Tag Archives: Ohio

Revising history with science and art

Caption: The 2000-year-old pipe sculpture’s bulging neck is evidence of thyroid disease as a result of iodine deficient water and soil in the ancient Ohio Valley. Credit: Kenneth Tankersley

An October 4, 2018 news item on ScienceDaily describes the analytic breakthrough,

Art often imitates life, but when University of Cincinnati anthropologist and geologist Kenneth Tankersley investigated a 2000-year-old carved statue on a tobacco pipe, he exposed a truth he says will rewrite art history.

Since its discovery in 1901, at the Adena Burial Mound in Ross County, Ohio, archaeologists have theorized that the the 8-inch pipe statue—carved into the likeness of an Ohio Valley Native American—represented an achondroplastic dwarf (AD). People with achondroplasia typically have short arms and legs, an enlarged head, and an average-sized trunk, the same condition as Emmy Award-winning actor Peter Dinklage from HBO’s “Game of Thrones.”

“During the early turn of the century, this theory was consistent with actual human remains of a Native American excavated in Kentucky, also interpreted by archaeologists as being an achondroplastic dwarf,” says Tankersley.

This theory flourished in the scientific literature until the turn of the 21st century when Tankersley looked closer.

“Here we have a carved statue and human remains, both of achondroplasia from the same time period,” says Tankersley. “But what caught my eye on this pipe statue was an obvious tumor on the neck that looked remarkably like a goiter [or goitre] or thyroid tumor.”

An October 2, 2018 University of Cincinnati (UC) news release (also on EurekAlert but published Oct. 3, 2018), reveals more details,

Tankersley collaborated with Frederic Bauduer, a visiting biological anthropologist and paleopathologist from the University of Bordeaux, UC’s sister university in France, to ultimately dispel previous academic literature claiming the sculpture as portraying achondroplasia.

“In archaeological science, flesh does not survive, so many ancient maladies go unnoticed and are almost always impossible to get at from an archaeological standpoint,” says Tankersley. “So what struck me was how remarkably Bauduer was using ancient art from various periods of antiquity to argue for the paleopathology he presented.”

Using radiocarbon dating on textile and bark samples surrounding the pipe at the site, the Adena pipe dates to approximately 2000 years ago, to the earliest evidence of tobacco.

Traditionally, tobacco is considered a sacred plant to Native Americans in this region, and smoking tobacco played an important role in their ceremonies, but he points to tobacco smoking as being long associated with an increased prevalence of goiter in low iodine intake zones worldwide.

From a medical perspective, Bauduer found the physical characteristics, such as the short forehead and long bones of the upper and lower limbs, simply not adding up as an achondroplastic dwarf.

“We found the tumor in the neck, as well as the figure’s squatted stance — not foreshortened legs as was formerly documented in the literature — were both signs and symptoms of thyroid disease,” says Tankersley.

“We already know that iodine deficiencies can lead to thyroid tumors, and the Ohio Valley area, where this artifact was found, has historically had iodine depleted soils and water relative to the advance of an Ice Age glacier about 300,000 years ago.”

Students in a university lab look through microscopes.

Tankersley (top center) teaches archaeology students to date soil, bones and textiles using radiocarbon science.

Profile of ancient tobacco pipe sculpture portraying a Native American wearing ceremonial regalia.

The figure’s bulging neck (goiter) and appearance of short stature are actually results of iodine deficient thyroid disease. The legs are bent in a tilted squat likely during a Native American ceremonial dance.

Tankersley says the Ohio Valley region, before the introduction of iodized salt in the 1920s,
was part of the so-called U.S. “goiter belt” where goiter frequency was relatively high —  five to 15 incidences per thousand.

The lower limbs on the statue, previously documented in the literature as short in stature, are actually normal size in bone length, according to Bauduer. Upon closer inspection, both Bauduer and Tankersley agree that the figure is also portrayed in a tilted squat, a common gait anomaly found in people with hypothyroidism.

The figure has what appears to be an abdominal six-pack, but both researchers say the detailed physical features indeed portray a normal physique except for the telltale signs of thyroid disease.

“The fact that the bones of the figure are all normal size leads us to believe the squat portrays more of an abnormal gait while likely in the stance of a typical Native American ritual dance,” says Tankersley, who is one-quarter Native American himself and regularly attends ceremonial events throughout Ohio and Kentucky.

“The regalia the figure is wearing is also strongly indicative of ancient Native Ohio Valley Shawnee, Delaware and Ojibwa to the north and Miami Nation tribes in Indiana.

“The traditional headdress, pierced ears with expanded spool earrings and loincloth with serpentine motif on the front and feathered bustle on back are also still worn by local Native tribes during ceremonial events today.”

Artistic clues

Portrait of Dr. Frederic Bauduer, biological pathologist from University of Bordeaux in France, on an ancient architectural balcony.

Frederic Bauduer, biological anthropologist, paleopathologist and critical collaborator on this research from the University of Bordeaux, UC’s sister university in France. photo/Frederic Bauduer

In addition to figures found in South America and Mesoamerica, Tankersley says the Adena pipe is the first known example of a goiter depicted in ancient Native North American art and one of the oldest from the Western Hemisphere.

“The other real take here is that a lot of people ask, ‘What is the value of ancient art?’” asserts Tankersley. “Well, here’s an example of ancient art that tells a deeper story. And similar indigenous art representations found in South America and Mesoamerica strengthen our hypothesis.”

Tankersley is interested in looking deeper for pathologies and maladies portrayed on other ancient artifacts from Native Americans thousands of years ago here in the Ohio Valley and elsewhere.

“Art history is beginning to help substantiate many scientific hypotheses,” says Tankersley. “Because artists are such keen students of anatomy, artisans such as this ancient Adena pipe sculptor could portray physical maladies with great accuracy, even before they were aware of what the particular disease was.”

Here’s a link to and a citation for the paper,

Medical Hypotheses Evidence of an ancient (2000 years ago) goiter attributed to iodine deficiency in North America by F. Bauduer, K. Barnett Tankersley. Medical Hypotheses Volume 118, September 2018, Pages 6-8 DOI: https://doi.org/10.1016/j.mehy.2018.06.011

This paper looks like it’s behind a paywall.

Symbiosis (science education initiative) in British Columbia (Canada)

Is it STEM (science, technology, engineering, and mathematics) or is it STEAM (science, technology, engineering, arts, and mathematics)?

It’s STEAM as least as far as Dr. Scott Sampson is concerned. In his July 6, 2018 Creative Mornings Vancouver talk in Vancouver (British Columbia, Canada) he mentioned a major science education/outreach initiative taking place in the province of British Columbia (BC) but intended for all of Canada, Symbiosis There was some momentary confusion as Sampson’s slide deck identified it as a STEM initiative. Sampson verbally added the ‘A’ for arts and henceforth described it as a STEAM initiative. (Part of the difficulty is that many institutions have used the term STEM and only recently come to the realization they might want to add ‘art’ leading to confusion in Canada and the US, if nowhere else, as old materials require updating. Actually, I vote for adding the humanities too so that we can have SHTEAM.)

You’ll notice, should you visit the Symbiosis website, that the STEM/STEAM confusion extends further than Sampson’s slide deck.

Sampson,  “a dinosaur paleontologist, science communicator, and passionate advocate for reimagining cities as places where people and nature thrive, serves (since 2016) as president and CEO of Science World British Columbia” or as they’re known on their website:  Science World at TELUS World of Science. Unwieldy, eh?

The STEM/STEAM announcement

None of us in the Creative Mornings crowd had heard of Symbiosis or Scott Sampson for that matter (apparently, he’s a huge star among the preschool set due to his work on the PBS [US Public Broadcasting Service] children’s show ‘Dinosaur Train’). Regardless, it was good to hear  of this effort although my efforts to learn more about it have been a bit frustrated.

First, here’s what I found: a May 25, 2017 Science World media release (PDF) about Symbiosis,

Science World Introduces Symbiosis
A First-of Its-Kind [sic] Learning Ecosystem forCanada

We live in a time of unprecedented change. High-tech innovations are rapidly transforming 21st century societies and the Canadian marketplace is increasingly dominated by novel, knowledge-based jobs requiring high levels of literacy in science, technology, engineering and math (STEM). Failing to prepare the next generation to be STEM literate threatens the health of our youth, the economy and the places we live. STEM literacy needs to be integrated into the broader context of what it means to be a 21st century citizen. Also important is inclusion of an extra letter, “A,” for art and design, resulting in STEAM. The idea behind Symbiosis is to make STEAM learning accessible across Canada.

Every major Canadian city hosts dozens to hundreds of organizations that engage children and youth in STEAM learning. Yet, for the most part, these organizations operate in isolation. The result is that a huge proportion of Canadian youth, particularly in First Nations and other underserved communities, are not receiving quality STEAM learning opportunities.

In order to address this pressing need, Science World British Columbia (scienceworld.ca) is spearheading the creation of Symbiosis, a deeply collaborative STEAM learning ecosystem. Driven by a diverse network of cross-sector partners, Symbiosis will become a vibrant model for scaling the kinds of learning and careers needed in a knowledge-based economy.

Today [May 25, 2017], Science World is proud to announce that Symbiosis has been selected by STEM Learning Ecosystems, a US-based organization, to formally join a growing movement. In just two years, the STEM Learning Ecosystems  initiative has become a thriving network of hundreds of organizations and thousands of individuals, joined in regional partnerships with the objective of collaborating in new and creative ways to increase equity, quality, and STEM learning outcomes for all youth. Symbiosis will be the first member of this initiative outside the United States.

Symbiosis was selected to become part of the STEM Learning Ecosystem initiative because of a demonstrated [emphasis mine] commitment to cross-sector collaborations in schools and beyond the classroom. As STEM Ecosystems evolve, students will be able to connect what they’ve learned, in and out of school, with real-world, community-based opportunities.

I wonder how Symbiosis demonstrated their commitment. Their website doesn’t seem to have existed prior to 2018 and there’s no information there about any prior activities.

A very Canadian sigh

I checked the STEM Learning Ecosystems website for its Press Room and found a couple of illuminating press releases. Here’s how the addition of Symbiosis was described in the May 25, 2017 press release,

The 17 incoming ecosystem communities were selected because they demonstrate a commitment to cross-sector collaborations in schools and beyond the classroom—in afterschool and summer programs, at home, with local business and industry partners, and in science centers, libraries and other places both virtual and physical. As STEM Ecosystems evolve, students will be able to connect what is learned in and out of school with real-world opportunities.

“It makes complete sense to collaborate with like-minded regions and organizations,” said Matthew Felan of the Great Lakes Bay Regional Alliance STEM Initiative, one of the founding Ecosystems. “STEM Ecosystems provides technical assistance and infrastructure support so that we are able to tailor quality STEM learning opportunities to the specific needs of our region in Michigan while leveraging the experience of similar alliances across the nation.”

The following ecosystem communities were selected to become part of this [US} national STEM Learning Ecosystem:

  • Arizona: Flagstaff STEM Learning Ecosystem
  • California: Region 5 STEAM in Expanded Learning Ecosystem (San Benito, Santa Clara, Santa Cruz, Monterey Counties)
  • Louisiana: Baton Rouge STEM Learning Network
  • Massachusetts: Cape Cod Regional STEM Network
  • Michigan: Michigan STEM Partnership / Southeast Michigan STEM Alliance
  • Missouri: Louis Regional STEM Learning Ecosystem
  • New Jersey: Delran STEM Ecosystem Alliance (Burlington County)
  • New Jersey: Newark STEAM Coalition
  • New York: WNY STEM (Western New York State)
  • New York: North Country STEM Network (seven counties of Northern New York State)
  • Ohio: Upper Ohio Valley STEM Cooperative
  • Ohio: STEM Works East Central Ohio
  • Oklahoma: Mayes County STEM Alliance
  • Pennsylvania: Bucks, Chester, Delaware, Montgomery STEM Learning Ecosystem
  • Washington: The Washington STEM Network
  • Wisconsin: Greater Green Bay STEM Network
  • Canada: Symbiosis, British Columbia, Canada

Yes, somehow a Canadian initiative becomes another US regional community in their national ecosystem.

Then, they made everything better a year later in a May 29, 2018 press release,

New STEM Learning Ecosystems in the United States are:

  • California: East Bay STEM Network
  • Georgia: Atlanta STEAM Learning Ecosystem
  • Hawaii: Hawai’iloa ecosySTEM Cabinet
  • Illinois: South Suburban STEAM Network
  • Kentucky: Southeastern Kentucky STEM Ecosystem
  • Massachusetts: MetroWest STEM Education Network
  • New York: Greater Southern Tier STEM Learning Network
  • North Carolina: STEM SENC (Southeastern North Carolina)
  • North Dakota: North Dakota STEM Ecosystem
  • Texas: SA/Bexar STEM/STEAM Ecosystem

The growing global Community of Practice has added: [emphasis mine]

  • Kenya: Kenya National STEM Learning Ecosystem
  • México: Alianza Para Promover la Educación en STEM (APP STEM)

Are Americans still having fantasies about ‘manifest destiny’? For those unfamiliar with the ‘doctrine’,

In the 19th century, manifest destiny was a widely held belief in the United States that its settlers were destined to expand across North America.  …

They seem to have given up on Mexico but the dream of acquiring Canadian territory rears its head from time to time. Specifically, it happens when Quebec holds a referendum (the last one was in 1995) on whether or not it wishes to remain part of the Canadian confederation. After the last referendum, I’d hoped that was the end of ‘manifest destiny’ but it seems these 21st Century-oriented STEM Learning Ecosystems people have yet to give up a 19th century fantasy. (sigh)

What is Symbiosis?

For anyone interested in the definition of the word, from Wordnik,

symbiosis

Definitions

from The American Heritage® Dictionary of the English Language, 4th Edition

  • n. Biology A close, prolonged association between two or more different organisms of different species that may, but does not necessarily, benefit each member.
  • n. A relationship of mutual benefit or dependence.

from Wiktionary, Creative Commons Attribution/Share-Alike License

  • n. A relationship of mutual benefit.
  • n. A close, prolonged association between two or more organisms of different species, regardless of benefit to the members.
  • n. The state of people living together in community.

As for this BC-based organization, Symbiosis, which they hope will influence Canadian STEAM efforts and learning as a whole, I don’t have much. From the Symbiosis About Us webpage,

A learning ecosystem is an interconnected web of learning opportunities that encompasses formal education to community settings such as out-of-school care, summer programs, science centres and museums, and experiences at home.

​In May 2017, Symbiosis was selected by STEM Learning Ecosystems, a US-based organization, to formally join a growing movement. As the first member of this initiative outside the United States, Symbiosis has demonstrated a commitment to cross-sector collaborations in schools and beyond the classroom. As Symbiosis evolves, students will be able to connect what they’ve learned, in and out of school, with real-world, community-based opportunities.

We live in a time of unprecedented change. High-tech innovations are rapidly transforming 21st century societies and the Canadian marketplace is increasingly dominated by novel, knowledge-based jobs requiring high levels of literacy in science, technology, engineering and math (STEM). Failing to prepare the next generation to be STEM literate threatens the health of our youth, the economy, and the places we live. STEM literacy needs to be integrated into the broader context of what it means to be a 21st century citizen. Also important is inclusion of an extra letter, “A,” for art and design, resulting in STEAM.

In order to address this pressing need, Science World British Columbia is spearheading the creation of Symbiosis, a deeply collaborative STEAM learning ecosystem. Driven by a diverse network of cross-sector partners, Symbiosis will become a vibrant model for scaling the kinds of learning and careers needed in a knowledge-based economy.

Symbiosis:

  • Acknowledges the holistic connections among arts, science and nature
  • ​Is inclusive and equitable
  • Is learner-centered​
  • Fosters curiosity and life-long learning ​​
  • Is relevant—should reflect the community
  • Honours diverse perspectives, including Indigenous worldviews
  • Is partnerships, collaboration, and mentorship
  • ​Is a sustainable, thriving community, with resilience and flexibility
  • Is research-based, data-driven
  • Shares stories of success—stories of people/role models using STEAM and critical thinking to make a difference
  • Provides a  variety of access points that are available to all learners

I was looking for more concrete information such as:

  • what is your budget?
  • which organizations are partners?
  • where do you get your funding?
  • what have you done so far?

I did get an answer to my last question by going to the Symbiosis news webpage where I found these,

We’re hiring!

 7/3/2018 [Their deadline is July 13, 2018]

STAN conference

3/20/2018

Symbiosis on CKPG

3/12/2018

Design Studio #2 in March

2/15/2018

BC Science Outreach Workshop

2/7/2018

Make of that what you will. Also, there is a 2018 copyright notice (at the bottom of the webpages) but no copyright owner is listed.

There is some Symbiosis information

A magazine known as BC Business (!) offers some details in a May 11, 2018 opinion piece, Note: Links have been removed,

… Increasingly, the Canadian marketplace is dominated by novel, knowledge-based jobs requiring high levels of literacy in STEM (science, technology, engineering and math). Here in B.C., the tech sector now employs over 100,000 people, about 5 percent of the province’s total workforce. As the knowledge economy grows, these numbers will rise dramatically.

Yet technology-driven businesses are already struggling to fill many roles that require literacy in STEM. …

Today, STEM education in North America and elsewhere is struggling. One study found that 60 percent of students who enter high school interested in STEM fields change their minds by graduation. Lacking mentoring, students, especially girls, tend to lose interest in STEM. [emphasis mine]Today, only 22 percent of Canadian STEM jobs are held by women. Failing to prepare the next generation to be STEM-literate threatens the prospects of our youth, our economy and the places we live.

More and more, education is no longer confined to classrooms. … To kickstart this future, a “STEM learning ecosystem” movement has emerged in the United States, grounded in deeply collaborative, cross-sector networks of learning opportunities.

Symbiosis will concentrate on a trio of impacts:

1) Dramatically increasing the number of qualified STEM mentors in B.C.—from teachers and scientists to technologists and entrepreneurs;

2) Connecting this diversity of mentors with children and youth through networked opportunities, from classroom visits and on-site shadowing to volunteering and internships; and

3) Creating a digital hub that interweaves communities, hosts a library of resources and extends learning through virtual offerings. [emphases mine]

Science World British Columbia is spearheading Symbiosis, and organizations from many sectors have expressed strong interest in collaborating—among them K-12 education, higher education, industry, government and non-profits. Several of these organizations are founding members of the BC Science Charter, which formed in 2013.

Symbiosis will launch in fall of 2018 with two pilot communities: East Vancouver and Prince George. …

As for why students tend to lose interest in STEM, there’s a rather interesting longitudinal study taking place in the UK which attempts to answer at least some of that question. I first wrote about the ASPIRES study in a January 31, 2012 posting: Science attitude kicks in by 10 years old. This was based on preliminary data and it seemed to be confirmed by an unrelated US study of high school students also mentioned in that posting (scroll down about 40% of the way).

In short, both studies suggested that children are quite to open to science but when it comes time to think about careers, they tend to ‘aspire’ to what they see amongst family and friends. I don’t see that kind of thinking reflected in any of the information I’ve been able to find about Symbiosis and it was not present in Sampson’s, Creative Mornings talk.

However, I noted during Sampson’s talk that he mentioned his father, a professor of psychology at the University of British Columbia and how he had based his career expectations on his father’s career. (Sampson is from Vancouver originally.) Sampson, like his father, was at one point a professor of ‘science’ at a university.

Perhaps one day someone from Symbiosis will look into the ASPIRE studies or even read my blog 🙂

You can find the latest about what is now called the ASPIRES 2 study here. (I will try to post my own update to the ASPIRES projects in the near future).

Best hopes

I am happy to see Symbiosis arrive on the scene and I wish all the best for the initiative. I am less concerned than the BC Business folks about supplying employers with the kind of employees they want to hire and hopeful that Symbiosis will attract not just the students, educators, mentors, and scientists to whom they are appealing but will cast a wider net to include philosophers, car mechanics, hairdressers, poets, visual artists, farmers, chefs, and others in a ‘pursuit of wonder’.

Aside: I was introduced to the phrase ‘pursuit of wonder’ by a friend who sent me a link to José Teodoro’s May 29, 2018 interview with Canadian filmmaker, Peter Mettler for the Brick. Mettler discusses his film about the Northern Lights and the technical challenges he met along the way.

Virtual Reality (VR) becomes educational (at Case Western Reserve University and Miami Children’s Hospital)

I have two virtual reality news bits the most recent concerning Case Western Reserve University (CWRU; located in Cleveland, Ohio) and Microsoft’s HoloLens in an April 29, 2015 CWRU press release (also on EurekAlert), Note: Some of this academic press release reads like marketing collateral,

Case Western Reserve University Radiology Professor Mark Griswold knew his world had changed the moment he first used a prototype of Microsoft’s HoloLens headset. Two months later, one of the university’s medical students illustrated exactly why.

“There’s the aortic valve,” Satyam Ghodasara exclaimed as he used Microsoft’s device to examine a holographic heart. “Now I understand.”

Today, Griswold told tens of thousands of people how HoloLens can transform learning across countless subjects, including those as complex as the human body. Speaking to an in-person and online audience at Microsoft’s annual Build conference, he highlighted disciplines as disparate as art history and engineering–but started with a holographic heart. In traditional anatomy, after all, students like Ghodasara cut into cadavers to understand the body’s intricacies.

With HoloLens, Griswold explained, “you see it truly in 3D. You can take parts in and out. You can turn it around. You can see the blood pumping–the entire system.”

In other words, technology not only can match existing educational methods–it can actually improve upon them. Which, in many ways, is why Cleveland Clinic CEO Toby Cosgrove contacted then-Microsoft executive Craig Mundie in 2013, after the hospital and university first agreed to partner on a new education building.

“We launched this collaboration to prepare students for a health care future that is still being imagined,” Cleveland Clinic CEO Delos “Toby” Cosgrove said of what has become a 485,000-square-foot Health Education Campus project. “By combining a state-of-the-art structure, pioneering technology, and cutting-edge teaching techniques, we will provide them the innovative education required to lead in this new era.”

As Cosgrove, Case Western Reserve President Barbara R. Snyder and other academic leaders engaged more extensively with Microsoft, the more potential everyone saw.

“For more than a century, our medical school has been renowned for inventing and reinventing approaches to teaching and learning that take root nationwide,” President Snyder said. “When we match that expertise with the interdisciplinary knowledge of our faculty, we create a rich environment to explore the educational potential of Microsoft’s extraordinary technology.”

After a small group including Griswold, engineering professor Marc Buchner and Cleveland Clinic education technology leader Neil Mehta first experienced HoloLens in December, the faculty returned to Cleveland to create a core team dedicated to exploring the technology’s academic potential. In February, 10 members of the team–including Ghodasara–returned to Microsoft for a HoloLens programming deep dive.

Ghodasara already had taken the traditional anatomy class at Case Western Reserve, but it wasn’t until he used the HoloLens headset that he first visualized the aortic valve in its entirety–unobstructed by other elements of the cardiac system and undamaged by earlier dissection efforts. Members of the Microsoft team were in the room when Ghodasara had his “aha” moment; a few weeks later, the heart demonstration became part of the Build conference agenda.

Case Western Reserve is the only university represented during the three-day event, a distinction Griswold attributes in part to the core team’s breadth of expertise and collegial approach.

“Without all of those people coming together,” Griswold said, “this would not have happened.”

When Griswold took the stage as part of Microsoft’s opening keynote at the Build conference, Ghodasara, Buchner and Chief Information Officer Sue Workman also were in the audience. Back in Cleveland, three of Professor Buchner’s undergraduates–John Billingsley, Henry Eastman and Tim Sesler–demonstrated some of the potential of the HoloLens technology live in the Tinkham Veale University Center.

Buchner, whose specialties include simulation and game design, believes Microsoft’s innovation “has the capability to transform engineering education.”

Because the technology is relatively easy to use, students will be able to build, operate and analyze all manner of devices and systems. “[It will] encourage experimentation,” Buchner said, “leading to deeper understanding and improved product design.”

In truth, HoloLens ultimately could have applications for dozens of Case Western Reserve’s academic programs. NASA’s Jet Propulsion Laboratory already has worked with Microsoft to develop software that will allow Earth-based scientists to work on Mars with a specially designed rover vehicle. A similar collaboration could enable students here to take part in archeological digs around the world. Or astronomy students could stand in the midst of colliding galaxies, securing front-row view of the unfolding chaos. Art history professors could present masterpieces in their original settings–a centuries-old castle, or even the Sistine Chapel.

“The whole campus has the potential to use this,” Griswold said. “Our ability to use this for education is almost limitless.”

For now, however, the top priority is creating a full digital anatomy curriculum, a process launched with the advent of the Health Education Campus, and now experiencing even greater momentum. Among the key collaborators are a team of medical students and anatomy and radiology faculty who are already investigating the use of these kinds of technology. This team, led by Amy Wilson­Delfosse, the medical school’s associate dean for curriculum, and Suzanne Wish-Baratz, an assistant professor who is one of the primary leaders of anatomy education, fully expects to have a digital curriculum ready for the new Health Education Campus.

Also essential, Griswold said, has been the advice and assistance of Microsoft’s HoloLens team and executives.

“It’s been a joy to work with them. They have been so friendly, so collaborative, so willing to work with us on this,” Griswold said. “We’re going to do incredible things together.”

Ohio is not the only state where virtual reality is being incorporated into medical education.

Florida

From an April 30, 2015 Next Galaxy Corp. news release,

Incorporating eye gaze control, gestures, and voice commands while “walking around” inside an emergency medical experience, Next Galaxy’s Virtual Reality Model educates participants far beyond today’s methodology of passively watching video and taking written tests.

Next Galaxy Corp (OTC: NXGA) recently announced the signing of an agreement with Miami Children’s Hospital to use the Company’s VR Model to develop immersive Virtual Reality medical instructional content for patient and medical professional education. Per the multi-year agreement, Next Galaxy and Miami Children’s Hospital are jointly developing VR Instructionals on cardiopulmonary resuscitation (CPR) and other lifesaving procedures, which will be released as an application for smartphones.

Assessments are incorporated directly into the medical VR models, creating situations where participants are required to make the appropriate decisions about proper techniques. The Virtual CPR instructional will measure metrics and provide real-time feedback ensuring participants accurately perform CPR techniques. Further, the instructional will explain any mistake and prompt users to try again when errors are made. Supportive messages are delivered upon success.

The medical VR models will be viewable through smartphones and desktops as 3D, and via VR devices such as Google Cardboard, VRONE and Oculus Rift.

About Next Galaxy Corporation

Next Galaxy Corporation is a leading developer of innovative content solutions and fully Immersive Consumer Virtual Reality technology. The Company’s flagship consumer product in development is CEEK, a next-generation fully immersive entertainment and educational social virtual reality platform featuring a combination of live action and 3D experiences. Next Galaxy’s CEEK simulates the communal experience of attending events, such as concerts, sporting events, movies or conferences through Virtual Reality. Next Galaxy is developing entertainment and educational experiences for VR Cinema, VR Concerts, VR Sports, VR Business, VR Tourism and more. In short, Next Galaxy is building the meeting places of the future. For further information, visit www.nextgalaxycorp.com

This seems to be the second time this information has been distributed (March 11, 2015 news release on PRNewswire), a widely adopted practice. Consequently and thankfully, there’s a March 11, 2015 article by Celia Ampel for the South Florida Business Journal which provides more details about the technology and explaining how a smartphone fits into virtual reality,

The best way to learn CPR is an immersive experience, Miami Children’s Hospital leaders believe — not a video.

“If I’m watching a video, I can pause and count, but there’s no way to tell if I counted to six or seven,” Next Galaxy President Mary Spio said. “Because [the virtual reality application] is voice-activated, they’re going to be able to count out loud and self-assess whether they’re doing it correctly.”

Next Galaxy (Pink Sheets: NXGA)’s virtual reality technology uses a smartphone app. Users can put their smartphone into a virtual reality headset for an immersive experience, or see 3D content through the phone.

The application will be available to the public in the next few months, Spio said.

This deal and another with Miami-Dade Country Public Schools are transforming Next Galaxy Corp according to Ampel’s article,

The five-person company will be hiring about 20 full-time employees in the next six months, focusing on developers with 3D modeling and gaming experience, she said.

Quadrupling the size of your company in six months can be quite a challenge. I wish them good luck with their expansion and their virtual reality course materials.

As to what all this mixed-reality/virtual reality might look like, there’s this image from Case Western Reserve University,

Courtesy: Case Western Reserve University

Courtesy: Case Western Reserve University

Staying stuck when it’s wet; learning from the geckos

Researchers from the University of Akron have published another study on geckos and their ‘stickability’ in watery environments. Last mentioned here in my Aug. 10, 2012 posting, doctoral candidate Alyssa Stark  and her colleagues were then testing the geckos by placing them on wetted glass plate surfaces and also by immersing them on water-filled tubs with glass bottom,

Next, the trio sprayed the glass plate with a mist of water and retested the lizards, but this time the animals had problems holding tight: the attachment force varied each time they took a step. The droplets were interfering with the lizards’ attachment mechanism, but it wasn’t clear how. And when the team immersed the geckos in a bath of room temperature water with a smooth glass bottom, the animals were completely unable to anchor themselves to the smooth surface. ‘The toes are superhydrophobic [water repellent]’, explains Stark, who could see a silvery bubble of air around their toes, but they were unable to displace the water surrounding their feet to make the tight van der Waals contacts that usually keep the geckos in place.

Then, the team tested the lizard’s adhesive forces on the dry surface when their feet had been soaking for 90 min and found that the lizards could barely hold on, detaching when they were pulled with a force roughly equalling their own weight. ‘That might be the sliding behaviour that we see when the geckos climb vertically up misted glass’, says Stark. So, geckos climbing on wet surfaces with damp feet are constantly on the verge of slipping and Stark adds that when the soggy lizards were faced with the misted and immersed horizontal surfaces, they slipped as soon as the rig started pulling.

In this latest research, from the Ap. 1, 2013 news release issued by the University of Akron on EurekAlert, Stark and her colleagues announce they’ve discovered the conditions under which geckos can adhere to wet surfaces,

Principal investigator Stark and her fellow UA researchers Ila Badge, Nicholas Wucinich, Timothy Sullivan, Peter Niewiarowski and Ali Dhinojwala study the adhesive qualities of gecko pads, which have tiny, clingy hairs that stick like Velcro to dry surfaces. In a 2012 study, the team discovered that geckos lose their grip on wet glass. This finding led the scientists to explore how the lizards function in their natural environments.

The scientists studied the clinging power of six geckos, which they outfitted with harnesses and tugged upon gently as the lizards clung to surfaces in wet and dry conditions. The researchers found that the effect of water on adhesive strength correlates with wettability, or the ability of a liquid to maintain contact with a solid surface. On glass, which has high wettability, a film of water forms between the surface and the gecko’s foot, decreasing adhesion. Conversely, on surfaces with low wettability, such as waxy leaves on tropical plants, the areas in contact with the gecko’s toes remain dry and adhesion, firm. [emphasis mine]

“The geckos stuck just as well under water as they did on a dry surface, as long as the surface was hydrophobic,” Stark explains. “We believe this is how geckos stick to wet leaves and tree trunks in their natural environment.”

For interested parties, this is where the paper can be found,

The discovery, “Surface Wettability Plays a Significant Role in Gecko Adhesion Underwater,” was published April 1, 2013 by the Proceedings of the National Academy of Sciences. The study has implications for the design of a synthetic gecko-inspired adhesive.

Here’s an image of a gecko (from the University of Akron’s webpage with their Ap. 1, 2013 news release),

Courtesy University of Akron [downloaded from http://www.uakron.edu/im/online-newsroom/news_details.dot?newsId=ec9fd559-e4af-487f-a9cc-2ea5f5c9612d&pageTitle=Top%20Story%20Headline&crumbTitle=Geckos%20keep%20firm%20grip%20in%20wet%20natural%20habitat]

Courtesy University of Akron [downloaded from http://www.uakron.edu/im/online-newsroom/news_details.dot?newsId=ec9fd559-e4af-487f-a9cc-2ea5f5c9612d&pageTitle=Top%20Story%20Headline&crumbTitle=Geckos%20keep%20firm%20grip%20in%20wet%20natural%20habitat]


Not mentioned in this news release, one of the relevant applications for this work would be getting bandages and dressings  to adhere to wet surfaces.

Digital world and the Cleveland Museum of Art

If this project is as advertised, then the Cleveland Museum of Art has developed a truly exciting interactive experience. Cliff Kuang in his Mar. 6, 2013 article for Fast Company is definitely enthusiastic,

If you’re a youngster, why stare at a Greek urn when you could blow one up in a video game? One institution thinking deeply about the challenge is the Cleveland Museum of Art, which this month unveiled a series of revamped galleries, designed by Local Projects, which feature cutting-edge interactivity. But the technology isn’t the point. “We didn’t want to create a tech ghetto,” says David Franklin, the museum’s director. Adds Local Projects founder Jake Barton, “We wanted to make the tech predicated on the art itself.”

Put another way, the new galleries at CMA tackle the problem plaguing most ambitious UI projects today: How do you let the content shine, and get the tech out of the way? How do you craft an interaction between bytes and spaces that feels fun?

The Cleveland Museum of Art’s Jan. 14, 2013 news release describes the new project,

… Gallery One, a unique, interactive gallery that blends art, technology and interpretation to inspire visitors to explore the museum’s renowned collections. This revolutionary space features the largest multi-touch screen in the United States, which displays images of over 3,500 objects from the museum’s world-renowned permanent collection. This 40-foot Collection Wall allows visitors to shape their own tours of the museum and to discover the full breadth of the collections on view throughout the museum’s galleries.

Throughout the space, original works of art and digital interactives engage visitors in new ways, putting curiosity, imagination and creativity at the heart of their museum experience. Innovative user-interface design and cutting-edge hardware developed exclusively for Gallery One break new ground in art museum interpretation, design and technology.

“Technology is a vital tool for supporting visitor engagement with the collection,” adds C. Griffith Mann, Deputy Director and Chief Curator. “Putting the art experience first required an unprecedented partnership between the museum’s curatorial, design, education and technology staff.”

Comprised of three major areas, Gallery One offers something for visitors of all ages and levels of comfort with art. Studio Play is a bright and colorful space that offers the museum’s youngest visitors and their families a chance to play and learn about art. Highlights of this portion of Gallery One include: Line and Shape, a multi-touch, microtile wall on which visitors can draw lines that are matched to works of art in the collection; a shadow-puppet theater where silhouettes of objects can be used as “actors” in plays; mobile- and sculpture-building stations where visitors can create their own interpretations of modern sculptures by Calder [Alexander Calder] and Lipchitz [Jacques Lipchitz]; and a sorting and matching game featuring works from the permanent collection. This space is designed to encourage visitors of all ages to become active participants in their museum experience.

In the main gallery space, visitors have an opportunity to learn about the collection and to develop ways of looking at art that are both fun and educational. The gallery is comprised of fourteen themed groups of works from the museum’s collection, six of which have “lens” stations. The “lens” stations comprise 46” multi-touch screens that offer additional contextual information and dynamic, interactive activities that allow visitors to create experiences and share them with others through links to social media. Another unique feature of the space is the Beacon, an introductory, dynamic screen that displays real-time results of visitors’ activities in the space, such as favorite objects, tours and activities.

The largest multi-touch screen in the United States, the Collection Wall utilizes innovative technology to allow visitors to browse these works of art on the Wall, facilitating discovery and dialogue with other visitors. The Collection Wall can also serve as an orientation experience, allowing visitors to download existing tours or curate their own tours to take out into the galleries on iPads. The Collection Wall, as well as the other interactive in the gallery, illustrates the museum’s long-term investment in technology to enhance visitor access to factual and interpretative information about the permanent collection.

“The Collection Wall powerfully demonstrates how cutting-edge technology can inspire our visitors to engage with our collection in playful and original ways never before seen on this scale,” said Jane Alexander, Director of Information Management and Technology Services. “This space, unique among art museums internationally, will help make the Cleveland Museum of Art a destination museum.”

In concert with the opening of Gallery One, the museum has also created ArtLens, a multi-dimensional app for iPads. Utilizing image recognition software, visitors can scan two-dimensional objects in Gallery One and throughout the museum’s galleries to access up to 9 hours of additional multimedia content, including audio tour segments, videos and additional contextual information. Indoor triangulation-location technology also allows visitors to orient themselves in the galleries and find works of art with additional interpretive content throughout their visit.

“ArtLens allows the visitor to take the experience of Gallery One out in to the other areas of the museum,” said Caroline Goeser. “It brings in many voices and traditions from different cultures, as well as giving visitors a chance to see demonstrations of art making techniques by local artists. The content is layered so visitors can choose what interests them and discover new ways of looking at and interpreting the object. Their experience is guided by their own sense of curiosity and discovery.”

It’s interesting to note the companies that partnered with the museum and to note the source for the money supporting this effort (from the news release),

The museum partnered with several other companies to complete the project, including Local Projects (media design and development), Gallagher and Associates (design and development), Zenith (AV Integration), Piction (CMS/DAM development), Earprint Productions (app content development), and Navizon (way-finding).

Gallery One is generously supported by the Maltz Family Foundation, which donated $10 million to support the project. Additional support for the project comes from grants and other donations.

Kuang’s article makes the exhibits come alive,

The first gallery that many new visitors will see, Gallery One, is a signature space, meant to draw in a younger crowd. To that end, the exhibits are about fostering an intuitive understanding of the art. Which sounds like baloney, but the end results are quietly terrific. At the root, the exhibits encourage people to move, fostering a connection to the art that’s literally written on the body:

  • In one display, a computer analyzes the expression on a visitor’s face. Then, they can see work spanning thousands of years that matches their own visage.
  • Gallery One also offers a chance to directly experience the physical decisions behind how masterpieces are made. For example, in front of a Jackson Pollack painting is a virtual easel, loaded with tools that approximate Pollock’s own, so that visitors can pour their own drip painting and compare it to the real thing.

Sounds like very exciting stuff. For anyone who can’t visit the exhibit, there are videos including this one where visitors strike a pose and an image (from the collection) mimicking the pose appears {ETA Mar.6.13 4:35 pm PST: I got this the wrong way round, the museum presents you with a piece of art and you strike the same p0se),

Sculpture Lens – Strike A Pose – Cleveland Museum of Art from Local Projects on Vimeo.

Kuang covers that exhibit and much more in his article, which I strongly recommend reading, and he makes this point,

Even as the designers go wild with the technology, they never stop to consider what anyone who doesn’t care about that technology would stand to gain. It was Barton’s [Local Projects founder Jake Barton] own skepticism about technology that made the technology great. His team didn’t necessarily believe that high-tech flare would add value to the museum experience. So they strove to look past the technology.

As a technical writer, I had many, many arguments with developers about precisely that point; most of us don’t care about the technology.  So, kudos to Jake Barton and all of the teams responsible for finding a way to integrate that understanding into a series of exhibits that allow the museum to showcase its collection, engage the public, and develop new audiences.

Meanwhile, the Council of Canadian Academies is poised to embark on an assessment which examines museums and other memory institutions along with digital technology from an entirely different perspective, Memory Institutions and the Digital Revolution,

Library and Archives Canada has asked the Council of Canadian Academies to assess how memory institutions, which includes archives, libraries, museums, and other cultural institutions, can embrace the opportunities and challenges of the changing ways in which Canadians are communicating and working in the digital age.

These trends present both significant challenges and opportunities for traditional memory institutions as they work towards ensuring that valuable information is safeguarded and maintained for the long term and for the benefit of future generations. It requires that they keep track of new types of records that may be of future cultural significance, and of any changes in how decisions are being documented. As part of this assessment, the Council’s expert panel will examine the evidence as it relates to emerging trends, international best practices in archiving, and strengths and weaknesses in how Canada’s memory institutions are responding to these opportunities and challenges. Once complete, this assessment will provide an in-depth and balanced report that will support Library and Archives Canada and other memory institutions as it considers how best to manage and preserve the mass quantity of communications records generated as a result of new and emerging technologies.

I last mentioned the ‘memory institutions’ assessment in my Feb. 22, 2013 posting in the context of their ‘science culture in Canada’ assessment panel. I find it odd that the Canada Science and Technology Museums Corporation was one of the requestors for the ‘science culture’ assessment but it  is not involved (nor is any other museum) in the ‘memory institutions and digital revolution’ assessment.

After reading about the Cleveland Museum of Art project, something else strikes me as odd, there is no mention of analysing the role that museums, libraries, and others will play in a world which is increasingly ephemeral. After all, it’s not enough to keep and store records. There is no point  if we can’t access them or even have knowledge of their existence. As for storing and displaying objects, this traditional museum function is increasingly being made impossible as objects seemingly disappear. The vinyl record, cassette tape, and CD (compact disc) have almost disappeared to be replaced by digital files. Meanwhile, my local library has fewer and fewer books, DVDs, and other lending items. What roles will libraries, museums, and other memory institutions going to have in our lives?