Tag Archives: OECD (Organization for Economic Cooperation and Development) Science Technology and Industry Scoreboard 2013

Findings on oral exposure to nanoscale titanium dioxide

It’s been a while since I’ve run a piece on health concerns and nanoparticles. The nanoparticles in question are titanium dioxide and the concerns centre on oral exposure to them according to a Jan. 24, 2017 news item on Nanowerk,

Researchers from INRA [French National Institute for Agricultural Research] and their partners have studied the effects of oral exposure to titanium dioxide, an additive (E171) commonly used in foodstuffs, especially confectionary. They have shown for the first time that E171 crosses the intestinal barrier in animals and reaches other parts of the body.

Immune system disorders linked to the absorption of the nanoscale fraction of E171 particles were observed. The researchers also showed that chronic oral exposure to the additive spontaneously induced preneoplastic lesions in the colon, a non-malignant stage of carcinogenesis, in 40% of exposed animals.

Moreover, E171 was found to accelerate the development of lesions previously induced for experimental purposes. While the findings show that the additive plays a role in initiating and promoting the early stages of colorectal carcinogenesis, they cannot be extrapolated to humans or more advanced stages of the disease. [emphasis mine]

A Jan. 20, 2017 IINRA press release, which originated the news item,  provides more detail about European use of titanium dioxide as a food additive and about the research,

Present in many products including cosmetics, sunscreens, paint and building materials, titanium dioxide (or TiO2), known as E171 in Europe, is also widely used as an additive in the food industry to whiten or give opacity to products. It is commonly found in sweets, chocolate products, biscuits, chewing gum and food supplements, as well as in toothpaste and pharmaceutical products. Composed of micro- and nanoparticles, E171 is nevertheless not labelled a “nanomaterial”, since it does not contain more than 50% of nanoparticles (in general it contains from 10-40%). The International Agency for Research on Cancer (IARC) evaluated the risk of exposure to titanium dioxide by inhalation (occupational exposure), resulting in a Group 2B classification, reserved for potential carcinogens for humans.

Today, oral exposure to E171 is a concern, especially in children who tend to eat a lot of sweets. INRA researchers studied the product as a whole (that is, its mixed composition of micro- and nanoparticules), and have also evaluated the effect of the nanoscale particle fraction alone, by comparing it to a model nanoparticle.

Titanium dioxide crosses the intestinal barrier and passes into the bloodstream

The researchers exposed rats orally to a dose of 10mg of E171 per kilogram of body weight per day, similar to the exposure humans experience through food consumption (data from European Food Safety Agency, September 20162). They showed for the first time in vivo that titanium dioxide is absorbed by the intestine and passes into the bloodstream. Indeed, the researchers found titanium dioxide particles in the animals’ livers.

Titanium dioxide alters intestinal and systemic immune response

Titanium dioxide nanoparticles were present in the lining of the small intestine and in the colon, and entered the nuclei of the immune cells of Peyer’s patches, which induce immune response in the intestine. The researchers showed an imbalance in immune response, ranging from a defect in the production of cytokines in Peyer’s patches to the development of micro-inflammation in colon mucosa. In the spleen, representative of systemic immunity, exposure to E171 increases the capacity of immune cells to produce pro-inflammatory cytokines when they are activated in vitro.

Chronic oral exposure to titanium dioxide plays a role in initiating and promoting early stages of colorectal carcinogenesis

The researchers exposed rats to regular oral doses of titanium dioxide through drinking water for 100 days. In a group of rats previously treated with an experimental carcinogen, exposure to TiO2 led to an increase in the size of preneoplastic lesions. In a group of healthy rats exposed to E171, four out of eleven spontaneously developed preneoplastic lesions in the intestinal epithelium. Non-exposed animals presented no anomalies at the end of the 100-day study. These results indicate that E171 both initiates and promotes the early stages of colorectal carcinogenesis in animals.

These studies show for the first time that the additive E171 is a source of titanium dioxide nanoparticles in the intestine and the entire body, with consequences for both immune function and the development of preneoplastic lesions in the colon. These first findings justify a carcinogenesis study carried out under OECD [Organization for Economic Cooperation and Development] guidelines to continue observations at a later stage of cancer. They provide new data for evaluating the risks of the E171 additive in humans.

These studies were carried out within the framework of the Nanogut project, financed by the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) within the French national programme for research related to the environment, health and the workplace (PNR EST) and coordinated by INRA. Sarah Bettini’s university thesis contract was financed by the French laboratory of excellence LabEx SERENADE.

Here’s a link to and a citation for the paper,

Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon by Sarah Bettini, Elisa Boutet-Robinet, Christel Cartier, Christine Coméra, Eric Gaultier, Jacques Dupuy, Nathalie Naud, Sylviane Taché, Patrick Grysan, Solenn Reguer, Nathalie Thieriet, Matthieu Réfrégiers, Dominique Thiaudière, Jean-Pierre Cravedi, Marie Carrière, Jean-Nicolas Audinot, Fabrice H. Pierre, Laurence Guzylack-Piriou, & Eric Houdeau. Scientific Reports 7, Article number: 40373 (2017) doi:10.1038/srep40373 Published online: 20 January 2017

This paper is open access.

The research is concerning but they don’t want to draw any conclusions yet, which explains the recommendation for further research.

Canadian government spending on science and technology is down for the fourth year in a row

It seems there a steady downward trajectory where Canadian science and technology spending is concerned. Stephen Hui in a May 28, 2014 article for the Georgia Straight, breaks the latest news from Statistics Canada (Note: A link has been removed),

The Canadian government is expected to spend less money on science and technology in 2014-15 compared to the previous fiscal year, continuing a trend that began in 2011-12. [emphasis mine]

According to Statistics Canada, federal departments and agencies are projected to record $10.3 billion (all figures in current dollars) in science and tech expenditures in 2014-15, a decrease of 5.4 percent from 2013-14.

Federal science and tech spending peaked at $12 billion in 2010-11 and has declined every year since then.

In fact, an earlier July 30, 2013 news item in Huffington Post noted a decrease in the 2013-14 budget,

The federal agency says spending for the 2013-14 fiscal year is expected to decrease 3.3 per cent from the previous period, to $10.5 billion.

It adds research and development is expected to account for two-thirds of anticipated science and technology spending.

The finding is contained in Statistics Canada’s annual survey of all federal government departments and agencies believed to be performing or funding science and technology activities.

The survey, released Tuesday [July 2013], covers the period from Sept. 10, 2012 to Jan. 11, 2013.

Statistics Canada says spending on science and technology has been steadily decreasing since 2009-10. [emphasis mine]

According to Hui’s source, the Statistics Canada’s The Daily, May 28,2014: Federal government spending on science and technology, 2014/2015, the trend started in 2011/12. I’m not sure which specific Statistics Canada publication was the source for the Huffington Post’s start date for the decline.

Interestingly, the OECD (Organization for Economic Cooperation and Development) Science, Technology and Industry Scoreboard 2013 dates the decline to 2001. From my Oct. 30, 2013 posting (excerpted from the scorecard),

Canada is among the few OECD countries where R&D expenditure declined between 2000 and 2011 (Figure 1). This decline was mainly due to reduced business spending on R&D. It occurred despite relatively generous public support for business R&D, primarily through tax incentives. In 2011, Canada was amongst the OECD countries with the most generous tax support for R&D and the country with the largest share of government funding for business R&D being accounted for by tax credits (Figure 2). …

If I understand this rightly, Canadian business spending on R&D has been steadily declining for more than a decade and, since 2010 or so, Canadian government spending is also steadily declining. Does anyone else see this as a problem?

The contrast with Brazil is startling. From a June 2, 2014 Institute of Physics news release (also on EurekAlert but dated as June 1, 2014),

As Brazil gets set to host the 2014 FIFA World Cup this month amid concerns about the amount of public money being used to stage the world’s largest sporting event, Physics World‘s editorial team reveals in a new special report how physicists are taking full advantage of the four-fold increase in science funding that the government has invested over the past 10 years.

Since this news comes from the physics community, the news release focuses on physics-related developments,

Negotiations are currently under way to make Brazil an associate member of the CERN particle-physics lab in Geneva, while the country is also taking a leading role in the Pierre Auger Observatory – an international project based in Argentina designed to study ultrahigh-energy cosmic rays. [emphasis mine]

Building is also under way to create a world-leading synchrotron source, Sirius and Brazil is poised to become the first non-European member of the European Southern Observatory.

Carlos Henrique de Brito Cruz, a physicist at the University of Campinas and scientific director at FAPESP – one of Brazil’s most important funding agencies – told Physics World that the expectation is for Brazilian scientists to take a leadership role in such large research projects “and not just watch as mere participants”.

Considering the first graduate programmes in physics did not emerge in Brazilian universities until 1960, the rise to becoming one of the leading participants in international collaborations has been a rapid one.

The reputation of Brazilian physics has grown in line with a massive increase in science funding, which rose from R$12bn (about £3bn) in 2000 to R$50bn (around £13bn) in 2011.

Brazil’s spending on R&D now accounts for 1.2% of the gross domestic product and 40% of the total funding comes from companies.

The Brazilian Physical Society has around 6000 members comprising almost all research physicists in the country, who wrote around 25 000 research articles in international science journals between 2007 and 2010.

A lack of funding in the past had forced Brazilian scientists to focus on cheaper, theoretical research, but this has now changed and there is an almost even split between theory and experiment at universities.

Yet Brazil still suffers from several long-standing problems, the most significant being the poor standard of science education in high schools. A combination of low pay and lack of recognition makes physics teaching an unpopular choice of occupation despite attempts to tackle the problem.

Even those students who do see physics as a career option end up struggling and under-prepared for the rigours of an undergraduate physics course. Vitor de Souza, an astrophysicist at the Physics Institute at São Carlos, which is part of the University of São Paulo, told Physics World that of the 120 students who start a four-year physics degree at his university, only 10-20 actually graduate.

Another problem in Brazil is a fundamental disconnect between academic research and industrial development, with universities not sure how to handle spin-off firms and companies suspicious of universities.

More broadly, physicists feel that Brazilian society does not recognize the value of science, and that this can only be overcome when the physics community becomes more ambitious and more audacious.

You can find the special issue of Physics World here (it is open access).

As I noted in this May 30, 2014 posting (and elsewhere) featuring the new Agency of Science Communication, Technology and Innovation of Argentina (ACCTINA),,

The PCST [13th International Public Communication of Science and Technology Conference] international conference takes place every two years. The 2014 PCST conference took place in Salvador, Brazil. Conferences like this would seem to confirm the comments I made in a May 20, 2014 posting,

Returning to 2014, the [World Cup {soccer}] kickoff in Brazil (if successful) symbolizes more than an international athletic competition or a technical/medical achievement, this kick-off symbolizes a technological future for Brazil and its place on the world stage (despite the protests and social unrest) .

While the science and technology community in Brazil has its concerns, I imagine most Canadian scientists would thrill to being the recipients of the funding bonanza of 1.2%  of the gross domestic product. According to the Conference Board of Canada, research and development spending in Canada was 0.8% of GDP for 2011 (from the Conference Board of Canada’s Public R&D spending webpage),

[downloaded from http://www.conferenceboard.ca/hcp/details/innovation/publicrandd.aspx]

[downloaded from http://www.conferenceboard.ca/hcp/details/innovation/publicrandd.aspx]

Did you notice, Canada the in 2011 was on the edge of getting a C grade along with the US? Meanwhile, if Brazil was listed, it would get top marks.

The question as to how much money is not enough for research and development (R&D) spending is complex and I don’t think it’s easily answered but it would be nice to see some discussion.