Tag Archives: Örebro University

Nanocellulose wound dressing reveals early signs of infection?

The wound dressing changes colour from yellow to blue when the wound is infected. Credit: Olov Planthaber Courtesy: Linköping University

An April 18, 2023 news item on Nanowerk announces a new nanocellulose-based wound dressing that can monitor infections, Note: A link has been removed,

A nanocellulose wound dressing that can reveal early signs of infection without interfering with the healing process has been developed by researchers at Linköping University, Sweden. Their study, published in Materials Today Bio (“Nanocellulose composite wound dressings for real-time pH wound monitoring”), is one further step on the road to a new type of wound care.

The wound dressing is made of tight mesh nanocellulose, preventing bacteria and other microbes from getting in. At the same time, the material lets gases and liquid through. Credit: Olov Planthaber Courtesy: Linköping University

An April 19, 2023 Linköping University press release (also on EurekAlert but published April 18, 2023), which originated the news item, provides context for the research and more technical details about it,

The skin is the largest organ of the human body. A wound disrupts the normal function of the skin and can take a long time to heal, be very painful for the patient and may, in a worst case scenario, lead to death if not treated correctly. Also, hard-to-heal wounds pose a great burden on society, representing about half of all costs in out-patient care.

In traditional wound care, dressings are changed regularly, about every two days. To check whether the wound is infected, care staff have to lift the dressing and make an assessment based on appearance and tests. This is a painful procedure that disturbs wound healing as the scab breaks repeatedly. The risk of infection also increases every time the wound is exposed.

Researchers at Linköping University, in collaboration with colleagues from Örebro and Luleå Universities [Örebro University and Luleå University of Technology in Sweden], have now developed a wound dressing made of nanocellulose that can reveal early signs of infection without interfering with the healing process.

“Being able to see instantly whether a wound has become infected, without having to lift the dressing, opens up for a new type of wound care that can lead to more efficient care and improve life for patients with hard-to-heal wounds. It can also reduce unnecessary use of antibiotics,” says Daniel Aili, professor in the Division of Biophysics and Bioengineering at Linköping University.

The dressing is made of tight mesh nanocellulose, preventing bacteria and other microbes from getting in. At the same time, the material lets gases and liquid through, something that is important to wound healing. The idea is that once applied, the dressing will stay on during the entire healing process. Should the wound become infected, the dressing will show a colour shift.

Non-infected wounds have a pH value of about 5.5. When an infection occurs, the wound becomes increasingly basic and may have a pH value of 8, or even higher. This is because bacteria in the wound change their surroundings to fit their optimal growth environment. An elevated pH value in the wound can be detected long before any pus, soreness or redness, which are the most common signs of infection.

To make the wound dressing show the elevated pH value, the researchers used bromthymol blue, BTB, a dye that changes colour from yellow to blue when the pH value exceeds 7. For BTB to be used in the dressing without being compromised, it was loaded onto a silica material with pores only a few nanometres in size. The silica material could then be combined with the dressing material without compromising the nanocellulose. The result is a wound dressing that turns blue when there is an infection.

Wound infections are often treated with antibiotics that spread throughout the body. But if the infection is detected at an early stage, local treatment of the wound may suffice. This is why Daniel Aili and his colleagues at Örebro University are also developing anti-microbial substances based on so-called lipopeptides [emphasis mine] that kill off all types of bacteria.

“The use of antibiotics makes infections increasingly problematic, as multi-resistant bacteria are becoming more common. If we can combine the anti-microbial substance with the dressing, we minimise the risk of infection and reduce the overuse of antibiotics,” says Daniel Aili.

Daniel Aili says that the new wound dressing and the anti-microbial substance are part of developing a new type of wound treatment in out-patient care. But as all products to be used in medical care settings have to pass rigorous and expensive testing, he thinks that it will be five to ten years before it will be available there.

Both studies are part of the HEALiX research project financed by the Swedish Foundation for Strategic Research with the objective of developing a new type of wound treatment. Funding was also received from, among others, the Swedish Government Strategic Research Area in Materials Science on Functional Materials (AFM) at Linköping University, Vinnova, the Knut and Alice Wallenberg Foundation and the Swedish Research Council.

For the curious, the HEALiX research project is here.

As noted in the press release, there are two studies. First, here’s a link and citation for the work on antimicrobial lipopeptides,

Development of novel broad-spectrum antimicrobial lipopeptides derived from plantaricin NC8 β by Emanuel Wiman, Elisa Zattarin, Daniel Aili, Torbjörn Bengtsson, Robert Selegård & Hazem Khalaf. Scientific Reports volume 13, Article number: 4104 (2023) DOI: https://doi.org/10.1038/s41598-023-31185-8
Published: 13 March 2023

This paper is open access.

Now, here’s a link to and a citation for the paper about nanocellulose-based wound dressings,

Nanocellulose composite wound dressings for real-time pH wound monitoring by Olof Eskilson, Elisa Zattarin, Linn Berglund, Kristiina Oksman, Kristina Hanna, Jonathan Rakar, Petter Sivlér, Mårten Skog, Ivana Rinklake, Rozalin Shamasha, Zeljana Sotra, Annika Starkenberg, Magnus Odén, Emanuel Wiman, Hazem Khalaf, Torbjörn Bengtsson, Johan P.E. Junker, Robert Selegård, Emma M. Björk, Daniel Aili. Materials Today Bio, Volume 19, April 2023, 100574 DOI: 10.1016/j.mtbio.2023.100574 Published online on 6 February 2023

This paper too is open access.

CARESSES your elders (robots for support)

Culturally sensitive robots for elder care! It’s about time. The European Union has funded the Culture Aware Robots and Environmental Sensor Systems for Elderly Support (CARESSES) project being coordinated in Italy. A December 13, 2018 news item on phys.org describes the project,

Researchers have developed revolutionary new robots that adapt to the culture and customs of the elderly people they assist.

Population ageing has implications for many sectors of society, one of which is the increased demand on a country’s health and social care resources. This burden could be greatly eased through advances in artificial intelligence. Robots have the potential to provide valuable assistance to caregivers in hospitals and care homes. They could also improve home care and help the elderly live more independently. But to do this, they will have to be able to respond to older people’s needs in a way that is more likely to be trusted and accepted.
The EU-funded project CARESSES has set out to build the first ever culturally competent robots to care for the elderly. The groundbreaking idea involved designing these robots to adapt their way of acting and speaking to match the culture and habits of the elderly person they’re assisting.

“The idea is that robots should be capable of adapting to human culture in a broad sense, defined by a person’s belonging to a particular ethnic group. At the same time, robots must be able to adapt to an individual’s personal preferences, so in that sense, it doesn’t matter if you’re Italian or Indian,” explained researcher Alessandro Saffiotti of project partner Örebro University, Sweden, …

A December 13, 2018 (?) CORDIS press release, which originated the news item, adds more detail about the robots and their anticipated relationship to their elderly patients,

Through its communication with an elderly person, the robot will fine-tune its knowledge by adapting it to that person’s cultural identity and individual characteristics. Using this knowledge, it will be able to remind the elderly person to take their prescribed medication, encourage them to eat healthily and be active, or help them stay in touch with family and friends. The robot will also be able to make suggestions about the appropriate clothing for specific occasions and remind people of upcoming religious and other celebrations. It doesn’t replace a care home worker. Nevertheless, it will play a vital role in helping to make elderly people’s lives less lonely and reducing the need to have a caregiver nearby at all times.

Scientists are testing the first CARESSES robots in care homes in the United Kingdom and Japan. They’re being used to assist elderly people from different cultural backgrounds. The aim is to see if people feel more comfortable with robots that interact with them in a culturally sensitive manner. They’re also examining whether such robots improve the elderly’s quality of life. “The testing of robots outside of the laboratory environment and in interaction with the elderly will without a doubt be the most interesting part of our project,” added Saffiotti.

The innovative CARESSES (Culture Aware Robots and Environmental Sensor Systems for Elderly Support) robots may pave the way to more culturally sensitive services beyond the sphere of elderly care, too. “It will add value to robots intended to interact with people. Which is not to say that today’s robots are completely culture-neutral. Instead, they unintentionally reflect the culture of the humans who build and program them.”

Having had a mother who recently died in a care facility, I can testify to the importance of cultural and religious sensitivity on the part of caregivers. As for this type of robot not replacing anyone, I take that with a grain of salt. They always say that and I expect it’s true in the initial stages but once the robots are well established and working well? Why not? After all, they’re cheaper in many, many ways and with the coming tsunami of elders in many countries around the world, it seems to me that displacement by robots is an inevitability.