news release nor (to my knowledge) was it mentioned in any of the subsequent coverage, other than on my blog.

Nowhere in this CCA report is there any hint that women discriminate against women. One is left with the impression, intentional or not, that discrimination against women will disappear once there are more women at higher levels in the worlds of academe and science. Given the one piece of research I’ve cited and much anecdotal evidence, I think that assumption should be tested.

Leaving aside which gender is ‘doing what to whom’, gender bias at home and at school has a great impact on who enters which field,

In sum, home and school environments, sociocultural attitudes, and beliefs regarding gender roles and the value of education affect gender differences in academic choice and performance. Self-confidence, test scores, and ultimately post-secondary and career choices are often by-products of these factors (UNESCO, 2007). The lack of women in science and engineering — and the lack of men in education studies and humanities — could be a result of gender bias during childhood and teen socialization (Vallès Peris & Caprile Elola-Olaso, 2009). (p. 97 PDF; p. 67 print) [emphasis mine]

I realize this report is focused on gender issues in the sciences, nonetheless, I find it striking there is no mention of social class (at home and at school) with regard to the impact that has on aspirations to a research career and, for that matter, any impact social class might have on gender roles.

Also, there is no substantive mention of age as a factor, which seems odd, since women are more likely to interrupt their careers for childbearing and childrearing purposes. This interruption means they are going to be older when they re-enter the workforce and an older woman is still perceived quite differently than an older man, irrespective of career accomplishments.

The Nov. 21, 2012 news release from the CCA summarizes the conclusions in this fashion,

“There is no single solution to remedy the underrepresentation of women in the highest ranks of academic research careers. The issue itself is a multifaceted one that is affected by social, cultural, economic, institutional, and political factors and contexts”, commented Panel Chair Dr. Lorna R. Marsden. “There has been significant progress in the representation of women in the academy since the 1970s, and there is much to be celebrated. However, as evidenced by the wide variation in women’s representation by discipline and rank, there are still challenges to overcome.”

The Expert Panel developed a baseline of information regarding the statistical profile of women researchers in Canada. The major findings from the statistical profile are:

  •       In general, the Canadian profile is similar to that of other economically advanced nations.
  •       Women’s progress in Canadian universities is uneven and dependent on discipline and rank.
  •        The higher the rank, the lower the percentage of women in comparison to men.

The Panel also identified key factors that affect the multiple career paths of women. These factors start early in life with stereotypes that define roles and expectations, followed by a lack of knowledge about requisites for potential career paths, and a lack of role models and mentors. These issues, combined with a rigid tenure track structure, challenges associated with the paid work-family life balance, and the importance of increased support and coordination amongst governments and institutions need to be examined if Canada is going to achieve a greater gender balance within academia.

There’s a lot of admire in this report. As noted in part 1 of this commentary, I particularly appreciate the inclusion of personal narrative (life-writing) with the usual literature surveys and data analyses; the discussion around the importance of innovation regarding the economy and the reference to research showing that innovation is enhanced by the inclusion of marginalized groups; and the way in which values fundamental to Canadian society were emphasized.

The photograph on the front cover was a misstep. The most serious criticism I have of this assessment is the failure to recognize that simply having more women in leadership positions will not necessarily address gender equity issues. Stereotypes about women and gender run deep in both men and women and that needs to be recognized and dealt with. I am also disappointed that they failed to mention in the conclusion the impact that leadership has on gender equity and the necessity of giving leaders a reason (carrot and/or stick) to care about it.

I cannot comment on the makeup of the expert panel as I’m largely unfamiliar with the individuals, other than to say that as expected, this panel was largely composed of women.

I recommend reading the report as I learned a lot from it not least that there are many science organizations in this country that I’d not heard of or encountered previously. One final appreciation, I thought deconstructing STEM (science, technology, engineering, and mathematics) to create HSE (humanities, social sciences, and education), LS (life sciences), and PCEM (physical sciences, computer science, engineering, and mathematics) so the designations more clearly reflected Canadian science funding realities was brilliant.

Science, women and gender in Canada (part 1 of 2)

Titled Strengthening Canada’s Research Capacity: The Gender Dimension; The Expert Panel on Women in University Research, the Council of Canadian Academies (CCA) released their assessment on Nov. 21, 2012, approximately 20 months after the incident which tangentially occasioned it (from the Strengthening … webpage) Note: I have added a reference and link to a report on CERC (Canada Excellence Research Chairs) gender issues in the following excerpt,

After the notable absence of female candidates in the Canada Excellence Research Chairs (CERC) program, the Minister of Industry, in March 2010, struck an ad-hoc panel to examine the program’s selection process. The ad-hoc panel found that the lack of female representation was not due to active choices made during the CERC selection process. [Dowdeswell, E., Fortier, S., & Samarasekera, I. (2010). Report to the Minister of Industry of the Ad Hoc Panel on CERC Gender Issues. Ottawa (ON):Industry Canada.] As a result, the Council of Canadian Academies received a request to undertake an assessment of the factors that influence university research careers of women, both in Canada and internationally.

To conduct the assessment, the Council convened an expert panel of 15 Canadian and international experts from diverse fields, which was chaired by Dr. Lorna Marsden, President emeritus and Professor, York University.

For anyone unfamiliar with the CERC programme,

The Canada Excellence Research Chairs (CERC) Program awards world-class researchers up to $10 million over seven years to establish ambitious research programs at Canadian universities.

My commentary is primarily focused on the assessment and not the preceding report from the ad hoc panel, as well, I am not commenting on every single aspect of the report. I focus on those elements of the report that caught my attention.

There is much to appreciate in this assessment/report unfortunately the cover image cannot be included. By choosing a photograph, the designer immediately entered shark-infested waters, metaphorically speaking. From a semiotic perspective, photographs are a rich and much studied means of criticism. Having a photograph of an attractive, middle-aged white woman with blonde hair (a MILF, depending on your tastes)  who’s surrounded by ‘adoring’ students (standing in for her children?) on the cover of this assessment suggests an obliviousness to nuance that is somewhat unexpected. Happily, the image is not reflective of the content.

The report lays out the basis for this assessment,

There are many reasons for concern at the lack of proportional representation of women in senior positions in all facets of our society, including politics, law, medicine, the arts, business, and academia. The underrepresentation of women in any of these areas is a concern considering the fundamental Canadian values of equality, fairness, and justice, as outlined in the Canadian Human Rights Act, the Canadian Charter of Rights and Freedoms, and the Employment Equity Act. This report focuses on women in academia: the 11,064 women with PhDs who are employed full-time in degree-granting institutions. In comparison, there are 22,875 men in this category (see Table 3.1).1 Besides educating millions of students, these researchers and innovators are working to address the major issues Canada faces in the 21st century, including climate change, demographic shifts, healthcare, social inequality, sustainable natural resources management, cultural survival, as well as the role Canada plays as an international actor. These contributions are in addition to the basic, or knowledge discovery, research that is one of the main duties of academic researchers. In the knowledge economy, a talent pool of Canada’s top thinkers, researchers and innovators is needed to help secure and build Canada’s economic edge. The wider the pool is from which to draw, the more perspectives, experiences, and ideas will be brought to the creative process. [emphasis mine] Arguments for fully including women in research careers range from addressing skills shortages and increasing innovation potential by accessing wider talent pools, to greater market development, stronger financial performance, better returns on human resource investments, and developing a better point from which to compete in the intensifying global talent race. (p. 15 PDF; p. xiii print)

I appreciate the reference to fundamental values in Canadian society as it is important but I suspect the portion I’ve highlighted contains the seeds of an argument that is far more persuasive for power brokers. It was a very smart move.

It is possible to skim this report by simply reading the executive summary and reading the Key Messages page included after each chapter heading, save the final chapter. They’ve done a good job of making this report easy to read if you don’t have too much time but prefer to view the complete assessment rather than an abridged version.

The Chapter 1 Key Messages are,

Chapter Key Messages

• While many reports have focused specifically on women in science, technology, engineering, and mathematics careers, this assessment employs comparative analyses to examine the career trajectories of women researchers across a variety of disciplines. The Panel was able to respond to the charge using a combination of research methods, but their analyses were sometimes hindered by a paucity of key data sets.

• In an attempt not to simply repeat numerous studies of the past on women in research careers, the Panel used a life course model to examine the data from a new perspective. This conceptual framework enabled the Panel to consider the multidimensional nature of human lives as well as the effects of external influences on the career trajectories of women researchers.

• Women are now present in all areas of research, including those areas from which they have previously been absent. Over time, institutions have become more inclusive, and Canadian governments have created policies and legislation to encourage more gender equity. Collective bargaining has contributed to this process. Clearly, the advancement of women in research positions relies on the contributions of individuals, institutions and government.

• Since the 1970s, there has been major progress such that women have been obtaining PhDs and entering the academy as students and faculty at increasing rates. However, women remain underrepresented at the highest levels of academia, as demonstrated by their low numbers in the Canada Research Chairs (CRC) program, and their absence from the Canada Excellence Research Chairs (CERC) program. There is considerable room for improvement in women’s representation as faculty.

• Higher education research and development funding has nearly doubled in the past decade. However, the amount of funding allocated to core grants and scholarship programs varies among the tri-council agencies [SSHRC, Social Science and Humantities Research Council; NSERC, Natural Science and Engineering Research Council; and CIHR, Canadian Institutes of Health Research], with the majority of funds available to researchers sponsored by NSERC and CIHR. This pattern is generally replicated in the Canada Research Chairs and the Canada Excellence Research Chairs programs. As noted in the 2003 Human Rights Complaint regarding the Canada Research Chairs program, women are least represented in the areas of research that are the best funded.  (p. 33 PDF; p. 3 print) [emphasis mine]

This panel in response to the issue of women being least represented in the best funded areas of research elected to do this,

The Panel noted that many reports have focused on women in science, technology, and engineering research careers (due in part to the fact that women have been significantly underrepresented in these fields) yet relatively little attention has been paid to women researchers in the humanities, social sciences, and education. This is despite the fact that 58.6 per cent of doctoral students in these disciplines are women (see Chapter 3), and that their research contributions have profoundly affected the study of poverty, violence, the welfare state, popular culture, and literature, to note only a few examples. Considering this, the Panel’s assessment incorporates a comparative, interdisciplinary analysis, with a focus on the broader category of women in university research. In order to identify the areas where women are the most and least represented, Panellists compiled data and research that describe where Canadian female researchers are — and are not — in terms of both discipline and rank. Where possible, this study also analyzes the situation of women researchers outside of academia so as to paint a clearer picture of female researchers’ career trajectories. (pp. 37/8 PDF; pp. 7/8 print) [emphases mine]

Bringing together all kinds of research where women are both over and under represented and including research undertaken outside the academic environment was thoughtful. I also particularly liked this passage,

American research suggests that holding organizational leaders accountable for implementing equity practices is a particularly effective way of enhancing the diversity of employees (Kalev et al., 2006), indicating that reporting and monitoring mechanisms are key to success. [emphasis mine] The Panel observed that meeting these commitments requires the proper implementation of accountability mechanisms, such as reporting and monitoring schemes. (p. 44 PDF; p. 14 print)

Juxtaposing the comment about leaders being held accountable for equity practices and the  comment I emphasized earlier ” … a talent pool of Canada’s top thinkers, researchers and innovators is needed to help secure and build Canada’s economic edge …” could suggest an emergent theme about leadership and the current discourse about innovation.

To get a sense of which disciplines and what research areas are rewarded within the Canada Research Chair programme read this from the assessment,

Similarly, while 80 per cent of Canada Research Chairs are distributed among researchers in NSERC and CIHR disciplines, SSHRC Chairs represent only 20 per cent of the total — despite the fact that the majority (60 per cent) of the Canadian professoriate come from SSHRC disciplines (Grant & Drakich, 2010). Box 1.1 describes the gendered implications of this distribution, as well as the history of the program. (p. 45 PDF; p. 15 print)

What I find intriguing here isn’t just the disparity. 60% of the researchers are chasing after 20% of the funds (yes, physical sciences are more expensive but those percentages still seem out of line), but that social sciences and the humanities are not really included in the innovation rubric except here in this assessment. Still, despite the inclusion of the visual and performing arts in the State of Science and Technology in Canada, 2012 report issued by the CCA in Sept. 2013 (part 1 of my commentary on that assessment is in this Dec. 28, 2012 posting; part 2 of my commentary is in this Dec. 28, 2012 posting) there is no mention of them in this assessment/report of gender and science.

I did particularly like how the panel approached data collection and analysis,

Coming from a variety of disciplinary backgrounds, Panellists brought with them a range of methodological expertise and preferences. Through a combination of quantitative and qualitative data, the Panel was able to identify and analyze factors that affect the career trajectories of women researchers in Canada (see Appendix 1 for full details). In addition to an extensive literature review of the national and international research and evidence related to the topic, the Panel collected information in the form of data sets and statistics, heard from expert witnesses, conducted interviews with certain stakeholders from academia and industry, and analyzed interview and survey results from their secondary analysis of Canada Research Chairs data (see Appendix 5 for a full description of methodology and results). Together, these methods contributed to the balanced approach that the Panel used to understand the status of women in Canadian university research careers.

In addition, the Panel took an innovative approach to painting a more vibrant picture of the experience of women professors by incorporating examples from academic “life-writing.” Life-writing is the generic name given to a variety of forms of personal narrative — autobiography, biography, personal essays, letters, diaries, and memoirs. Publishing personal testimony is a vital strategy for marginalized groups to claim their voices and tell their own stories, and academic women’s life-writing adds vital evidence to a study of women in university careers (Robbins et al., 2011). The first study of academic life-writing appeared in the U.S. in 2008 (Goodall, 2008); as yet, none exists for Canada.16 Recognizing the benefits of this approach, which focuses on the importance of women’s voices and stories, the Panel chose to weave personal narrative from women academics throughout the body of the report to illuminate the subject matter. As with the data gleaned from the Panel’s secondary analysis of Canada Research Chairs data, these cases highlight the experience of an articulate and determined minority of women who are prepared and positioned to speak out about structural and personal inequities. More comprehensive surveys are required to establish the precise extent of the problems they so effectively illustrate. (pp. 49/50 PDF; pp. 19/20 print)

Nice to note that they include a very broad range of information as evidence. After all, evidence can take many forms and not all evidence can be contained in a table of data nor is all data necessarily evidence. That said there were some other issues with data and evidence,

Despite the extensive literature on the subject, the Panel identified some data limitations. While these limitations made some analyses difficult, the Panel was able to effectively respond to the charge by using the combination of research methods described above. Data limitations identified by the Panel include:

• relatively little research specific to the Canadian context;

• lack of longitudinal data;

• relatively few studies (both quantitative and qualitative) dealing with fields such as the humanities and social sciences;

• lack of data on diversity in Canadian academia, including intersectional data;

• lack of comprehensive data and evidence from the private and government sectors; and

• difficulty in comparing some international data due to differences in disciplinary classifications. (p. 50 PDF; p. 20 print)

I think this does it for part 1 of my commentary.

Canada’s National Research Council wins in national science reshuffle while fumbling with employee relations

Hats off to Nassif Ghoussoub at his Piece of Mind blog for the latest information on the institutional science scene and the government’s response to last year’s (2011) Jenkins report (Review of Federal Support to R&D, aka, Innovation Canada: A Call to Action).

Nassif’s Sept. 11, 2012 posting highlights an unusually high number of recent announcements about federal funding for R&D (research and development). From the posting,

As always, politicians were crowding the Monday morning issue of the Hill Times newspaper. But today’s was different from any other day. No less than four politicians were either making “major” statements about federal plans for funding R&D, or taking the time to write about it. One wonders why we are witnessing this unusual surge of science-related interest in Ottawa’s political discourse.

Nassif makes some very provocative comments (Note: I have removed some links),

Gary Goodyear, the minister responsible for science and technology, seemed to be announcing that the National Research Council (NRC) has already won the battle of who is going to lead the federal effort of coordinating research partnerships with the industrial sector. “The NRC will be ‘transformed’ to respond to private sector demand”. How did they convince the PMO? Where are the universities? The Tri-Council [funding agencies: Social Sciences and Humanities Research Council {SSHRC}; Natural Sciences and Engineering Research Council {NSERC}; and Canadian Institutes of Health Research {CIHR}]? And so much for the recommendations of the Jenkins panel, which in spite of the carefully chosen words, go quite far in the direction of suggesting the dismantlement of this venerable institution. Yet, the NRC is emerging as the ultimate winner in this sweepstakes of federal funding for industrial R&D. We can now kiss goodbye the “Industrial Research and Innovation Council” (IRIC), as recommended by the Jenkins panel and as vigorously defended by UT [University of Toronto] President, David Naylor.

I didn’t view the panel’s recommendations regarding the NRC in quite the same way in my Oct. 21, 2011 posting (which features my review of the Jenkins report). I start by commenting on the recommendation for ‘a single innovation voice’ in government and then mention the NRC,

This one seems like one of those recommendations that are impossible to implement,

  • ·Establish a clear federal voice for innovation and work with the provinces to improve coordination.
  • Currently, there is a lack of government-wide clarity when it comes to innovation. Responsibility is spread across a number of cabinet portfolios. The Prime Minister should assign responsibility for innovation to a single minister, supported by a whole-of-government Innovation Advisory Committee, evolved from the current Science Technology and Innovation Council (STIC), composed of external stakeholders, who would then work with the provincial and territorial governments to initiate a collaborative dialogue to improve coordination and impact.

I base my comment about the last recommendation on my experience with the gnashing of teeth I’ve observed when someone is going to lose an area of responsibility that is associated with power and other good things. Who do you imagine will want to give up innovation and what will they want in return?  Another question which springs to mind is this one: How are they going to develop a single voice for discussion of innovation across several federal bureaucracies with thousands of people and miles between them when even a small office of 20 people experiences difficulty doing this (again, this is based on my personal experience).

As for the suggested changes to the NRC? Well, those should provide some fodder for lively discussion. I’m sure the other items will provide conversational fodder too but it seems to me that the two I’ve highlighted in these comments are likely to be the among the most contentious.

For anyone who doesn’t recall the NRC recommendation offhand (from my Oct. 21, 2011 posting),

However, there are some major recommendations being made, notably this one about the National Research Council (from the Review of Federal Support to R&D home page),

  • Transform the institutes of the National Research Council [NRC] into a series of large-scale, collaborative centres involving business, universities and the provinces.
  • The NRC was created during World War I to kick-start Canada’s research capacity. It has a long and storied history of discoveries and innovation, including numerous commercial spin-offs. While the NRC continues to do good work, research and commercialization activity in Canada has grown immensely.  In this new context, the NRC can play a unique role, linking its large-scale, long-term research activity with the academic and business communities. The panel recommends evolving NRC institutes, consistent with the current strategic direction, into not-for-profit centres run with stakeholders, and incorporating its public policy research into other departments.

My current interpretation (based on the information in Nassif’s posting) of  the status of the NRC recommendation is that the government has conflated a couple of recommendations and instead of creating an Industrial Research and Innovation Council (IRIC; continued after), here’s the IRIC recommendation (from my Oct. 21,2011 posting),

The panel also suggests cutting down on the number of funding agencies and creating a portal or ‘concierge’ to help businesses find the right funding solution for their needs,

  • The creation of an Industrial Research and Innovation Council (IRIC) to deliver the federal government’s business innovation programs.
    • There are currently more than 60 programs across 17 different government departments. The creation of an arm’s-length funding and delivery agency – the Industrial Research and Innovation Council – would begin to streamline the process as the development of a common application portal and service to help businesses find the right programs for their needs (a “concierge”).

Back to where I was going, instead of creating an IRIC the federal government is shifting at least part of that proposed mandate over to the NRC. As for establishing “a clear federal voice,” I suspect that too is becoming part of the NRC’s mandate.

I find it interesting to note that the NRC’s president (John McDougall) is from Alberta. Any guesses as to which province is home to the riding Canada’s Prime Minister represents as a member of Parliament?

This looks like  some very astute political manuevering on McDougall’s part. Oddly, he doesn’t seem to be as good at understanding employee relations. Mia Rabson’s July 5, 2012 article for the Winnipeg Free Press highlights a remarkably block-headed attempt at recognition,

Have a doughnut on your way out the door. That is the message several dozen employees of the National Research Council took away June 29 as the president of the agency issued gift cards for a coffee and a doughnut to all employees, including 65 who are being laid off this month.

“Thank you for the contribution you have made in helping NRC successfully work through our massive transformation,” read the letter from NRC president John McDougall. “To celebrate our success in gaining government support, here is a token of appreciation: have a coffee and a doughnut on me.”

A $3 gift card to Tim Hortons accompanied each letter to more than 4,000 NRC employees. It cost taxpayers more than $12,000.

It appears the ineptitude extends from the president’s office to the media relations office,

Charles Drouin, chief media relations officer for the NRC, said the letters and gift cards were a way to say thank you to employees for their work during a difficult year at the agency. He said not all employees were scheduled to leave on June 29.

“It just coincided. We wanted to try and include everyone. The president thought the note would be a good way to thank our employees.”

He added not all employees reacted badly to the gift. The president received one official complaint, said Drouin. [emphasis mine]

In the public relations business it’s generally believed that  one letter/official complaint = 100. Just because most people won’t write a letter doesn’t mean they didn’t ‘react badly’. One would expect the chief media relations officer to know that, especially since the rest of us do.

I recommend reading Nassif’s post for more about this science shuffle’s  impact on the Tri-Council funding agencies and Mia Rabson’s article for more about the NRC’s cost-cutting efforts and future plans.

Social Sciences and Humanities Research Council {SSHRC}; Natural Sciences and Engineering Research Council {NSERC}; and Canadian Institutes of Health Research {CIHR}

Encouraging STEM (science, technology, engineering, and mathematics) careers while opportunities decline in Canada

The problem never seems to get solved. One end of the organization or institution makes a decision without considering the impact on those affected. Take for example the current drive to encourage more students to undertake STEM (science, technology, engineering, and/or mathematics) careers when there are few job opportunities (except for engineers).

The University of British Columbia has just announced a science outreach toolkit, from the Aug. 30, 2012 news release on EurekAlert,

Outreach programs that offer a taste of real-world science and pair secondary students with enthusiastic young researchers are key to promoting careers in science and technology, according to University of British Columbia researchers.

In a paper published this week in PLoS Computational Biology, UBC researchers document their work on the Genomics Field Trip Program hosted at the Michael Smith Laboratories (MSL). Joanne Fox, Jennifer McQueen and Jody Wright outline the benefits of research-based field trips, offering a blueprint for designing science outreach programs.

The Genomics Field Trip program encourages exploration of the sciences through a full day genomics experience which takes place at the MSL laboratories. Program instructors are typically UBC graduate students who benefit from the experience by developing their ability to communicate scientific ideas to the general public. They also develop skills in lesson design and delivery, allowing them to enhance their instructional skills, something that does not always occur in teaching assistantship positions.

Fox hopes the success of the Genomics Field Trip Program will inspire other institutions to develop similar programs. The recommendations included in her paper can be used as a blueprint for science programs and an online genomics toolkit provides valuable information for lesson plans.

“This type of program helps graduate students remember why science is so exciting, and in turn inspires the next generation of scientists,” Fox explains.

The toolkit available here is designed for grade nine classes and it looks to be quite engaging. However, it is a disconcerting effort in light of the current situation for many STEM graduates. Nassif Ghoussoub (a mathematician at the University of British Columbia) in an Aug. 20, 2012 posting on his Piece of Mind blog writes about the diminishing opportunities for postgraduate science work (Note: I have removed links),

Canada’s “Natural Science and Engineering Research Council” has grown uncomfortable with the rapidly dwindling success rate in its postdoctoral fellowship programme, the latest having clocked in at 7.8%. So, it has decided to artificially inflate these rates by limiting the number of times young Canadian scholars can apply for such awards to … once. Never mind that the pathetic $40,000 salary (see comments below for corrections) for a highly trained Canadian post-doc hasn’t changed in more than 25 years, young Canadian scientists will now be fighting tooth and nail for the privilege of living on the fringe of the poverty line while trying to jumpstart their research careers. Welcome to Canada’s new lottery system for deciding the future of the nation’s capacity for advanced study and research.

I guess something needed to be done to cover up the fact that NSERC is now awarding 66% fewer fellowships than it did 5 years ago. Last year, we wondered whether the following numbers reflected a policy shift at NSERC or just collateral damage.

  • (2008) 250 awards/ 1169 applicants
  • (2009) 254 awards/ 1220 applicants
  • (2010) 286 awards/ 1341 applicants
  • (2011) 133 awards/ 1431 applicants
  • (2012) 98 awards/ 1254 applicants

These 98 fellowships are to be shared by 20 scientific disciplines and to be split among the 59 PhD-granting Canadian universities.

This theme is also addressed in an Aug. 24, 2012 posting by Jonathan Thon on the Black Hole blog which is now being hosted by the Association of Universities and Colleges of Canada (AUCC), Note: I have removed a link,

It should come as no surprise that by increasing the supply of graduate students (and in turn post-doctoral fellows), we have arranged to produce more knowledge workers than we can employ, creating a labor-excess economy that keeps labor costs down and productivity high (How much is a scientist worth?) – but is this what we want? While advantageous in the short-term, there is little room for additional gains and a more efficient and productive system will need to be created if we wish to actualize research-based economic growth.

As for opportunities in the industrial sector, Canada has a longstanding reputation for exceptionally low rates of industrial R&D (research and development).

I’ve yet to see the programme for the 2012 Canadian Science Policy Conference taking place in Calagary (Alberta) from Nov. 5 – 7, 2012 but I’m hoping this will be on the agenda.

Informing research choices—the latest report from the Canadian Council of Academies (part 2: more details and my comments)

In general, I found this to be a thoughtful report, Canadian Council of Academies (CCA) Informing Research Choices: Indicators and Judgment, and have at the most a few criticisms. Starting with this bit about the Discovery Grants Programme (DGP), funded by Canada’s Natural Sciences and Engineering Research Council, and ‘expert judgment’,

The focus of NSERC on science assessment practices is directed partly by a long-standing concern that the allocation of DGP funding across fields is overly dependent on historical funding patterns, and that future allocations should incorporate other factors such as research quality, changes in the scientific landscape, and the emergence of research fields.

This review of international science assessment reveals a diverse landscape of assessment methods and practices. Two of the lessons emerging from the review are especially relevant to the Panel’s charge. First, the national research context is significant in defining a given science assessment, and no single set of indicators for assessment will be ideal in all circumstances, though evidence gathered from examining experiences of other countries may help inform the development of a science assessment strategy for Canada. Second, there is a global trend towards national science assessment models that incorporate both quantitative indicators and expert judgment. [emphases mine] (p. 31 print version, p. 51 PDF)

Ok, how do we define ‘expert’? Especially in light of the fact that  the report discusses ‘peer’ and ‘expert’ review (p. 50 print version, p. 70 PDF). Here’s a definition (or non definition) of ‘expert review’ from the report,

Following the definition provided by the OECD (2008), the Panel uses the term “expert review” to refer to deliberative evaluation processes based on expert judgment used in the context of evaluations of broader research fields or units. (p. 51 print version, p. 71 PDF)

Tautology, anyone?

The report also describes more quantitative measures such as bibliometrics (how many times and where were your scientists published), amongst others.  From the report,

The simplest bibliometric indicators are those based on publication counts. In principle, such counts can be generated for many different types of publications (e.g., books, book chapters). In practice, due to the limitations of coverage in indexed bibliographic databases, existing indicators are most often based on counts of peer-reviewed articles in scientific journals. Basic publication indicators typically take the form of absolute counts of the number of journal articles for a particular unit (e.g., individual, research group, institution, or field) by year or for a period of years. Such indicators are typically framed as a measure of research output.

Additional indicators based on publication counts can be derived from shares of publication counts (e.g., a research group’s share of total publications in an institution, a field’s share of total publications in a country). These share-based indicators generally are used to capture information about the relative importance of research output originating from a particular unit or field. More advanced indicators based on weighted publication counts can also be created when publication output is typically weighted by some measure of the quality of the research outlet. For example, journal impact factors (a measure of the relative citedness of a journal) may be used to give a higher weight to publications in more prestigious or competitive journals. [emphasis mine] Unlike straight publication counts, these metrics also depend on some other measure of quality, either based on citation or on some other assessment of the relative quality of different journals. (pp. 55-56 print version, pp. 75-76 PDF)

There are more bibliometrics discussed along with some of their shortcomings but, interestingly, no mention of open access publishing and its possible impacts on  ‘prestigious journals’ and on the bibliometrics themselves.

Getting back to my question in part 1 ” I was looking for evidence that the panel would have specific recommendations for avoiding an over-reliance on metrics (which I see taking place and accelerating in many areas not just for science funding).”Interestingly the report makes references to qualitative approaches without ever defining it although the the term ‘quantitative indicators’ is described in the glossary,

Quantitative indicators: any indicators constructed from quantitative data (e.g., counts of publications, citations, students, grants, research funding).

The qualitative approaches mentioned  in the report include ‘expert’ review, peer review, and case studies. Since I don’t understand what they mean by ‘expert’, I’m not sure I understand ‘peer’. As for the case studies, here’s how this approach is described (Note: I have removed a footnote),

The case study is perhaps the most common example of other types of qualitative methods used in research assessment. Case studies are often used to explore the wider socio-economic impacts of research. For example, the U.K. Research Excellence Framework (REF) …

Project Retrosight is a Canadian example of the case study approach used in research assessment. Undertaken as part of a multinational study to evaluate the impact of basic biomedical and clinical cardiovascular and stroke research projects, Project Retrosight measured payback of projects using a sampling framework. [emphasis mine]  Despite several limitations to the analysis (e.g., the number of case studies limiting the sample pool from which to draw observations, potential inconsistencies in reporting and comparability), the case study approach provided an effective platform for evaluating both the how and the why of evidence to demonstrate impact. The key findings of the study revealed a broad and diverse range of impacts, with the majority of broader impacts, socio-economic and other, coming from a minority of projects (Wooding et al., 2011).  (p. 53 print version, p. 73 PDF)

My understanding of the word ‘payback’ is that it’s related to the term ‘return on investment’ and that measure requires  quantitative data. If so, how was the Project Retrosight qualitative? The description in the report doesn’t offer that information.

The conclusion from the final paragraph of the report doesn’t offer any answers,

… quantitative indicators are far from obviating the need for human expertise and judgment in the research funding allocation decision process. Indicators should be used to inform rather than replace expert judgment. Given the inherent uncertainty and complexity of science funding decisions, these choices are best left in the hands of well-informed experts with a deep and nuanced understanding of the research funding contexts in question, and the scientific issues, problems, questions, and opportunities at stake. (p. 104 print version, p. 124 PDF)

I very much appreciate the approach the ‘expert’ panel took and the thoughtful nature of the report  but I feel it falls short. The panel offers an exhortation but no recommendations for ensuring that science funding decisions don’t become entirely reliant on metrics; they never do describe what they mean by ‘expert’ or explain the difference between qualitative and quantitative;’ and there’s no mention of ‘trends/disruptive developments’ such as open access publishing, which could have a powerful impact on the materials ‘experts’ use when making their research allocation decisions.

The full report, executive summary, abridged report, appendices,  news release and media backgrounder are available here.

ETA July 9, 2012 12:40 PST: There’s an interview (audio or text depending on your preferences) with Rita Colwell the report’s expert panel at the Canadian Science Policy Centre website here.