Tag Archives: nZVI

Nanoremediation to be combined with bioremediation for soil decontamination

There’s a very interesting proposal to combine nanoremediation with bioremediatiion (also known as, phytoremediation) techniques to decontaminate soil. From a June 10, 2016 news item on Nanowerk,

The Basque Institute of Agricultural Research and Development Neiker-Tecnalia is currently exploring a strategy to remedy soils contaminated by organic compounds containing chlorine (organochlorine compounds). The innovative process consists of combining the application of zero-iron nanoparticles with bioremediation techniques. The companies Ekotek and Dinam, the UPV/EHU-University of the Basque Country and Gaiker-IK4 are also participating in this project known as NANOBIOR.

A June 10, 2016 Elhuyar Fundazioa news release, which originated the news item, provides more detail about the proposed integration of the two techniques,

Soils affected by organochlorine compounds are very difficult to decontaminate. Among these organochlorine compounds feature some insecticides mainly used to control insect pests, such as DDT, aldrin, dieldrin, endosulfan, hexachlorocyclohexane, toxaphene, chlordecone, mirex, etc. It is a well-known fact that the use of many of these insecticides is currently banned owing to their environmental impact and the risk they pose for human health.

To degrade organochlorine compounds (organic compounds whose molecules contain chlorine atoms) present in the soil, the organisations participating in the project are proposing a strategy based on the application, initially, of zero-iron nanoparticles [also known as nano zero valent iron] that help to eliminate the chlorine atoms in these compounds. Once these atoms have been eliminated, the bioremediation is carried out (a process in which microorganisms, fungi, plants or enzymes derived from them are used to restore an environment altered by contaminants to its natural state).

The bioremediation process being developed by Neiker-Tecnalia comprises two main strategies: biostimulation and bioaugmentation. The first consists of stimulating the bacteria already present in the soil by adding nutrients, humidity, oxygen, etc. Bioaugmentation is based on applying bacteria with the desired degrading capability to the soil. As part of this process, Neiker-Tecnalia collects samples of soils contaminated by organochlorine compounds and in the laboratory isolates the species of bacteria that display a greater capacity for degrading these contaminants. Once the most interesting strains have been isolated, the quantity of these bacteria are then augmented in the laboratory and the soil needing to be decontaminated is then inoculated with them.

Bank of effective strains to combat organochlorines

The first step for Neiker-Tecnalia is to identify bacterial species capable of degrading organochlorine compounds in order to have available a bank of species of interest for use in bioremediation. This bank will be gathering strains collected in the Basque Country and will allow bacteria that can be used as a decontaminating element of soils to be made available.

The combining of the application of zero-iron nanoparticles and bioremediation constitutes a significant step forward in the matter of soil decontamination; it offers the added advantage of potentially being able to apply them in situ. So this methodology, which is currently in the exploratory phase, could replace other processes such as the excavation of contaminated soils so that they can be contained and/or treated. What is more, the combination of the two techniques makes it possible to reduce the decontamination times, which would take much longer if bioremediation is used on its own.

There is a NANOBIOR webpage here.

For the curious I have two 2012 posts that provide some very nice explanations by Joe Martin, then a Master’s student in the University of Michigan’s Public Health program,: Phyto and nano soil remediation (part 1: phyto/plant) and Phyto and nano soil remediation (part 2: nano).

Natural nanoparticles and perfluorinated compounds in soil

The claim in a Sept. 9, 2015 news item on Nanowerk is that ‘natural’ nanoparticles are being used to remove perfluorinated compounds (PFC) from soil,

Perfluorinated compounds (PFC) are a new type of pollutants found in contaminated soils from industrial sites, airports and other sites worldwide.

In Norway, The Environment Agency has published a plan to eliminate PFOS [perfluorooctanesulfonic acid or perfluorooctane sulfonate] from the environment by 2020. In other countries such as China and the United States, the levels are far higher, and several studies show accumulation of PFOS in fish and animals, however no concrete measures have been taken.

The Norwegian company, Fjordforsk AS, which specializes in nanosciences and environmental methods, has developed a method to remove PFOS from soil by binding them to natural minerals. This method can be used to extract PFOS from contaminated soil and prevent leakage of PFOS to the groundwater.

Electron microscopy images show that the minerals have the ability to bind PFOS on the surface of the natural nanoparticles. [emphasis mine] The proprietary method does not contaminate the treated grounds with chemicals or other parts from remediation process and uses only natural components.

Electron microscopy images and more detail can be found in the Nanowerk news item.

I can’t find the press release, which originated the news item but there is a little additional information about Fjoorkforsk’s remediation efforts on the company’s “Purification of perfluorinated compounds from soil samples” project page,

Project duration: 2014 –

Project leader: Manzetti S.

Collaborators: Prof Lutz Ahrens. Swedish Agricultural University. Prof David van der Spoel, Uppsala University.

Project description:

Perfluorinated compounds (PFCs) are emerging pollutants used in flame retardants on a large scale on airports and other sites of heavy industrial activity. Perfluroinated compounds are toxic and represent an ultra-persistent class of chemicals which can accumulate in animals and humans and have been found to remain in the body for over 5 years after uptake. Perfluorinated compounds can also affect the nerve-system and have recently been associated with high- priority pollutants to be discontinued and to be removed from the environment. Using non-toxic methods, this project develops an approach to sediment perfluorinated compounds from contaminated soil samples using nanoparticles, in order to remove the ecotoxic and ground-water contaminating potential of PFCs from afflicted sites and environments.

The only mineral that I know is used for soil remediation is nano zero-valent iron (nZVI). A very fast search for more information yielded a 2010 EMPA [Swiss Federal Laboratories for Materials Science and Technology] report titled “Nano zero valent iron – THE solution for water and soil remediation? ” (32 pp. pdf) published by ObservatoryNANO.

As for the claim that the company is using ‘natural’ nanoparticles for their remediation efforts, it’s not clear what they mean by that. I suspect they’re using the term ‘natural’ to mean that engineered nanoparticles are being derived from a naturally occurring material, e.g. iron.

Nano-pesticides or nanopesticides or nano pesticides

It’s the spelling that’s driving me nuts. In the last year it seems to have gotten quite higgledy piggledy and so we have this salad of one word, two words, and hyphenated words for anything  prepended by nano.  I hope it settles soon but in the meantime, here’s an Aug. 12, 2013 news item on Azonano concerning nano-pesticides,

Research is urgently needed to evaluate the risks and benefits of nano-pesticides to human and environmental health. Melanie Kah and Thilo Hofmann from the Department of Environmental Geosciences of the University of Vienna recently performed an extensive analysis of this emerging field of research.

The results were published June 6th in the internationally recognised journal “Critical Reviews in Environmental Science and Technology”. The study presents the current scientific state of art on nano-pesticides and identifies direction priorities for future research.

The University of Vienna June 20, 2012  press release, which originated the news item (I’ll explain the one year gap later in this posting), describes some of the concerns raised in the study,

Nano-pesticides encompass a great variety of products, some of which are already on the market. The application of nano-pesticides would be the only intentional diffuse input of large quantities of engineered nano-particles into the environment. Innovation always results in both drawbacks and benefits for human and environmental health. Nano-pesticides may reduce environmental contamination through the reduction in pesticide application rates and reduced losses. However, nano-pesticides may also create new kinds of contamination of soils and waterways due to enhanced transport, longer persistence and higher toxicity.

The current level of knowledge does not allow a fair assessment of the advantages and disadvantages that will result from the use of nano-pesticides. As a prerequisite for such assessment, a better understanding of the fate and effect of nano-pesticides after their application is required. The suitability of current regulations should also be analyzed so that refinements can be implemented if needed. Research on nano-pesticides is therefore a priority for preserving the quality of both the food chain and the environment.

Here’s a link to and a citation for the paper,

Nano-pesticides: state of knowledge, environmental fate and exposure modeling: Melanie Kah, Sabine Beulke, Karen Tiede and Thilo Hofmann. Critical Reviews of Environmental Science and Technology, Volume 43, Issue 16, 2013 , pages 1823-1867 DOI: 10.1080/10643389.2012.671750

http://www.tandfonline.com/doi/abs/10.1080/10643389.2012.671750

There was a 2012 version of this paper posted, which was when the press release was originally written and posted at the University of Vienna website, but June 2013 is when the paper was officially published. It is behind a paywall but thankfully one of the authors, Melanie Kah, gave Katy Edgington an interview about the study for Edgington’s June 26, 2012 article on scienceomega.com,

“Although some research is ongoing, one application that is fairly well-developed involves the injection of nanoscale zero-valent iron particles into groundwater to degrade certain contaminants. This is an example of something that is still under development but which is already being applied, as the technique is currently in use on a large scale in the United States.” [says Kah]

A project is underway in the department which aims to help make the technique more widely applicable, and another – at the complete opposite end of the scale in terms of its development – is looking at a potential application for carbon nanotubes.

“People have suggested that carbon nanotubes could be used to replace activated carbon, the material used worldwide to decontaminate water,” clarified Dr Kah. “It is suggested that carbon nanotubes have different properties which will complement activated carbon, but this is only at the laboratory scale so far.”

It is important to steer clear of making broad generalisations about the risks and benefits of nanopesticides as compared to conventional pesticides, Dr Kah emphasised. They cannot be considered as a single entity; rather each case must be taken on its own merits.

In their review of the literature on the topic, the authors also discuss how the adequacy of existing legislation and regulation may be affected in light of the development of nanopesticides in various forms.

“I think it is far too early to propose any amendments to the current regulation,” Dr Kah stated. “It appears from our analysis that a lot of nanopesticides would be well covered by the European regulation on plant protection products because this regulation is very thorough; indeed it is probably the strictest in the world.”

I imagine that since the initial publication of the paper and the interview, there may have been a few changes to the paper and refinements to Kah’s ideas but the Edgington article does provides some interesting insight, especially if you don’t have access to the paper.

Canadian soil remediation expert in Australia

Back in my Nov. 4, 2011 posting where I reviewed the third episode in a limited series on nanotechnology, broadcast as a Nature of Things television science programme on  Canadian Broadcasting Corporation stations, I noted Dr. Dennis O’Carroll’s soil remediation work in southern Ontario.

There’s more news about professor O’Carroll, currently visiting Australia, in a June 4, 2012 news item on Nanowerk,

“Toxic contamination of soils is an historical problem,” says Dr Denis O’Carroll, a visiting academic at the University of New South Wales (UNSW) Water Research Lab. “Until the 1970s, people wrongly believed that if we put these toxins into the ground they would simply disappear – that the subsurface would act as a natural filtration unit.”

“The possibility of this waste polluting the environment, and potentially contaminating groundwater sources and remaining there for decades was ignored,” he says.

Far from magically disappearing, chemical contaminants from spilled gas and solvents, when not directly polluting surface waters, seep down into the earth, travelling through microscopic soil cracks, where they accumulate and can eventually reach the groundwater table.

Traditional clean-up methods have focussed on pumping out the contaminated water or flushing out toxins with a specially designed cleansing solution, but these are limited by difficulties in accurately pinpointing and accessing locations where contamination has occurred, says O’Carroll.

His approach is to tackle toxic contaminants with nanotechnology. O’Carroll, who is visiting UNSW from the University of Western Ontario in Canada, has been trialling an innovative new groundwater clean-up technology using metal nanoparticles 500 to 5,000 times narrower than a human hair.

There are more details about O’Carroll’s specific innovations in this field in the June 4, 2012 news item. As well, I published, in its entirety (and with permission), an excellent description of nanotechnology-enabled soil remediation by Joe Martin, a graduate student at the University of Michigan, in my March 30, 2012 posting. Here’s a tidbit from Joe’s article,

… The use of iron oxides to adsorb and immobilize metals and arsenic is not a new concept, but nano-particles offer new advantages. When I wrote “adsorb”, I was not making a spelling error; adsorption is a process by which particles adhere to the surface of another material, but do not penetrate into the interior. This makes surface area, not volume, the important characteristic. Nano-particles provide the maximum surface area-to-weight ratio, maximizing the adsorptive surfaces onto which these elements can attach. These adsorptive processes a very effective at binding and immobilizing metals and arsenic, but they do not allow for the removal of the toxic components. This may be less-than-ideal, but in places like Bangladesh, where arsenic contamination of groundwater poses major health risks, it may be just short of a miracle.

There’s an extensive list with links to further reading and videos on the topic of nanotechnology and site remediation at the end of the March 30, 2012 posting.

Phyto and nano soil remediation (part 2: nano)

For Part 2, I’ve included part of my original introduction (sans the story about the neighbour’s soil and a picture of Joe Martin):

I’m pleased to repost a couple of pieces on soil remediation written by Joe Martin for the Mind the Science Gap (MTSG) blog.

I wrote about the MTSG blog in my Jan. 12, 2012 posting, which focussed on this University of Michigan project designed by Dr. Andrew Maynard for Master’s students in the university’s Public Health program. Very briefly here’s a description of Andrews and the program from the About page,

Mind the Science Gap is a science blog with a difference.  For ten weeks between January and April 2012, Masters of Public Health students from the University of Michigan will each be posting weekly articles as they learn how to translate complex science into something a broad audience can understand and appreciate.

Each week, ten students will take a recent scientific publication or emerging area of scientific interest, and write a post on it that is aimed at a non expert and non technical audience.  As the ten weeks progress, they will be encouraged to develop their own area of focus and their own style.

About the Instructor.  Andrew Maynard is Director of the University of Michigan Risk Science Center, and a Professor of Environmental Health Sciences in the School of Public Health.  He writes a regular blog on emerging technologies and societal implications at 2020science.org.

Here’s a bit more about Joe Martin,

I am a second year MPH student in Environmental Quality and Health, and after graduation from this program, I will pursue a Ph.D. in soil science.  My interests lie in soil science and chemistry, human health and how they interact, especially in regards to agricultural practice and productivity.

Here’s part 2: nano soil remediation or Joe’s Feb. 10, 2012 posting:

Last week I wrote about phytoremediation, and its potential to help us combat and undo soil contamination. But, like any good advanced society, we’re not pinning all our hopes on a single technique. A commenter, Maryse, alerted me to the existence of another promising set of techniques and technologies: nano-remediation.

For those who don’t know, nano-technology is a science which concerns itself with manipulating matter on a very small scale.  Nano-particles are commonly described as being between 100 nanometers (nm) to 1nm, though this is hardly a hard and fast rule. (For perspective, a nanometer is one one-millionth of a millimeter. If you aren’t inclined to the metric system, there are roughly four hundred million nanometers per inch.) On such micro-scales, the normal properties of compounds can be altered without changing the actual chemical composition. This allows for many new materials and products, (such as Ross Nanotechnology’s Neverwet Spray,) and for new applications for common materials, (using graphene to make the well-known carbon nanotubes).

When we apply the use of nano-scale particles to the remediation of contaminated soil, we are using nano-remediation. Unlike phytoremediation, this actually encompasses several different strategies which can be broadly classes as adsorptive or reactive. (Mueller and Nowack, 2010) The use of iron oxides to adsorb and immobilize metals and arsenic is not a new concept, but nano-particles offer new advantages. When I wrote “adsorb”, I was not making a spelling error; adsorption is a process by which particles adhere to the surface of another material, but do not penetrate into the interior. This makes surface area, not volume, the important characteristic. Nano-particles provide the maximum surface area-to-weight ratio, maximizing the adsorptive surfaces onto which these elements can attach. These adsorptive processes a very effective at binding and immobilizing metals and arsenic, but they do not allow for the removal of the toxic components. This may be less-than-ideal, but in places like Bangladesh, where arsenic contamination of groundwater poses major health risks, it may be just short of a miracle.

Reactive nano-remediation strategies focus on organic pollutants, and seem to work best for chlorinated solvents such as the infamous PCBs. Nano-scale zero valent iron, or nZVI, is the most widely explored and tested element used in these methods. The nZVI, or sometimes nZVI bound to various organic molecules like polysaccharides or protein chains, force redox reactions which rapidly disassemble the offending molecules.

There are other advantages to these nano-molecular techniques aside from the efficiency with which they bind or destroy the offending pollutants. In reactive remediation, the hyper reactivity nZVI causes it to react with other common and natural elements, such as dissolved oxygen in ground water, or nitrate and sulfate molecules, and in the process this inactivates the nZVI. While this forces multiple applications of the nano-particle (delivered in slurry form, through an injection well), it also prevents unused iron from drifting out of the treatment zone and becoming a pollutant itself. For adsorptive and reactive remediation techniques, that active nano-particles are injected into a well dug into or near the contaminated soil and/or groundwater. When injected as a slurry, the nano-particles can drift along with the flow of ground water, effectively creating an “anti-pollution” plume. In other formulations, the active mixture is made to flow less easily, effectively creating a barrier to filter spreading pollution or through which polluted ground water can be pulled.

There are health risks and concerns associated with the production and use of nano-particles, so some caution and validation is needed before its used everywhere. However, there has already been some successes with nano-remediation. The example of PCB remediation with nZVI is taken from great success the US Air Force has had. (PCB contamination is a legacy of their use as fire-suppressants). Beyond this, while nano-remediation has not been widely applied on surface or near-surface soils, it does enable remediation in deeper soils normally only accessed by “pump-and-treat” methods, (which are expensive and can have decades-long time frames). When coupled with other techniques, (like phytoremediation), it does fit nicely into an expanding tool bag, one with which we as a society and species can use to reverse our impact on the planet, (and our own health).

Further Reading: There was no way for me to represent the full sum of nano-remediation, nevertheless nanotechnology, in this post. It has such potential, and is developing at such a rate that the attention it deserves is better measured in blogs (or perhaps decablogs). So if you are interested in nano-technology or nano-remediation, click through some of the links below.

List of popular blogs: http://www.blogs.com/topten/10-popular-nanotechnology-blogs/, including some very important ones on the health risks of nano-technology.

A cool site listing sites currently using nano-remediation: http://www.nanotechproject.org/inventories/remediation_map/, and another post from the same site dealing with nano-remediation [PEN webcast on site remediation]: http://www.nanotechproject.org/events/archive/remediation/

An excellent peer-reviewed article: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799454/

Citation: Mueller C and Nowack B. Nanoparticles for Remediation: Solving Big Problems with Little Particles. 2010. Elements, Vol. 6. pp 395-400.

You can read about the other MTSG contributors and find links to their work here.

I have mentioned remediation before on the blog,

soil remediation and Professor Dennis Carroll at the University of Western Ontario in my Nov. 4, 2011 posting

remediation and a patent for Green-nano zero valent iron (G-nZVI) in my June 17, 2011 posting

groundwater remediation and nano zero valent iron (nZVI) at the University of California at Santa Barbara in my March 30, 2011 posting

site remediation and drywall in my Aug. 2, 2010 posting

remediation technologies and oil spills my May 6, 2010 posting

my March 4, 2010 posting  (scroll down about 1/2 way) which is a commentary on the Project for Emerging Nanotechnologies (PEN) webcast about site remediation in Joe’s list of resources

Thank you Joe for giving me permission to repost your pieces. For more of Joe’s pieces,  Read his posts here –>

Green-nano zero valent iron (G-nZVI)

I’m quite interested in patents and their possible impact on nanotechnology innovation so this item caught my attention. VeruTEK Technologies, Inc. just received notice of a patent allowance for the Green-nano zero valent iron (G-nZVI) product which was developed in collaboration with the US Environmental Protection Agency (EPA).

From the June 15, 2011 news item on Nanowerk,

The product is ideal for a broad range of remediation applications including treating produced water (wastewater) generated during oil and gas and other chemical production processes.

G-nZVI works more efficiently than conventional iron catalysts, significantly increasing the rate of oxidant activity and can be used under a wide range of conditions.  Unlike other catalysts which are typically sensitive to changes in pH, G-nZVI consistently delivers high performance over a wide pH range. G-nZVI is highly effective as an activator for VeruTEK’s patent-pending Surfactant-enhanced In Situ Chemical Oxidation (S-ISCO®) treatment of hydrocarbon and chlorinated solvent contamination. The product can also be used with conventional in situ chemical oxidation (ISCO) to improve the effectiveness of traditional remediation chemistry.

The EPA works with VeruTEK on a variety of projects, concentrating on new field-proven approaches to address difficult environmental issues. According to John Leazer, Director of the Sustainable Technology Division at EPA’s National Risk Management Research Laboratory in Cincinnati, “Patent awards are superb examples of what can be accomplished through collaborative research and development.” [emphases mine]

I have previously written about nano zero valent iron (nZVI) and site remediation in my March 30, 2011 posting which concerned a benchmarking study for nZVI and briefly in my March 4, 2010 posting (towards the end) where I summarized a Project on Emerging Nanotechnologies webcast (approximately 54 min.) on the topic.

As I understand it, the process (green or environmentally friendly) by which the nano zero valent iron is derived is the reason the VeruTek product has been awarded a patent and not because its remediation capabilities are superior to other nano zero valent iron products. From the VeruTEK’s G-nZVI product page,

GnZVI is a green synthesized nanoscale zero valent iron catalyst invented by VeruTEK and the US EPA. During the green synthesis process iron salts are exposed to naturally reductive plant material, the resultant nanoscale particles are coated in iron oxide and plant polyphenols which confer advantageous properties.  Research conducted by VeruTEK, the EPA and the University of Connecticut, published in peer reviewed journals, demonstrate the efficacy of the product and its unique chemical design.

So, in addition to being used to remove contamination, this product itself is manufactured in a relatively environmentally friendly fashion. Nice!

Of course, there’s a fair amount of discussion about how patenting impedes innovation. From Mike Masnick’s Feb. 17, 2011 article on Techdirt,

As with any “hot” technology area, it doesn’t take long for a massive, innovation hindering patent thicket to spring up. It effectively makes it impossible to bring anything to market unless you’ve got a huge patent portfolio yourself and deep pockets. Yet another example of patents harming the smaller players in the market. A new report is suggesting that the latest “hot” area to get patent crazy is nanotechnology.

However, the really worrying thing about the report is that it notes that the single largest “patent patron” in nanotechnology… is the federal government. [emphasis mine]

The report, The Big Downturn; Nanogeopolitics, that Masnick is referring to is from The ETC Group who released it on Dec. 17, 2010 so the material in it is relatively recent. They provide the only overview of the nanotechnology patent scene (Chapter 12, p. 43 PDF version and p. 36 print version) that I’ve come across so far. I find the reference to the federal government (US in this case) as being the largest patent patron interesting in light of the EPA’s collaborative relationship with VeruTEK.

One comment before you rush off to read The ETC Group’s report, the tone is very much ‘we are on the side of the angels; capitalists and governments and ‘anyone who disagrees with us in any way’ are not.”

Nano zero valent iron and groundwater remediation

My interest in nano zero valent iron (nZVI) and site remediation was piqued by a webcast from the Project on Emerging Nanotechnologies (PEN). (I commented on the ‘cast in my March 4, 2010 posting [http://www.frogheart.ca/?p=792 {scroll down}]). Yesterday(March 29, 2011), I came across a news item on Business Wire (http://www.businesswire.com/news/home/20110329005424/en/AECOM-University-California-Santa-Barbara-UCSB-Continue) about a collaboration between AECOM and the University of California at Santa Barbara for benchmark testing of nZVI. From the news item,

The new AECOM and UCSB bench-scale studies will test use of several zero valent iron (ZVI) products, including nano zero valent iron (nZVI), on the remediation of chlorinated volatile organic compounds (CVOCs) a common contaminant at groundwater remediation sites. nZVI products were selected for the study because they have a much greater surface area than conventional iron powders, which make them more effective in certain site remediation scenarios.

The bench-scale studies will use samples of these new products on groundwater and geologic materials collected from a former manufacturing site to evaluate the morphology or structure of the products as well as their mobility, persistence, and toxicity to aquatic organisms.

According to Dr. Dora Chiang, P.E. Project Design Engineer with AECOM’s environmental practice in Atlanta, “We have had an in situ bioremediation system in place for several years and will be using an nZVI or other ZVI products to supplement biodegradation of the CVOCs. Enhanced non-biological degradation, coupled with ongoing biodegradation of CVOCs, will likely result in a reduction in treatment time by remediating CVOCs to below their respective federal drinking water maximum contaminant levels (MCLs). This new treatment technology may save significant life-cycle cleanup costs while ensuring protection of human health and the environment.”

Dr. Arturo A. Keller, Co-Director of UC Center for Environmental Implications of Nanotechnology, will direct the research at UCSB, in coordination with Prof. Hunter Lenihan. Prof. Keller states that “there is great potential in using nZVI and related technologies to solve a wide range of contamination issues. However, we need to determine the potential risks to achieve safe implementation of this important technology.”

Nano zero valent iron is currently being used in site remediation in the US and elsewhere in the world. PEN has an interactive nanoremediation map here (http://www.nanotechproject.org/inventories/remediation_map/). Just click on one of the ‘balloons’ to get a full description of where, which contaminant, and which type of nanomaterial (e.g. the site in Ontario, Canada lists nZVI) is being used for the cleanup operation.

You can find out more about AECOM here (http://www.aecom.com) from their About page,

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government.

With approximately 45,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and technical excellence in delivering solutions that create, enhance and sustain the world’s built, natural, and social environments.

A Fortune 500 company, AECOM serves clients in more than 100 countries and had revenue of $7.0 billion during the 12 months ended Dec. 31, 2010.

AECOM is ranked by Ethisphere as one of the world’s 110 most ethical companies for 2011.

That’s a very big company. As for their ethics, I like to see what they do when the going gets tough. After all, BP Oil had a very good reputation at one point and then they had the oil spill in the Gulf of Mexico and destroyed that reputation with their subsequent actions.

Science festivals in the US; nanoparticles and environmental health and safety report from ENRHES; new technique in molecular biology; PEN’s site remediation webcast commentary

I just came across a notice for the first ever USA Science and Engineering Festival to be held in Washington, DC, Oct. 10-24, 2010. From the Azonano news item,

Agilent Technologies Inc. (NYSE:A) today announced its support of the USA Science & Engineering Festival, the country’s first national science festival. The event will take place in Washington, D.C., in October 2010. The festival, expected to be a multi-cultural and multi-disciplinary celebration of science in the United States, will offer science and engineering organizations throughout the country the opportunity to present hands-on science activities to inspire the next generation of scientists and engineers. Festival organizers already have engaged more than 350 participants from the nation’s leading science and engineering organizations.

From what I’ve seen of their website, they are using the term multi-disciplinary in a fairly conservative sense, i. e., different science and engineering disciplines are being brought together. This contrasts with the approach used in the World Science Festival, being held in New York, June 2-6, 2010, where they mash together artists as well as scientists from many different disciplines.

Michael Berger at Nanowerk sputters a bit as he comments on the Engineered Nanoparticles Review of Health and Environmental Safety (ENRHES) report,

Before we take a look at the report’s findings, it’s quite remarkable that the authors feel compelled to start their introduction section with this sentence: “Nanotechnology is a sector of the material manufacturing industry that has already created a multibillion $US market, and is widely expected to grow to 1 trillion $US by 2015.” Firstly, a lot of people would argue with the narrow definition of nanotechnology as being a sector of the material manufacturing industry. Secondly, it appears that still no publicly funded report can afford to omit the meaningless and nonsensical reference to a ‘trillion dollar industry by 2015’. It really is astonishing how this claim gets regurgitated over and over again – even by serious scientists – without getting scrutinized (read “Debunking the trillion dollar nanotechnology market size hype”). It would be interesting to know if scientific authors, who otherwise operate in a fact-based world, just accept a number picked out of thin air by some consultants because it helps impress their funders; or if they deliberately use what they know is a fishy number because the politicians and bureaucrats who control the purses are easily fooled by sensational claims like these and keep the funding coming.

Sadly, picking a number out of thin air happens more often than we like to believe. A few years back I was reading a book about food and how it’s changing as we keep manipulating our food products to make them last longer on the shelf, etc. In one chapter of the book, the author chatted with an individual who helped to define high cholesterol. As he told the story, he and his colleagues (scientists all) got in a room and picked a number that was used to define a high cholesterol count. (I will try to find the title of that book, unfortunately the memory escapes me at the moment. ETA: Mar.4.10, the book is by Gina Mellet, Last chance to eat, 2004) I’ve heard variations of this business of picking a number that sounds good before.

As for the rest of the ENRHES report, Berger has this to say,

Thankfully, the rest of the report stands on solid ground.

I’m using those last two words, “solid ground” to eventually ease my way into a discussion about site remediation and the Project on Emerging Nanotechnologies’ (PEN) recent webcast. First, there’s a brief and related item on molecular biology.

Scientists at the University of Chicago are trying to develop a method for understanding how biological processes emerge from molecular interactions. From the news item (which includes an audio file of Andre Dinner, one of the scientists, discussing his work) on physorg.com,

Funded by a $1 million grant from the W.M. Keck Foundation, University of Chicago scientists are aiming to develop a reliable method for determining how biological processes emerge from molecular interactions. The method may permit them to “rewire” the regulatory circuitry of insulin-secreting pancreatic beta cells, which play a major role in type-2 diabetes.

A second goal: to control cell behavior and function more generally, which may ultimately culminate in other applications, including the bioremediation of environmental problems.

The four scientists [Aaron Dinner, Louis Philipson, Rustem Ismagilov, and Norbert Scherer] share an interest in the collective behavior of cells that emerges from a complex ensemble of atoms and molecules working in concert at different scales of time and space. “In a living system you have this hierarchy of coupled time and length scales,” Dinner said. “How is it that all of these different dynamics at one time and length scale get coupled to dynamics at another scale?”

In other words, how does life begin? I know that’s not the question they’re asking but this work has to lead in that direction and I imagine the synthetic biology people are watching with much interest.

In the more immediate future, this work in molecular biology may lead to better bioremediation, which was the topic at hand on the Project on Emerging Nanotechnologies’ recent (Feb.4.10) webcast.From their website (you can click to view the webcast [approx. 54 mins.] from here),

A new review article appearing in Environmental Health Perspectives (EHP) co-authored by Dr. Todd Kuiken, research associate for the Project on Emerging Nanotechnologies (PEN), Dr. Barbara Karn, Office of Research and Development, U.S. Environmental Protection Agency and Marti Otto, Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency focuses on the use of nanomaterials for environmental cleanup. It provides an overview of current practices; research findings; societal issues; potential environment, health, and safety implications; and possible future directions for nanoremediation. The authors conclude that the technology could be an effective and economically viable alternative for some current site cleanup practices, but potential risks remain poorly understood.

There is an interactive map of remediation sites available here and, if you scroll down to the bottom of the page, you’ll find a link to the review article or you can go here.

I found the information interesting although I was not the intended audience. This was focused primarily on people who are involved in site remediation and/or are from the US. The short story is that more research needs to be done and there have been some very promising results. The use of nanoscale zero-valent iron (nZVI) nanoparticles was the main topic of discussion. It allows for ‘in situ’ site remediation, in other words, you don’t need to move soil and/or pump water through some treatment process. It’s not appropriate for all sites. It can be faster than the current site remediation treatments and it’s cheaper. There was no mention of any problems or hazards using nZVI but there hasn’t been much research either. The technique is now being used in seven different countries (including Canada with one in Ontario and one in Quebec). If I understand it rightly, there is no requirement to report nanotechnology-enabled site remediation so these numbers are based on self-reports. From the article in Environment Health Perspectives,

The number of actual applications of nZVI is increasing rapidly. Only a fraction of the projects has been reported, and new projects show up regularly. Figure 2 and Supplemental Material, Table 2 (doi:10.1289/ehp.0900793.S1) describe 44 sites where nanoremediation methods have been tested for site remediation.

I think that’s it for today, tomorrow some news from NISENet (Nanoscale Informal Science Education Network).