Tag Archives: periodic table of elements

Music of the chemical elements

It’s a little late since this work was presented at the American Chemical Society’s (ACS) Spring 2023 meeting but it’s a fascinating approach to the periodic table of elements that features a longstanding interest of mine, data sonification.

A March 26, 2023 news item on phys.org announces the then upcoming presentation abut a musical version of the periodic table of elements,

In chemistry, we have He [helium], Fe [iron] and Ca [calcium]—but what about do, re and mi? Hauntingly beautiful melodies aren’t the first things that come to mind when looking at the periodic table of the elements. However, using a technique called data sonification, a recent college graduate has converted the visible light given off by the elements into audio, creating unique, complex sounds for each one. Today [March 26, 2023], the researcher reports the first step toward an interactive, musical periodic table.

A March 26, 2023 ACS news release on EurekAlert, which originated the news item, provides more detail (the presentation abstract is included),

The researcher will present his results at the spring meeting of the American Chemical Society (ACS). ACS Spring 2023 is a hybrid meeting being held virtually and in-person March 26–30 [2023], and features more than 10,000 presentations on a wide range of science topics.

Previously, W. Walker Smith, the project’s sole investigator, took his combined passions of music and chemistry and converted the natural vibrations of molecules into a musical composition. “Then I saw visual representations of the discrete wavelengths of light released by the elements, such as scandium,” says Smith. “They were gorgeous and complex, and I thought, ‘Wow, I really want to turn these into music, too.’”

Elements emit visible light when they are energized. This light is made up of multiple individual wavelengths, or particular colors, with brightness levels that are unique for each element. But on paper, the collections of wavelengths for different elements are hard to tell apart visually, especially for the transition metals, which can have thousands of individual colors, says Smith. Converting the light into sound frequencies could be another way for people to detect the differences between elements.

However, creating sounds for the elements on the periodic table has been done before. For instance, other scientists have assigned the brightest wavelengths to single notes played by the keys on a traditional piano. But this approach reduced the rich variety of wavelengths released by some elements into just a few sounds, explains Smith, who is currently a researcher at Indiana University.

To retain as much of the complexity and nuance of the element spectra as possible, Smith consulted faculty mentors at Indiana University, including David Clemmer, Ph.D., a professor in the chemistry department, and Chi Wang, D.M.A., a professor in the Jacobs School of Music. With their assistance, Smith built a computer code for real-time audio that converted each element’s light data into mixtures of notes. The discrete color wavelengths became individual sine waves whose frequency corresponded to that of the light, and their amplitude matched the brightness of the light.

Early in the research process, Clemmer and Smith discussed the pattern similarities between light and sound vibrations. For instance, within the colors of visible light, violet has almost double the frequency of red, and in music, one doubling of frequency corresponds to an octave. Therefore, visible light can be thought of as an “octave of light.” But this octave of light is at a much higher frequency than the audible range. So, Smith scaled the sine waves’ frequencies down by approximately 10-12, fitting the audio output into a range where human ears are most sensitive to differences in pitch.

Because some elements had hundreds or thousands of frequencies, the code allowed these notes to be generated in real time, forming harmonies and beating patterns as they mixed together. “The result is that the simpler elements, such as hydrogen and helium, sound vaguely like musical chords, but the rest have a more complex collection of sounds,” says Smith. For example, calcium sounds like bells chiming together with a rhythm resulting from how the frequencies interact with each other. Listening to the notes from some other elements reminded Smith of a spooky background noise, similar to music used in cheesy horror movies. He was especially surprised by the element zinc, which despite having a large number of colors, sounded like “an angelic choir singing a major chord with vibrato.”

“Some of the notes sound out of tune, but Smith has kept true to that in this translation of the elements into music,” says Clemmer. These off-key tones — known musically as microtones — come from frequencies that are found between the keys of a traditional piano. Agreeing, Wang says, “The decisions as to what’s vital to preserve when doing data sonification are both challenging and rewarding. And Smith did a great job making such decisions from a musical standpoint.”

The next step is to turn this technology into a new musical instrument with an exhibit at the WonderLab Museum of Science, Health, and Technology in Bloomington, Indiana. “I want to create an interactive, real-time musical periodic table, which allows both children and adults to select an element and see a display of its visible light spectrum and hear it at the same time,” says Smith. He adds that this sound-based approach has potential value as an alternative teaching method in chemistry classrooms, because it’s inclusive to people with visual impairments and different learning styles.

Smith acknowledges support and funding from Indiana University’s Department of Chemistry, Center for Electronic and Computer Music, and Center for Rural Engagement; an Indiana University Undergraduate Research grant; the 2022 Annual Project Jumpstart Innovation Competition; and the Indiana University Hutton Honors College Grant Program.

A recorded media briefing on this topic will be posted Monday, March 27 [2023], by 10 a.m. Eastern time at www.acs.org/acsspring2023briefings. Reporters can request access to media briefings during the embargo period by contacting newsroom@acs.org. [The ACS 2023 Spring Meeting media briefings are freely available as of June 12, 2023. The “What do the elements sound like? Media Briefing” runs approximately 11 mins.]

If you keep going past the news release, you’ll find this presentation abstract,

Title
Designing an interactive musical periodic table: sonification of visible element emission spectra

Abstract
What does the element helium sound like? What about hydrogen? While these may seem like absurd questions, the process of data sonification can be used to convert the visible spectra of chemical elements into sounds. When stimulated by electricity or heat, elements release distinct wavelengths of light depending on their electron energy levels—a sort of “chemical footprint” unique to every element. These frequencies of light, which we perceive as different colors, can be scaled into the audio range to yield different sonic frequencies, allowing one to hear the different sounds of chemical elements. This research project involved the construction of an interactive musical periodic table, combining musical and visual representations of elemental spectra from high-resolution spectral datasets.

The interactive periodic table was designed using Max/MSP, a programming language that uses digital signal processing (DSP) algorithms to generate real-time audio and visual outputs. This allows all spectral lines of an element to be played simultaneously (as a “chord”) or for individual lines to be played in succession (as a “melody”). This highly interdisciplinary project has applications spanning data analysis, STEAM (STEM [science, technology, engineering, and mathematics] + Arts) education, and public science outreach. Sonification of scientific data provides alternative methods of analysis that can expand access of such data to blind and visually impaired people. Sonification can even enhance data analysis via traditional data visualization by providing a supplementary layer of auditory information, and sonification-based learning models have been shown to improve student engagement and understanding of scientific concepts like protein folding.

This program is currently being implemented in several middle and high school music and science classes, as well as a public music/science show titled “The Sound of Molecules” at WonderLab Museum of Science. Future work will focus on designing a free and open-source version of the program that does not require specialized DSP software.

Oldest periodic table chart and a new ‘scarcity’ periodic table of elements at University of St. Andrews (Scotland)

The University of St. Andrews kicked off the new year (2019) by announcing the discovery of what’s believed to the world’s oldest periodic table chart. From a January 17, 2019 news item on phys.org

A periodic table chart discovered at the University of St Andrews is thought to be the oldest in the world.

The chart of elements, dating from 1885, was discovered in the University’s School of Chemistry in 2014 by Dr. Alan Aitken during a clear out. The storage area was full of chemicals, equipment and laboratory paraphernalia that had accumulated since the opening of the chemistry department at its current location in 1968. Following months of clearing and sorting the various materials a stash of rolled up teaching charts was discovered. Within the collection was a large, extremely fragile periodic table that flaked upon handling. Suggestions that the discovery may be the earliest surviving example of a classroom periodic table in the world meant the document required urgent attention to be authenticated, repaired and restored.

Courtesy: University of St. Andrews

A January 17, 2019 University of St. Andrews press release, which originated the news item, describes the chart and future plans for it in more detail,

Mendeleev made his famous disclosure on periodicity in 1869, the newly unearthed table was rather similar, but not identical to Mendeleev’s second table of 1871. However, the St Andrews table was clearly an early specimen. The table is annotated in German, and an inscription at the bottom left – ‘Verlag v. Lenoir & Forster, Wien’­ – identifies a scientific printer who operated in Vienna between 1875 and 1888. Another inscription – ‘Lith. von Ant. Hartinger & Sohn, Wien’ – identifies the chart’s lithographer, who died in 1890. Working with the University’s Special Collections team, the University sought advice from a series of international experts. Following further investigations, no earlier lecture chart of the table appears to exist. Professor Eric Scerri, an expert on the history of the periodic table based at the University of California, Los Angeles, dated the table to between 1879 and 1886 based on the represented elements. For example, both gallium and scandium, discovered in 1875 and 1879 respectively, are present, while germanium, discovered in 1886, is not.

In view of the table’s age and emerging uniqueness it was important for the teaching chart to be preserved for future generations. The paper support of the chart was fragile and brittle, its rolled format and heavy linen backing contributed to its poor mechanical condition. To make the chart safe for access and use it received a full conservation treatment. The University’s Special Collections was awarded a funding grant from the National Manuscripts Conservation Trust (NMCT) for the conservation of the chart in collaboration with private conservator Richard Hawkes (Artworks Conservation). Treatment to the chart included: brushing to remove loose surface dirt and debris, separating the chart from its heavy linen backing, washing the chart in de-ionised water adjusted to a neutral pH with calcium hydroxide to remove the soluble discolouration and some of the acidity, a ‘de-acidification’ treatment by immersion in a bath of magnesium hydrogen carbonate to deposit an alkaline reserve in the paper, and finally repairing tears and losses using a Japanese kozo paper and wheat starch paste. The funding also allowed production of a full-size facsimile which is now on display in the School of Chemistry. The original periodic table has been rehoused in conservation grade material and is stored in Special Collections’ climate-controlled stores in the University.

A researcher at the University, M Pilar Gil from Special Collections, found an entry in the financial transaction records in the St Andrews archives recording the purchase of an 1885 table by Thomas Purdie from the German catalogue of C Gerhardt (Bonn) for the sum of 3 Marks in October 1888. This was paid from the Class Account and included in the Chemistry Class Expenses for the session 1888-1889. This entry and evidence of purchase by mail order appears to define the provenance of the St Andrews periodic table. It was produced in Vienna in 1885 and was purchased by Purdie in 1888. Purdie was professor of Chemistry from 1884 until his retirement in 1909. This in itself is not so remarkable, a new professor setting up in a new position would want the latest research and teaching materials. Purdie’s appointment was a step-change in experimental research at St Andrews. The previous incumbents had been mineralogists, whereas Purdie had been influenced by the substantial growth that was taking place in organic chemistry at that time. What is remarkable however is that this table appears to be the only surviving one from this period across Europe. The University is keen to know if there are others out there that are close in age or even predate the St Andrews table.

Professor David O’Hagan, recent ex-Head of Chemistry at the University of St Andrews, said: “The discovery of the world’s oldest classroom periodic table at the University of St Andrews is remarkable. The table will be available for research and display at the University and we have a number of events planned in 2019, which has been designated international year of the periodic table by the United Nations, to coincide with the 150th anniversary of the table’s creation by Dmitri Mendeleev.”

Gabriel Sewell, Head of Special Collections, University of St Andrews, added: “We are delighted that we now know when the oldest known periodic table chart came to St Andrews to be used in teaching.  Thanks to the generosity of the National Manuscripts Conservation Trust, the table has been preserved for current and future generations to enjoy and we look forward to making it accessible to all.”

They’ve timed their announcement very well since it’s UNESCO’s (United Nations Educational, Scientific and Cultural Organization) 2019 International Year of the Periodic Table of Chemical Elements (IYPT2019). My January 8, 2019 posting offers more information and links about the upcoming festivities. By the way, this year is also the table’s 150th anniversary.

Getting back to Scotland, scientists there have created a special Periodic Table of Elements charting ‘element scarcity’, according to a January 22, 2019 University of St. Andrews press release,

Scientists from the University of St Andrews have developed a unique periodic table which highlights the scarcity of elements used in everyday devices such as smart phones and TVs.

Chemical elements which make up mobile phones are included on an ‘endangered list’ in the landmark version of the periodic table to mark its 150th anniversary. Around ten million smartphones are discarded or replaced every month in the European Union alone. The European Chemical Society (EuChemS), which represents more than 160,000 chemists, has developed the unique periodic table to highlight both the remaining availability of all 90 elements and their vulnerability.

The unique updated periodic table will be launched at the European Parliament today (Tuesday 22 January), by British MEPs Catherine Stihler and Clare Moody. The event will also highlight the recent discovery of the oldest known wallchart of the Periodic Table, discovered last year at the University of St Andrews.

Smartphones are made up of around 30 elements, over half of which give cause for concern in the years to come because of increasing scarcity – whether because of limited supplies, their location in conflict areas, or our incapacity to fully recycle them.

With finite resources being used up so fast, EuChemS Vice-President and Emeritus Professor in Chemistry at the University of St Andrews, Professor David Cole-Hamilton, has questioned the trend for replacing mobile phones every two years, urging users to recycle old phones correctly. EuChemS wants a greater recognition of the risk to the lifespan of elements, and the need to support better recycling practices and a true circular economy.

Professor David Cole-Hamilton said: “It is astonishing that everything in the world is made from just 90 building blocks, the 90 naturally occurring chemical elements.

“There is a finite amount of each and we are using some so fast that they will be dissipated around the world in less than 100 years.

“Many of these elements are endangered, so should you really change your phone every two years?”

Catherine Stihler, Labour MEP for Scotland and former Rector of the University of St Andrews, said: “As we mark the 150th anniversary of the periodic table, it’s fascinating to see it updated for the 21st century.

“But it’s also deeply worrying to see how many elements are on the endangered list, including those which make up mobile phones.

“It is a lesson to us all to care for the world around us, as these naturally-occurring elements won’t last forever unless we increase global recycling rates and governments introduce a genuine circular economy.”

Pilar Goya, EuChemS President, said: “For EuChemS, the supranational organisation representing more than 160,000 chemists from different European countries, the celebration of the International Year of the Periodic Table is a great opportunity to communicate the crucial role of chemistry in overcoming the challenges society will be facing in the near future.”

The new Periodic Table can be viewed online.

‘The Periodic Table and us: its history, meaning and element scarcity’ takes place at The European Parliament, Brussels, Belgium on 22 January 2019. The two-hour session features speakers from the chemical sciences as well as representatives from the European Parliament and the European Commission.

This year (2019) is the United Nations International Year of the Periodic Table (IYPT2019) and the 150th anniversary of scientist Dmitri Mendeleev’s discovery of the periodic system as we now know it. Natalia Tarasova, Past-President of the International Union of Pure and Applied Chemistry (IUPAC), will present the IYPT2019.

The Periodic Table of chemical elements is one of the most significant scientific achievements and is today one of the best-known symbols of science, recognised and studied by people around the globe.

EuChemS, the European Chemical Society, coordinates the work of 48 chemical societies and other chemistry related organisations, representing more than 160,000 chemists. Through the promotion of chemistry and by providing expert and scientific advice, EuChemS aims to take part in solving today’s major societal challenges.

Here’s what the ‘new’ periodic table looks like:

Courtesy: University of St. Andrews and EuChemS

The origins of gold and other precious metals

The link between this research and my side project on gold nanoparticles is a bit tenuous but this work on the origins for gold and other precious metals being found in the stars is so fascinating and I’m determined to find a connection.

An artist's impression of two neutron stars colliding. (Credit: Dana Berry / Skyworks Digital, Inc.) Courtesy: Kavli Foundation

An artist’s impression of two neutron stars colliding. (Credit: Dana Berry / Skyworks Digital, Inc.) Courtesy: Kavli Foundation

From a May 19, 2016 news item on phys.org,

The origin of many of the most precious elements on the periodic table, such as gold, silver and platinum, has perplexed scientists for more than six decades. Now a recent study has an answer, evocatively conveyed in the faint starlight from a distant dwarf galaxy.

In a roundtable discussion, published today [May 19, 2016?], The Kavli Foundation spoke to two of the researchers behind the discovery about why the source of these heavy elements, collectively called “r-process” elements, has been so hard to crack.

From the Spring 2016 Kavli Foundation webpage hosting the  “Galactic ‘Gold Mine’ Explains the Origin of Nature’s Heaviest Elements” Roundtable ,

RESEARCHERS HAVE SOLVED a 60-year-old mystery regarding the origin of the heaviest elements in nature, conveyed in the faint starlight from a distant dwarf galaxy.

Most of the chemical elements, composing everything from planets to paramecia, are forged by the nuclear furnaces in stars like the Sun. But the cosmic wellspring for a certain set of heavy, often valuable elements like gold, silver, lead and uranium, has long evaded scientists.

Astronomers studying a galaxy called Reticulum II have just discovered that its stars contain whopping amounts of these metals—collectively known as “r-process” elements (See “What is the R-Process?”). Of the 10 dwarf galaxies that have been similarly studied so far, only Reticulum II bears such strong chemical signatures. The finding suggests some unusual event took place billions of years ago that created ample amounts of heavy elements and then strew them throughout the galaxy’s reservoir of gas and dust. This r-process-enriched material then went on to form Reticulum II’s standout stars.

Based on the new study, from a team of researchers at the Kavli Institute at the Massachusetts Institute of Technology, the unusual event in Reticulum II was likely the collision of two, ultra-dense objects called neutron stars. Scientists have hypothesized for decades that these collisions could serve as a primary source for r-process elements, yet the idea had lacked solid observational evidence. Now armed with this information, scientists can further hope to retrace the histories of galaxies based on the contents of their stars, in effect conducting “stellar archeology.”

The Kavli Foundation recently spoke with three astrophysicists about how this discovery can unlock clues about galactic evolution as well as the abundances of certain elements on Earth we use for everything from jewelry-making to nuclear power generation. The participants were:

  • Alexander Ji – is a graduate student in physics at the Massachusetts Institute of Technology (MIT) and a member of the MIT Kavli Institute for Astrophysics and Space Research (MKI). He is lead author of a paper in Nature describing this discovery.
  • Anna Frebel – is the Silverman Family Career Development Assistant Professor in the Department of Physics at MIT and also a member of MKI. Frebel is Ji’s advisor and coauthored the Nature paper. Her work delves into the chemical and physical conditions of the early universe as conveyed by the oldest stars.
  • Enrico Ramirez-Ruiz – is a Professor of Astronomy and Astrophysics at the University of California, Santa Cruz. His research explores violent events in the universe, including the mergers of neutron stars and their role in generating r-process elements.

Here’s a link to and citation for Ji’s and Frebel’s paper about r-process elements in the stars,

R-process enrichment from a single event in an ancient dwarf galaxy by Alexander P. Ji, Anna Frebel, Anirudh Chiti, & Joshua D. Simon. Nature 531, 610–613 (31 March 2016) doi:10.1038/nature17425 Published online 21 March 2016

This paper is behind a paywall but you can read an edited transcript of the roundtable discussion on the Galactic ‘Gold Mine’ Explains the Origin of Nature’s Heaviest Elements webpage (keep scrolling past the introductory text).

As for my side project, Steep (2) on gold nanoparticles, that’s still in the planning stages but if there’s a way to include this information, I’ll do it.

Chad Mirkin’s periodic table of modified nucleic acid nanoparticles

Chad Mirkin has been pushing his idea for a new periodic table of ‘nanoparticles’ since at least Feb. 2013 (I wrote about this and some of Mirkin’s other work in my Feb. 19, 2013 posting) when he presented it at the 2013 American Association for the Advancement of Science (AAAS) annual meeting in Boston, Massachusetts. From a Feb. 17, 2013 news item on ScienceDaily,

Northwestern University’s Chad A. Mirkin, a leader in nanotechnology research and its application, has developed a completely new set of building blocks that is based on nanoparticles and DNA. Using these tools, scientists will be able to build — from the bottom up, just as nature does — new and useful structures.

Mirkin will discuss his research in a session titled “Nucleic Acid-Modified Nanostructures as Programmable Atom Equivalents: Forging a New Periodic Table” at the American Association for the Advancement of Science (AAAS) annual meeting in Boston.

“We have a new set of building blocks,” Mirkin said. “Instead of taking what nature gives you, we can control every property of the new material we make. [emphasis mine] We’ve always had this vision of building matter and controlling architecture from the bottom up, and now we’ve shown it can be done.”

Mirkin seems a trifle grandiose; I’m hoping he doesn’t have any grand creation projects that require seven days.

Getting back to the new periodic table, the Feb. 13, 2013 Northwestern University news release by Megan Fellman, which originated the news item,  provides a few more details,

Using nanoparticles and DNA, Mirkin has built more than 200 different crystal structures with 17 different particle arrangements. Some of the lattice types can be found in nature, but he also has built new structures that have no naturally occurring mineral counterpart.
….
Mirkin can make new materials and arrangements of particles by controlling the size, shape, type and location of nanoparticles within a given particle lattice. He has developed a set of design rules that allow him to control almost every property of a material.

New materials developed using his method could help improve the efficiency of optics, electronics and energy storage technologies. “These same nanoparticle building blocks have already found wide-spread commercial utility in biology and medicine as diagnostic probes for markers of disease,” Mirkin added.

With this present advance, Mirkin uses nanoparticles as “atoms” and DNA as “bonds.” He starts with a nanoparticle, which could be gold, silver, platinum or a quantum dot, for example. The core material is selected depending on what physical properties the final structure should have.

He then attaches hundreds of strands of DNA (oligonucleotides) to the particle. The oligonucleotide’s DNA sequence and length determine how bonds form between nanoparticles and guide the formation of specific crystal lattices.

“This constitutes a completely new class of building blocks in materials science that gives you a type of programmability that is extraordinarily versatile and powerful,” Mirkin said. “It provides nanotechnologists for the first time the ability to tailor properties of materials in a highly programmable way from the bottom up.”

Mirkin and his colleagues have since published a paper about this new periodic table in Angewandte Chemie (May 2013). And, earlier today (July 5, 2013) Philip Ball writing (A self-assembled periodic table) for the Royal Society of Chemistry provided a critique of the idea while supporting it in principle,

Mirkin and his colleagues perceive the pairing of [DNA] strands as somewhat analogous to the covalent pairing of electrons and call their DNA-tagged nanoparticles programmable atom equivalents (PAEs). These PAEs may bind to one another according to particular combinatorial rules and Mirkin proposes a kind of periodic table of PAEs that systematises their possible interactions and permutations.
Well, it’s not hard to start enumerating ways in which PAEs are unlike atoms. Most fundamentally, perhaps, the bonding propensity of a PAE need bear no real relation to the ‘atom’ (the nanoparticle) with which it is associated: a given nanoparticle might be paired with any other, and there’s nothing periodic about those tendencies.

I recommend reading Ball’s piece for the way he analyzes the weaknesses and for why he thinks the effort to organize PAEs conceptually is worthwhile.

For the curious, here’s a link to and a citation for the researchers’ published paper,

Nucleic Acid-Modified Nanostructures as Programmable Atom Equivalents: Forging a New “Table of Elements by Robert J. Macfarlane, Matthew N. O’Brien, Dr. Sarah Hurst Petrosko, and Prof. Chad A. Mirkin. Angewandte Chemie International Edition Volume 52, Issue 22, pages 5688–5698, May 27, 2013. Article first published online: 2 MAY 2013 DOI: 10.1002/anie.201209336

Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.

One final comment, this is not the first ‘nanoparticle table of elements’.  Larry Bell mentioned one in his Dec. 7, 2010 NISENet (Nanoscale Informal Science Education Network) blog posting,

The focus of today’s sessions at NSF’s [US National Science Foundation] meeting of nanoscale science and engineering grantees focuses on putting the science to practical use. First up this morning is nanomanufacturing. Mark Tuonimen from the University of Massachusetts at Amherst gave a talk about the Nanoscale Manufacturing Network and one of his images caught my imagination. This image, which comes from the draft Nano2 vision document on the next decade of nanoscale research, illustrates and idea that is sometimes referred to as a periodic table of nanoparticles.

[downloaded from http://www.nisenet.org/blogs/observations_insights/periodic_table_nanoparticles]

[downloaded from http://www.nisenet.org/blogs/observations_insights/periodic_table_nanoparticles]

Bell goes on to describe one way in which a nanoparticle table of elements would have to differ from the traditional chemistry table.

Kick up your heels to the periodic table of elements sung to the sounds of the can-can (Offenbach’s Infernal Galop)

First the fun (*ETA: June 17, 2016: Sadly, this video no longer seems to be freely available but there is an updated version in my June 17, 2016 posting about the provisional names for four new elements.),

You may to want to check out Jennifer Miller’s May 20, 2013 Fast Company article about this effort where she highlights one of the cheekier illustrations in this periodic table of elements song from AsapSCIENCE (Mitchell Moffit and Gregory Brown).

I found out more about AsapSCIENCE and the duo (former classmates at the University of Guelph in Ontario, Canada) in a Sept. 18, 2012 article by Chase Hoffberger for the Daily Dot,

Mitchell Moffit and Gregory Brown are the two former University of Guelph classmates behind asapSCIENCE, a young but massively informative and entertaining YouTube channel that produces three-minute lessons on all the scientific questions that you actually want answered: “The Scientific Power of Naps.” …

“We’re trying to keep a balance of the things that people want to know as well as cool tidbits that people would never have any idea about,” Moffit, 23, told the Daily Dot from his home in Ontario, where he holds down production and most video voiceovers while Brown spends the year teaching science in England.

“We’re interested in inspiring people who maybe don’t know a lot about science and think of it as this hard subject in school,” Moffit said.

The perfect example’s “The Science of Orgasms,” which more than 380,000 people have viewed in the past week and comes packed with far more knowledge and insight than the time your dad tried to put a condom on a cucumber.

At the time of the Daily Dot article (Sept. 2012), AsapSCIENCE had been making videos for three months and already had more than 40,000 subscribers on their YouTube channel. After checking this morning (May 21, 2013), I see the channel has over 784,000 subscribers. Bravo!

I have written about the periodic table of elements before. This Feb. 8, 2012 posting features Daniel Radcliffe (Harry Potter) singing Tom Lehrer’s classic Periodic Table of Elements song.

A few minutes on the fabulousness of the periodic table of elements

I love the periodic table of elements and thought I was alone in my appreciation. I kept the secret close to me right into adulthood where I received quite a shock. It turns out I’m not alone and many, many others are just interested, if not downright obsessed.

In her Feb. 7, 2012 posting for the Guardian Science blogs, GrrlScientist profiles a new book about the periodic table of elements (The Periodic Table: A Very Short Introduction by University of California at Los Angeles lecturer and writer Eric Scerri). From the posting,

… we are introduced to an interesting cast of international characters, including physicists, chemists, geologists, teachers, tradesmen and nobleman, all who played a role in the discovery and evolution of the periodic table. Notably, we meet Scottish physician, William Prout, whose proposal that all matter was composed of hydrogen atoms motivated the scientists of the day to obtain ever more accurate weights for each atom in their quest to prove whether his hypothesis was correct. We meet Danish-American eccentric, Gustavus Hinrichs, who saw the connection between the frequencies of spectra emitted by the elements and the internal structures of their atoms. We also meet German physical chemist, Julius Lothar Meyer, who is considered by some historians to be the co-discoverer of the periodic table, along with the Russian scientist, Dimitri Mendeleev, who sketched out his periodic table on the back of an invitation to a local cheese factory.

This isn’t the only recent book about the periodic table of elements. Sam Kean’s The Disappearing Spoon: And Other True Tales of Madness, Love, and the History of the World From the Periodic Table of the Elements published in 2010 was mentioned in my July 15, 2010 posting. In that posting I also mentioned and rhapsodized about a visual reworking of the periodic table of elements by Philip Stewart into something he called The Chemical Galaxy.

I see you can now purchase the poster through The Chemical Galaxy store but you can also order it from the Science Mall. At the time I purchased the poster, the Science Mall was the only option for someone in North America and I had a very good experience with them. Here’s what the poster looks like,

The Chemical Galaxy by Philip Stewart

Unfortunately, this image is too small to offer much detail but The Chemical Galaxy website does offer a larger version. Unfortunately, it doesn’t quite convey the sheer gorgeousness of Stewart’s visualization.

For those who prefer a more musical approach, here’s Daniel Radcliffe (of Harry Potter fame) singing ‘The Elements’ song (originally written and performed by Tom Lehrer)

I look forward to reading the new book once I shoehorn it into my schedule. Who knows? Maybe I’ll finally write that suite of poems based on the elements in the periodic table.

Table of periodic elements inscribed on a hair

Martyn Poliakoff, a chemistry professor at the University of Nottingham (UK), celebrated his birthday by going to the university’s Nanotechnology and Nanoscience Centre to have the world’s smalled periodic table of elements inscribed on a hair from his head. From the Oct.  3, 2011 news item on BBC News,

Scientists have created the world’s smallest periodic table on a strand of hair at the University of Nottingham.

An imaging microscope and a beam of accelerated ions were used to put the table on the hair, which belonged to chemistry professor Martyn Poliakoff.

Guinness World Records has now confirmed it as the smallest ever made.

Here’s the Youtube video where Dr. Poliakoff takes us through the process of inscribing the table of periodic elements on a hair,

Happy Birthday Dr. Poliakoff! (You may be familiar with Dr. Martyn Poliakoff through the Periodic Table of Videos website (or their Youtube channel) where he and colleagues at the University of Nottingham have developed a worldwide following for their videos about chemistry and the elements.

ETA Oct. 4, 2011: There are a few more details about Professor Poliakoff in this Oct. 3, 2011 news item on Nanowerk.

Canadian helps to revise periodic table of elements

A professor (Michael Wieser) at the University of Calgary is making a bit of a splash, so to speak, with his contributions to the changes being made to the periodic table of elements. According to the Dec. 15, 2010 news item on the CBC News website,

Science’s ubiquitous periodic table of the elements is getting a fresh face courtesy of a team led by an Alberta researcher.

As part of the revamp, the atomic weights of at least 10 elements — among them oxygen, carbon and nitrogen — are to be restated, said Michael Wiesner [sic], an associate professor at the University of Calgary.

The update is meant to better reflect how the elements vary in the natural world.

To start with, an international group of scientists will restate the weights of 10 elements, classifying them as a low and a high, known as an interval. The interval varies depending on where the elements are found in nature.

“These are the 10 where we’ve completed the review,” Wieser said on Tuesday. “There’s another series we’re working on right now.”

Apparently, this is the first revision of this type (there have been many additions and moves) to the table since it was developed in 1869 by Mendeleev. (The table is attributed to Dmitri Mendeleev although the history of its development is a little more complicated than I have time for here. Sam Kean’s book, The Disappearing Spoon: And Other True Tales of Madness, Love, and the History of the World from the Periodic Table of the Elements, goes into more detail about it all.)

The implications of these 2010 changes are quite interesting,

Wiesner [sic], who is secretary of the Commission on Isotopic Abundances and Weights for the International Union of Pure and Applied Chemistry, has co-authored a paper outlining the revisions in the journal Pure and Applied Chemistry.

“People have used atomic weight data to look at nuclear processes occurring in the solar system … we can say something about the formation of the solar system and the planets,” he said.

“People are probably comfortable with having a single value for the atomic weight, but that is not the reality for our natural world.

As noted in the Dec. 15, 2010 news item on physorg.com, an impact will be felt in the classrooms,

“Though this change offers significant benefits in the understanding of chemistry, one can imagine the challenge now to educators and students who will have to select a single value out of an interval when doing chemistry calculations,” says Dr. Fabienne Meyers, associate director of IUPAC.

Not all elements will undergo changes (from physorg.com),

Elements with only one stable isotope do not exhibit variations in their atomic weights. For example, the standard atomic weights for fluorine, aluminum, sodium and gold are constant, and their values are known to better than six decimal places.

I think someone got a little overexcited about this,

For the first time in history, a change will be made to the atomic weights of some elements listed on the Periodic table of the chemical elements posted on walls of chemistry classrooms and on the inside covers of chemistry textbooks worldwide. [emphasis mine]

The periodic table of elements is an intellectual construct which was developed in the mid-19 century. For me and most folks, science provides our best guesses but very rarely any certainties. Gravity is a law of physics at the macro level (unless someone manages to prove differently) but when you’re talking about the quantum world, we believe and it seems to be true, experimentally, that a whole other set of rules apply.

More about bubble chambers

Imagine (or not) my surprise at running across a story about how bubble chambers were developed just a day after discovering The Bubble Chamber blog. I found the story serendipitously when reading the Sam Kean book about the periodic table of elements, The Disappearing Spoon. Here’s my seriously shortened version of the story Kean tells:

A young scientist by the name of Donald Glaser was drinking beer and while staring at the bubbles streaming though it got to thinking about particle physics. (Glaser was a junior faculty member at the nearby University of Michigan in the early 1950s when this took place.) There was a belief amongst physicists of that time that particles might lead to the overthrow of the periodic table of elements as the fundamental map of matter. But, the inability to ‘see’ the particles was holding the physicists back. That night, Glaser, inspired by his beer, decided that bubbles might serve as a means to ‘see’ particles.

In his first attempt to create a bubble chamber, Glaser used beer as the liquid at which he aimed an atomic gun in order to bombard it with particles. The first attempts didn’t work and left a bad smell in the lab so Glaser and a colleague refined the experiment to use liquid hydrogenin place of the beer. This refinement worked so well that Glaser won the Nobel Prize at the age of 33.

ASME’s introductory nanotechnology podcast doesn’t mention the word billionth

It’s a landmark moment, I have never before come across an introductory nanotechnology presentation where they make no reference to ‘billionth’ as in, nanometre means one billionth of a metre.

The American Society of Mechanical Engineers now known as ASME offers a series of podcasts about nanotechnology on its website. This page is where you can sign up to get free access. (You might want to take a look at that agreement before submitting it. More about that later.) I saw the first installation on Andrew Maynard’s 2020 Science blog here. Andrew is prominently featured in this first podcast.

I enjoyed the podcast and found this new approach to introducing nanotechnology quite intriguing and I suspect they’re going in the right direction. 1 billionth of a metre or of a second doesn’t really convey that much information for most of us. Personally, I visualize the existence of alternate realities, tiny worlds of atoms and molecules which I believe to be present but are not perceptible to me through my senses.

It’s been decades since I first saw a representation of an atom or a molecule but the resemblance to planets has often played in my imagination since. They will always be planets for me, regardless of the fact that more accurate representations exist than the ones I saw so many years ago.

I think it’s the poetic aspect of it all, as if we carry worlds within us while our own planet may be simply an atom in someone else’s universe. One of these days when I have a better handle on what I’m trying to say here,  I will write a poem about it.

Actually, I’ve been meaning to do a series of poems based on the periodic table of elements ever since I saw a revisioning of the periodic table, The Chemical Galaxy by Philip Stewart. The desire was reawakened recently on finding Sam Kean’s series Blogging the Periodic Table, for Slate Magazine. From Kean’s first entry,

I’m blogging about the periodic table this month in conjunction with my new book, The Disappearing Spoon: And Other True Tales of Madness, Love, and the History of the World From the Periodic Table of the Elements. Now, I know not everyone has fond memories of the periodic table, but it got to me early—thanks to one element, mercury. I used to break those old-fashioned mercury thermometers all the time as a kid (accidentally, I swear), and I was always fascinated to see the little balls of liquid metal rolling around on the floor. My mother used to sweep them up with a toothpick, and we kept a jar with a pecan-size glob of all the mercury from all the broken thermometers on a knickknack shelf in our house.

But what really reinforced my love of mercury—and got me interested in the periodic table as a whole—was learning about all the places that mercury popped up in history. Lewis and Clark hauled 600 mercury-laced laxative tablets with them when they explored the interior of America—historians have tracked down some places where they stayed based on deposits in the soil. The so-called mad hatters (like the one in Alice in Wonderland) went crazy because of the mercury in the vats in which they cleaned fur pelts.

Mercury made me see how many different areas of life the periodic table intersects with, and I wrote The Disappearing Spoon because I realized that you can say the same about every single element on the table. There are hidden tales about familiar elements like gold, carbon, and lead and even obscure elements like tellurium and molybdenum have wonderful, often wild back stories.

There are eight more entries as of 11:25 am PST, July 15, 2010. I wish Kean good luck as he sells his book. By the way, he’ll be blogging until early August 2010.

Getting back to ASME and their nanotechnology podcasts. I haven’t signed up and am not sure I will. They are insisting on copyright in their  user agreement (link to page),

Copyrights. All rights, including copyright and database right, in this Site and its contents (including, but not limited to, all text, images, software, video clips, audio clips) (collectively, “Content”), are owned by the American Society of Mechanical Engineers (ASME), or otherwise used by ASME as permitted by applicable law or agreement.

Content Displayed on the Website. User shall not remove, obscure or alter the Content. User shall not distribute, rent, lease, transfer or otherwise make the Content available to any third party, or use the Content for systematic downloading, and/or the making of print or electronic copies for transmission to non-subscribers. User may download only the video clips designated on the Website as downloadable and may not share video URLs with non-subscribers. [emphases mine]

If I read those passages correctly, I’m prevented from copying any portion of the materials from their website and reproducing them on this blog to nonsubscribers. (I trust reproducing portions of their ‘user agreement’ won’t land me into trouble.) Since I copy and excerpt with a very high rate of frequency (being careful to give attribution and links while excerpting portions only), I don’t want to be placed in the position of having to ask for permission each and every time I’d like to copy something from the ASME site.  A lot of my entries are timely so I don’t want to wait and, frankly, I don’t understand what their problems with activities such as mine might be.  I suspect that this agreement will prove overly prohibitive and I hope the ASME folks will reconsider their approach to copyright. I really would like to view a few of their podcasts.