Tag Archives: PETA International Science Consortium

More from PETA (People for the Ethical Treatment of Animals) about nanomaterials and lungs

Science progress by increments. First, there was this April 27, 2016 post featuring some recent work by the organization, People for the Ethical Treatment of Animals (PETA) focused on nanomaterials and lungs. Now approximately one month later, PETA announces a new paper on the topic according to a May 26, 2016 news item on phys.org,

A scientist from the PETA International Science Consortium Ltd. is the lead author of a review on pulmonary fibrosis that results from inhaling nanomaterials, which has been published in Archives of Toxicology. The coauthors are scientists from Health Canada, West Virginia University, and the University of Fribourg in Switzerland.

A May 26, 2016 PETA news release on EurekAlert, which originated the news item, provides more detail (Note: Links have been removed),

The increasing use of nanomaterials in consumer goods such as paint, building materials, and food products has increased the likelihood of human exposure. Inhalation is one of the most prominent routes by which exposure can occur, and because inhalation of nanomaterials may be linked to lung problems such as pulmonary fibrosis, testing is conducted to assess the safety of these materials.

The review is one part of the proceedings of a 2015 workshop [mentioned in my Sept. 3, 2015 posting] organized by the PETA International Science Consortium, at which scientists discussed recommendations for designing an in vitro approach to assessing the toxicity of nanomaterials in the human lung. The workshop also produced another report that was recently published in Archives of Toxicology (Clippinger et al. 2016) and a review published in Particle and Fibre Toxicology (Polk et al. 2016) [mentioned in my April 27, 2016 posting] on exposing nanomaterials to cells grown in vitro.

The expert recommendations proposed at the workshop are currently being used to develop an in vitro system to predict the development of lung fibrosis in humans, which is being funded by the Science Consortium.

“International experts who took part in last year’s workshop have advanced the understanding and application of non-animal methods of studying nanomaterial effects in the lung,” says Dr. Monita Sharma, nanotoxicology specialist at the Consortium and lead author of the review in Archives of Toxicology. “Good science is leading the way toward more humane testing of nanomaterials, which, in turn, will lead to better protection of human health.”

Here’s a link to and a citation for the paper,

Predicting pulmonary fibrosis in humans after exposure to multi-walled carbon nanotubes (MWCNTs) by Monita Sharma, Jake Nikota, Sabina Halappanavar, Vincent Castranova, Barbara Rothen-Rutishauser, Amy J. Clippinger. Archives of Toxicology pp 1-18 DOI: 10.1007/s00204-016-1742-7 First online: 23 May 2016

This paper is behind a paywall.

Study nanomaterial toxicity without testing animals

The process of moving on from testing on animals is laborious as new techniques are pioneered and, perhaps more arduously, people’s opinions and habits are changed. The People for the Ethical Treatment of Animals (PETA) organization focusing the research end of things has announced a means of predicting carbon nanotube toxicity in lungs according to an April 25, 2016 news item on Nanowerk (Note: A link has been removed),

A workshop organized last year [2015] by the PETA International Science Consortium Ltd has resulted in an article published today in the journal Particle and Fibre Toxicology (“Aerosol generation and characterization of multi-walled carbon nanotubes [MWCNTs] exposed to cells cultured at the air-liquid interface”). It describes aerosol generation and exposure tools that can be used to predict toxicity in human lungs following inhalation of nanomaterials.

An April 25, 2016 PETA press release on EurekAlert, which originated the news item, explains further without much more detail,

Nanomaterials are increasingly being used in consumer products such as paints, construction materials, and food packaging, making human exposure to these materials more likely. One of the common ways humans may be exposed to these substances is by inhalation, therefore, regulatory agencies often require the toxicity of these materials on the lungs to be tested. These tests usually involve confining rats to small tubes the size of their bodies and forcing them to breathe potentially toxic substances before they are killed. However, time, cost, scientific and ethical issues have led scientists to develop methods that do not use animals. The tools described in the new article are used to deposit nanomaterials (or other inhalable substances) onto human lung cells grown in a petri dish.

Co-authors of the Particle and Fibre Toxicology article are scientists from the PETA Science Consortium , The Dow Chemical Company, Baylor University, and the U.S. NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM).

“Promoting non-animal methods to assess nanotoxicity has been a focus of the PETA International Science Consortium”, said Dr. Monita Sharma, co-author of the publication and Nanotechnology Specialist at the Consortium, “we organized an international workshop last year on inhalation testing of nanomaterials and this review describes some of the tools that can be used to provide a better understanding of what happens in humans after inhaling these substances.” During the workshop, experts provided recommendations on the design of an in vitro test to assess the toxicity of nanomaterials (especially multi-walled carbon nanotubes) in the lung, including cell types, endpoints, exposure systems, and dosimetry considerations. Additional publications summarizing the outcomes of the workshop are forthcoming.

Here’s a link to and a citation for the paper,

Aerosol generation and characterization of multi-walled carbon nanotubes exposed to cells cultured at the air-liquid interface by William W. Polk, Monita Sharma, Christie M. Sayes, Jon A. Hotchkiss, and Amy J. Clippinger. Particle and Fibre Toxicology201613:20 DOI: 10.1186/s12989-016-0131-y Published: 23 April 2016

This is an open access paper.

People for the Ethical Treatment of Animals (PETA) and a grant for in vitro nanotoxicity testing

This grant seems to have gotten its start at a workshop held at the US Environmental Protection Agency (EPA) in Washington, D.C., Feb. 24-25, 2015 as per this webpage on the People for Ethical Treatment of Animals (PETA) International Science Consortium Limited website,

The invitation-only workshop included experts from different sectors (government, industry, academia and NGO) and disciplines (in vitro and in vivo inhalation studies of NMs, fibrosis, dosimetry, fluidic models, aerosol engineering, and regulatory assessment). It focused on the technical details for the development and preliminary assessment of the relevance and reliability of an in vitro test to predict the development of pulmonary fibrosis in cells co-cultured at the air-liquid interface following exposure to aerosolized multi-walled carbon nanotubes (MWCNTs). During the workshop, experts made recommendations on cell types, exposure systems, endpoints and dosimetry considerations required to develop the in vitro model for hazard identification of MWCNTs.

The method is intended to be included in a non-animal test battery to reduce and eventually replace the use of animals in studies to assess the inhalation toxicity of engineered NMs. The long-term vision is to develop a battery of in silico and in vitro assays that can be used in an integrated testing strategy, providing comprehensive information on biological endpoints relevant to inhalation exposure to NMs which could be used in the hazard ranking of substances in the risk assessment process.

A September 1, 2015 news item on Azonano provides an update,

The PETA International Science Consortium Ltd. announced today the winners of a $200,000 award for the design of an in vitro test to predict the development of lung fibrosis in humans following exposure to nanomaterials, such as multi-walled carbon nanotubes.

Professor Dr. Barbara Rothen-Rutishauser of the Adolphe Merkle Institute at the University of Fribourg, Switzerland and Professor Dr. Vicki Stone of the School of Life Sciences at Heriot-Watt University, Edinburgh, U.K. will jointly develop the test method. Professor Rothen-Rutishauser co-chairs the BioNanomaterials research group at the Adolphe Merkle Institute, where her research is focused on the study of nanomaterial-cell interactions in the lung using three-dimensional cell models. Professor Vicki Stone is the Director of the Nano Safety Research Group at Heriot-Watt University and the Director of Toxicology for SAFENANO.

The Science Consortium is also funding MatTek Corporation for the development of a three-dimensional reconstructed primary human lung tissue model to be used in Professors Rothen-Rutishauser and Stone’s work. MatTek Corporation has extensive expertise in manufacturing human cell-based, organotypic in vitro models for use in regulatory and basic research applications. The work at MatTek will be led by Dr. Patrick Hayden, Vice President of Scientific Affairs, and Dr. Anna Maione, head of MatTek’s airway models research group.

I was curious about MatTek Corporation and found this on company’s About Us webpage,

MatTek Corporation was founded in 1985 by two chemical engineering professors from MIT. In 1991 the company leveraged its core polymer surface modification technology into the emerging tissue engineering market.

MatTek Corporation is at the forefront of tissue engineering and is a world leader in the production of innovative 3D reconstructed human tissue models. Our skin, ocular, and respiratory tissue models are used in regulatory toxicology (OECD, EU guidelines) and address toxicology and efficacy concerns throughout the cosmetics, chemical, pharmaceutical and household product industries.

EpiDerm™, MatTek’s first 3D human cell based in vitro model, was introduced in 1993 and became an immediate technical and commercial success.

I wish them good luck in their research on developing better ways to test toxicity.

Call for proposals to create in vitro inhalation tests for nanomaterial toxicity

I got an email announcement (March 17, 2015) which has acted as a spur to my desire to follow up on my Deux Seurats: one (was an artist) and one (is an inquiry into scientifically sound alternatives to animal testing) of December 26, 2014 post.

First, here’s a March 16, 2015 PETA (People for the Ethical Treatment of Animals) International Science Consortium (PISC) press release which describes a practical and scientific initiative for finding alternatives to animal testing,

Today, the PETA International Science Consortium Ltd. put out a request for proposals (RFP) to identify facilities that can develop an in vitro test that, when used in an integrated approach, has the potential to replace the current test conducted on animals to assess the inhalation toxicity of nanomaterials.

The RFP follows a workshop, organized by the Science Consortium and held at U.S. Environmental Protection Agency headquarters in Washington, D.C., that brought together scientific experts from government, industry, academia, and nonprofit organizations from around the world. The goal of the workshop was to make specific recommendations on the design of this in vitro test, including cell types, endpoints, exposure systems, and dosimetry considerations required to develop the in vitro model.

Based on the recommendations from the workshop, the RFP seeks facilities to develop a method that can assess the induction of pulmonary fibrosis in cells co-cultured at the air-liquid interface following exposure to aerosolized multi-walled carbon nanotubes. The Science Consortium will fund this work.

“For both scientific and ethical reasons, there is interest in developing a non-animal method that is faster, cheaper, and more relevant to the human situation,” says the Science Consortium’s Dr. Amy Clippinger.

The long-term vision is to include this in vitro test in a battery of in silico and in vitro assays that can be used in an integrated testing strategy, providing comprehensive information on biological endpoints relevant to inhalation exposure to nanomaterials to be used in the hazard ranking of substances in the risk-assessment process.

The request for proposals can be found here. The proposal deadline is May 29, 2015.

For more information, please visit PISCLTD.org.uk.

I see the research focus is on multi-walled carbon nanotubes. This makes sense since research has shown that long fibres act like the asbestos fibres they resemble when found in the lung.

Second, I’m hoping to follow up my Deux Seurats piece soon with the tentatively titled, The trouble with mice and … .