Tag Archives: Organovo

3D bioprinting: a conference about the latest trends (May 3 – 5, 2017 at the University of British Columbia, Vancouver)

The University of British Columbia’s (UBC) Peter Wall Institute for Advanced Studies (PWIAS) is hosting along with local biotech firm, Aspect Biosystems, a May 3 -5, 2017 international research roundtable known as ‘Printing the Future of Therapeutics in 3D‘.

A May 1, 2017 UBC news release (received via email) offers some insight into the field of bioprinting from one of the roundtable organizers,

This week, global experts will gather [4] at the University of British
Columbia to discuss the latest trends in 3D bioprinting—a technology
used to create living tissues and organs.

In this Q&A, UBC chemical and biological engineering professor
Vikramaditya Yadav [5], who is also with the Regenerative Medicine
Cluster Initiative in B.C., explains how bioprinting could potentially
transform healthcare and drug development, and highlights Canadian
innovations in this field.

WHY IS 3D BIOPRINTING SIGNIFICANT?

Bioprinted tissues or organs could allow scientists to predict
beforehand how a drug will interact within the body. For every
life-saving therapeutic drug that makes its way into our medicine
cabinets, Health Canada blocks the entry of nine drugs because they are
proven unsafe or ineffective. Eliminating poor-quality drug candidates
to reduce development costs—and therefore the cost to consumers—has
never been more urgent.

In Canada alone, nearly 4,500 individuals are waiting to be matched with
organ donors. If and when bioprinters evolve to the point where they can
manufacture implantable organs, the concept of an organ transplant
waiting list would cease to exist. And bioprinted tissues and organs
from a patient’s own healthy cells could potentially reduce the risk
of transplant rejection and related challenges.

HOW IS THIS TECHNOLOGY CURRENTLY BEING USED?

Skin, cartilage and bone, and blood vessels are some of the tissue types
that have been successfully constructed using bioprinting. Two of the
most active players are the Wake Forest Institute for Regenerative
Medicine in North Carolina, which reports that its bioprinters can make
enough replacement skin to cover a burn with 10 times less healthy
tissue than is usually needed, and California-based Organovo, which
makes its kidney and liver tissue commercially available to
pharmaceutical companies for drug testing.

Beyond medicine, bioprinting has already been commercialized to print
meat and artificial leather. It’s been estimated that the global
bioprinting market will hit $2 billion by 2021.

HOW IS CANADA INVOLVED IN THIS FIELD?

Canada is home to some of the most innovative research clusters and
start-up companies in the field. The UBC spin-off Aspect Biosystems [6]
has pioneered a bioprinting paradigm that rapidly prints on-demand
tissues. It has successfully generated tissues found in human lungs.

Many initiatives at Canadian universities are laying strong foundations
for the translation of bioprinting and tissue engineering into
mainstream medical technologies. These include the Regenerative Medicine
Cluster Initiative in B.C., which is headed by UBC, and the University
of Toronto’s Institute of Biomaterials and Biomedical Engineering.

WHAT ETHICAL ISSUES DOES BIOPRINTING CREATE?

There are concerns about the quality of the printed tissues. It’s
important to note that the U.S. Food and Drug Administration and Health
Canada are dedicating entire divisions to regulation of biomanufactured
products and biomedical devices, and the FDA also has a special division
that focuses on regulation of additive manufacturing – another name
for 3D printing.

These regulatory bodies have an impressive track record that should
assuage concerns about the marketing of substandard tissue. But cost and
pricing are arguably much more complex issues.

Some ethicists have also raised questions about whether society is not
too far away from creating Replicants, à la _Blade Runner_. The idea is
fascinating, scary and ethically grey. In theory, if one could replace
the extracellular matrix of bones and muscles with a stronger substitute
and use cells that are viable for longer, it is not too far-fetched to
create bones or muscles that are stronger and more durable than their
natural counterparts.

WILL DOCTORS BE PRINTING REPLACEMENT BODY PARTS IN 20 YEARS’ TIME?

This is still some way off. Optimistically, patients could see the
technology in certain clinical environments within the next decade.
However, some technical challenges must be addressed in order for this
to occur, beginning with faithful replication of the correct 3D
architecture and vascularity of tissues and organs. The bioprinters
themselves need to be improved in order to increase cell viability after
printing.

These developments are happening as we speak. Regulation, though, will
be the biggest challenge for the field in the coming years.

There are some events open to the public (from the international research roundtable homepage),

OPEN EVENTS

You’re invited to attend the open events associated with Printing the Future of Therapeutics in 3D.

Café Scientifique

Thursday, May 4, 2017
Telus World of Science
5:30 – 8:00pm [all tickets have been claimed as of May 2, 2017 at 3:15 pm PT]

3D Bioprinting: Shaping the Future of Health

Imagine a world where drugs are developed without the use of animals, where doctors know how a patient will react to a drug before prescribing it and where patients can have a replacement organ 3D-printed using their own cells, without dealing with long donor waiting lists or organ rejection. 3D bioprinting could enable this world. Join us for lively discussion and dessert as experts in the field discuss the exciting potential of 3D bioprinting and the ethical issues raised when you can print human tissues on demand. This is also a rare opportunity to see a bioprinter live in action!

Open Session

Friday, May 5, 2017
Peter Wall Institute for Advanced Studies
2:00 – 7:00pm

A Scientific Discussion on the Promise of 3D Bioprinting

The medical industry is struggling to keep our ageing population healthy. Developing effective and safe drugs is too expensive and time-consuming to continue unchanged. We cannot meet the current demand for transplant organs, and people are dying on the donor waiting list every day.  We invite you to join an open session where four of the most influential academic and industry professionals in the field discuss how 3D bioprinting is being used to shape the future of health and what ethical challenges may be involved if you are able to print your own organs.

ROUNDTABLE INFORMATION

The University of British Columbia and the award-winning bioprinting company Aspect Biosystems, are proud to be co-organizing the first “Printing the Future of Therapeutics in 3D” International Research Roundtable. This event will congregate global leaders in tissue engineering research and pharmaceutical industry experts to discuss the rapidly emerging and potentially game-changing technology of 3D-printing living human tissues (bioprinting). The goals are to:

Highlight the state-of-the-art in 3D bioprinting research
Ideate on disruptive innovations that will transform bioprinting from a novel research tool to a broadly adopted systematic practice
Formulate an actionable strategy for industry engagement, clinical translation and societal impact
Present in a public forum, key messages to educate and stimulate discussion on the promises of bioprinting technology

The Roundtable will bring together a unique collection of industry experts and academic leaders to define a guiding vision to efficiently deploy bioprinting technology for the discovery and development of new therapeutics. As the novel technology of 3D bioprinting is more broadly adopted, we envision this Roundtable will become a key annual meeting to help guide the development of the technology both in Canada and globally.

We thank you for your involvement in this ground-breaking event and look forward to you all joining us in Vancouver for this unique research roundtable.

Kind Regards,
The Organizing Committee
Christian Naus, Professor, Cellular & Physiological Sciences, UBC
Vikram Yadav, Assistant Professor, Chemical & Biological Engineering, UBC
Tamer Mohamed, CEO, Aspect Biosystems
Sam Wadsworth, CSO, Aspect Biosystems
Natalie Korenic, Business Coordinator, Aspect Biosystems

I’m glad to see this event is taking place—and with public events too! (Wish I’d seen the Café Scientifique announcement earlier when I first checked for tickets  yesterday. I was hoping there’d been some cancellations today.) Finally, for the interested, you can find Aspect Biosystems here.

Cosmetics giant, L’Oréal, to 3D print skin

L’Oréal, according to a May 19, 2015 BBC (British Broadcasting Corporation) online news item, has partnered with Organovo, a 3D bioprinting startup, to begin producing skin,

French cosmetics firm L’Oreal is teaming up with bio-engineering start-up Organovo to 3D-print human skin.

It said the printed skin would be used in product tests.

Organovo has already made headlines with claims that it can 3D-print a human liver but this is its first tie-up with the cosmetics industry.

Experts said the science might be legitimate but questioned why a beauty firm would want to print skin. [emphasis mine]

L’Oreal currently grows skin samples from tissues donated by plastic surgery patients. It produces more than 100,000, 0.5 sq cm skin samples per year and grows nine varieties across all ages and ethnicities.

Its statement explaining the advantage of printing skin, offered little detail: “Our partnership will not only bring about new advanced in vitro methods for evaluating product safety and performance, but the potential for where this new field of technology and research can take us is boundless.”

The beauty and cosmetics industry has a major interest in technology, especially anything to do with the skin. I’m curious as to what kind of an expert wouldn’t realize that cosmetics companies test products on skin and might like to have a ready supply. Still, I have to admit to surprise when I first (2006) started researching nanotechnology;  L’Oréal at one point was the sixth largest nanotechnology patent holder in the US (see my Nanotech Mysteries Wiki page: Marketers put the buy in nano [scroll down to Penetration subhead]). In 2008 L’Oréal company representatives were set for a discussion on their nanotechnology efforts and the precautionary principle, which was to be hosted by the Wilson Center’s Project for Emerging Nanotechnologies (PEN). The company cancelled at a rather interesting time as I had noted in my June 19, 2008 posting. (scroll down about 40% of the way until you see mention of Dr. Andrew Maynard).

Back to 3D printing technology and cosmetics giants, a May 5, 2015 Organovo/L’Oréal press release provides more detail about the deal,

L’Oreal USA, the largest subsidiary of the world’s leading beauty company, has announced a partnership with 3-D bioprinting company Organovo Holdings, Inc. (NYSE MKT: ONVO) (“Organovo”).  Developed between L’Oreal’s U.S.-based global Technology Incubator and Organovo, the collaboration will leverage Organovo’s proprietary NovoGen Bioprinting Platform and L’Oreal’s expertise in skin engineering to develop 3-D printed skin tissue for product evaluation and other areas of advanced research.

This partnership marks the first-ever application of Organovo’s groundbreaking technology within the beauty industry.

“We developed our technology incubator to uncover disruptive innovations across industries that have the potential to transform the beauty business,” said Guive Balooch, Global Vice President of L’Oreal’s Technology Incubator.  “Organovo has broken new ground with 3-D bioprinting, an area that complements L’Oreal’s pioneering work in the research and application of reconstructed skin for the past 30 years. Our partnership will not only bring about new advanced in vitro methods for evaluating product safety and performance, but the potential for where this new field of technology and research can take us is boundless.”

Organovo’s 3D bioprinting enables the reproducible, automated creation of living human tissues that mimic the form and function of native tissues in the body.

“We are excited to be partnering with L’Oreal, whose leadership in the beauty industry is rooted in scientific innovation and a deep commitment to research and development,” said Keith Murphy, Chairman and Chief Executive Officer at Organovo. “This partnership is a great next step to expand the applications of Organovo’s 3-D bioprinting technology and to create value for both L’Oreal and Organovo by building new breakthroughs in skin modeling.”

I don’t have much information about Organovo here, certainly nothing about the supposed liver (how did I miss that?), but there is a Dec. 26, 2012 posting about its deal with software giant, Autodesk.

Autodesk in the tissue printing business

I came across the information about Autodesk’s venture into tissue printing in a Dec. 19, 2012 article by Kelsey Campbell-Dollaghan for Fast Company Co.Design.com (Note: Links have been removed),

Bioprinters–or 3-D printing hybrids that can print human tissue–have been around for a few years now. As the technology emerged, a single nagging question stuck out in the mind of this post-architecture school student: what’s the software of choice for a scientist modeling a human organ?

Today, an announcement from biomedical startup Organovo and software giant Autodesk goes a long way towards answering it. …

The Organovo Dec. 18, 2012 press release provides some detail about the deal,

Organovo Holdings, Inc. (OTCQX: ONVO) (“Organovo”), a creator and manufacturer of functional, three-dimensional human tissues for medical research and therapeutic applications, is working together with researchers at Autodesk, Inc., the leader in cloud-based design and engineering software, to create the first 3D design software for bioprinting.

The software, which will be used to control Organovo’s NovoGen MMX bioprinter, will represent a major step forward in usability and functionality for designing three-dimensional human tissues, and has the potential to open up bioprinting to a broader group of users.

This looks like it’s going to be a proprietary system, i.e., the software is designed for one type of hardware, Organovo’s hardware, reminiscent of the  late 1990s where printers in the graphic arts field were, in some cases, were trapped into proprietary computer-to-plate printing systems. There was an open source vs. proprietary systems competition which was eventually won by open source systems.

Organovo’s press release describes the technology they’ve developed,

Organovo’s 3D bioprinting technology is used to create living human tissues that are three-dimensional, architecturally correct, and made entirely of living human cells. The resulting structures can function like native human tissues, and represent an opportunity for advancement in medical research, drug discovery and development, and in the future, surgical therapies and transplantation.

The Dec. 17, 2012 article by Kim-Mai Cutler for TechCrunch adds more technical and business detail (Note: Link removed.),

Organovo, which went public earlier this year through a small cap offering and has a market cap of $98 million, manufactures a bioprinter that can create 1 millimeter-thick tissues. Based on research out of the University of Missouri, the company’s technology creates a bio-ink from cells and deposits new cells in a layer-by-layer matrix according to a computer design.

The Dec. 18, 2012 article by Joseph Flaherty for Wired magazine offers an analysis of the business advantages for both companies (Note: Links removed.),

Autodesk, the industry leader in CAD software, has announced it is partnering with biological printer manufacturer Organovo to create 3-D design software for designing and printing living tissue.

It’s an area of interest to Autodesk, whose software runs the industrial design and architecture worlds, allowing them to expand further into new fields by helping researchers interface with new tools.

“Autodesk is an excellent fit for developing new software for 3D bioprinters,” Organovo CEO Keith Murphy says in a press release. “This partnership will lead to advances in bioprinting, including both greater flexibility and throughput internally, and the potential long-term ability for customers to design their own 3D tissues for production by Organovo.”Jeff Kowalski, senior VP/CTO at Autodesk, echoes Murphy’s sentiment. “Bioprinting has the potential to change the world,” he says. “It’s a blend of engineering, biology and 3D printing, which makes it a natural for Autodesk. I think working with Organovo to explore and evolve this emerging field will yield some fascinating and radical advances in medical research.”

While this announcement is certainly big news, we’re multiple revisions away from 3-D printing replacement body parts. Even after the technical difficulties of printing organs or even tissue for live human use are worked through, any resulting process will need to be validated through complex clinical trials and a long review by the FDA and international authorities. Still, it will be exciting to see what medical researchers and DIY biohackers will do with these tools.

Oddly, as of today (Dec. 26, 2012) Autodesk has yet to post a press release about this deal on its own website.