Tag Archives: Pangaea Ventures

Nanotechnology is an enabling technology not an industry sector

Over the years I’ve heard people point out that nanotechnology isn’t really a technology in the traditional sense. It is instead a means of describing applied science performed at the molecular level.  In short, chemistry, physics, engineering, and biology at the molecular level.

An Oct. 9, 2015 article by Kevin Kelleher for Time magazine points that fact out in detail focusing largely on the business end of things (Note: Links have been removed),

Of all the investment fads and manias over the past few decades, none have been as big of a fizzle as the craze for nanotech stocks. Ten years ago, venture capitalists were scrambling for investments, startups with “nano” in their names flourished and even a few nanotech funds launched hoping to track a rising industry.

Back in 2005, the year when nanotech mania peaked, a gold rush mentality took hold. There were 1,200 nanotech startups worldwide, half of them in the U.S. VCs invested more than $1 billion in nanotech in the first half of the decade. Draper Fisher Jurvetson had nearly a fifth of its portfolio in the nanotech sector, and Steve Jurvetson proclaimed it “the next great technology wave.”

Ten years on, precious few of the nanotech stocks and venture-backed startups have delivered on their investment promise. Harris & Harris and Arrowhead are both trading at less than a tenth of their respective peaks of the last decade. Invesco liquidated its PowerShares Lux Nanotech ETF in 2014, after it underperformed the S&P 500 for seven of the previous eight years.

And many of the surviving companies that touted their nanotech credentials or put “nano” in their names now describe themselves as materials companies, or semiconductor companies, or – like Arrowhead – biopharma companies, if they haven’t changed their names entirely.

The rebranding process has been an interesting one to observe. I had Neil Branda  (professor at Simon Fraser University [Vancouver, Canada] and executive director of their 4D Labs) explain to me last year (2014) that nanotechnology was a passé term, it is now all about advanced materials.

They’re right and they’re wrong. I think rebranding companies is possible and a good idea. Locally, Pangaea Ventures is now an Advanced Materials venture capitalism company. Coincidentally, Neil Branda’s startup (scroll down about 15% of the way), Switch Materials, is in their portfolio.

However, the term nanotechnology is some 40 years old and represents an enormous social capital investment. While it’s possible it will disappear that won’t be happening for a long, long time.

Goodish article for beginners—Pangaea Ventures on the state of nanotechnology

Purnesh Seegopaul, General Partner, Pangaea Ventures Ltd., headquartered in Vancouver, Canada, has written a Jan. 21, 2013 posting, The State of Nanotechnology, for the company blog, which offers a good primer on nanotechnology along with a bit of a sales pitch,

Nanomaterials are of particular interest and at Pangaea Ventures, our focused approach on advanced materials gives us an exceptional grasp of leading-edge innovations and emerging companies developing and commercializing nano-enabled products. Engineered nanomaterial building blocks include inorganic nanoparticles, nanofibers, nanowires, quantum dots, nanotubes, nanoporous materials, dendrimers, plasmons, metamaterials, superlattices, metal organic frameworks, clays, nanocomposites, and the carbon-based nanotubes, graphene, fibers, fullerenes, and activated materials. These nanostructures are incorporated in bulk forms, coatings, films, inks, and devices. Graphene, the latest addition to the nanotech toolkit not only garnered the 2010 Nobel Prize (Geim and Nuvoselov [sic]) but also projected to extend Moore’s law in nanoelectronics. Nanobiomedical applications would allow targeted drug delivery in cancer treatment. Of course, nano-enabled products are expected to be competitive in terms of cost, performance and safety.

I do have a problem with Seegopaul’s stance on intellectual property (IP); I reported on the nanotech IP bonanza (4000 in the US for 2012)  in my Jan. 4, 2013 posting,

Companies need to understand that intellectual property is an important consideration and the IP landscape is getting busy. US patent publications in the 977 nanotech class established by the USPTO are expected to reach 4000 in 2012.

Tim Harper, Chief Executive Officer of Cientifica (the company is cited in Seegopaul’s posting) isn’t particularly enthusiastic about patents either, from Harper’s Jan. 15, 2013 posting about graphene (a nanomaterial) on the Cientifica blog, Insight,

The UK has a number of companies producing decent quality graphene – a prerequisite for any applications – and the history of nanotechnology shows us that filing huge numbers of patents is no guarantee of commercial success.

The Cientifica mention in Seegopaul’s posting was made in the context of government funding,

Nanotechnology enjoys generous funding support. Cientifica recently estimated that governments around the world invested $67 billion over the last 11 years and projected $0.25 trillion in investments from all sources by 2015! [emphasis mine] The USA is expected to spend about $1.7 billion in 2012 and $1.8 billion has been requested for 2013. I expect that nations will continue to pour significant funding into nanotechnology.

Tim Harper gave an interview about  his company’s report Global Funding of Nanotechnologies and its Impact that was published in my July 15, 2012 posting.

Seegopaul’s posting is a good introduction, despite my concern over his IP stance, to nanotechnology but the title does seem to be stretching it a bit. Panagaea Ventures has been mentioned here before (May 14, 2010 posting) in the context of a local Vancouver-based smart window company, SWITCH Materials, which was founded by Neil Branda who was himself mentioned here in a Jan. 15, 2013 posting about the Canadian government funding of the Prometheus Project; a global innovation hub at Simon Fraser University in Vancouver.

Smart windows in The Netherlands and in Vancouver

Michael Berger at Nanowerk has written a good primer on smart windows while discussing a specific project from The Netherlands. From Berger’s article,

‘Smart’ windows, or smart glass, refers to glass technology that includes electrochromic devices, suspended particle devices, micro-blinds and liquid crystal devices. Their major feature is that they can control the amount of light passing through the glass and increase energy efficiency of the room by reducing costs for heating or air-conditioning. In the case of self-powered smart windows the glass even generates the energy needed to electrically switch its transparency.

Smart windows can be electrochromic and/or photochromic. From an article by Alan Chen, of the Lawrence Berkeley National Laboratory, titled, New Photochromic Material Could Advance Energy-Efficient Windows,

A photochromic material is one that changes from transparent to a color when it is exposed to light, and reverts to transparency when the light is dimmed or blocked. An electrochromic material changes color when a small electric charge is passed through it. Both photochromic and electrochromic materials have potential applications in many types of devices.

As for how both materials could have applications appropriate for windows, Berger’s article describes a smart window that sounds like it’s both electrochromic and photochromics and has the added benefit of being able to power itself,

A new type of smart window proposed by researchers in The Netherlands makes use of a luminescent dye-doped liquid-crystal solution sandwiched in between electrically conductive plates as an energy-generating window.

The dye absorbs a variable amount of light depending on its orientation, and re-emits this light, of which a significant fraction is trapped by total internal reflection at the glass/air interface.

(For more details about this specific project, please read Berger’s full article.)

A few months ago I chanced across a local (Vancouver, Canada-based) start-up company, SWITCH Materials, that features technology for smart windows. From the company website (Technology page),

SWITCH’s advanced materials are based on novel organic molecules that react to both solar and electrical stimulation. Smart windows and lenses are the first commercial application under development at SWITCH. They darken when exposed to the sun and rapidly bleach on command when stimulated by electricity.

While competitive technologies rely on either photochromism or electrochromism, SWITCH’s hybrid technology offers the advantages of both, providing enhanced control and lower cost manufacturing.

• SWITCH’s technology also operates without requiring a continuous charge, and as a result has great potential for significant cost savings in many applications.

• The organic compounds in SWITCH’s materials are thermally stable and remain in their coloured state until electricity reverses the chemical transformation.

As far as I can tell, one of the big differences between this Canadian company’s approach and the Dutch research team’s is the Canadian’s use of organic compounds. Also, one of the key advantages (in addition to the ability to generate electricity) to the Dutch team’s approach is that users can control the window’s transmission of light.

I don’t know how close either the Canadian company (SWITCH) or the Dutch research team is to a commercial application but there is this excerpt from the Jan. 14, 2010 news release (on the Pangaea Ventures website),

SWITCH Materials Inc., an advanced materials company developing energy saving SMART window solutions, has raised $7.5M in Series B financing. The Business Development Bank of Canada (BDC Venture Capital) led the investment, with participation from existing investors GrowthWorks, Pangaea Ventures and Ventures West. Proceeds will be used for continuing R&D and to complete product commercialization.

“I am excited that an up and coming Canadian clean tech company will be added to our portfolio,” said Geoff Catherwood, Director of Venture Capital at BDC. “The technology being developed at SWITCH carries tremendous potential to address the burgeoning demand for a new generation of window technology. Producing a SMART window solution that can meet the price point required for significant market penetration will enable SWITCH to gain a leadership position in a large untapped market.” In conjunction with the financing, Mr. Catherwood will join the company’s Board of Directors.

I notice the news release makes no mention of a timeline for possible commercial applications or of competitors for that matter. In addition to the Dutch research team (there’s a Dutch company [I blogged about them here {scroll down}] that is producing something remarkably similar [it too offers control for transmission of light] to the Dutch research team’s smart windows profiled by Berger), there’s competition from the Americans who, recently, through their federal Dept. of Energy invested $72M (a loan guarantee added to previous investments) in SAGE Electrochromics.

The market for windows that could conceivably eliminate or seriously minimize the use of air conditioning is huge. In this era of concern about energy use and climate change, air conditioning is a problem as it uses a tremendous amount of energy, has a significant carbon footprint, and most importantly for business, it is expensive. Think of Hong Kong, Shanghai, Delhi, Tokyo, Rio de Janeiro, Cairo, Tel Aviv, Nairobi,  Toronto, New York, Montréal, Chicago, Paris, London, Belgrade, Berlin, etc. during their respective hot seasons and the advantages of smart windows become quite apparent.

One last thing I’d like to mention about the Canadian company, it’s a Simon Fraser University (SFU), spinoff with Neil Branda, director of SFU’s nanotechnology centre, 4D Labs as their chief technical officer. Dr. Branda’s research work was last mentioned on this blog in a posting that featured, SFU scientists their phasers on stun as part of the title.