Tag Archives: Pfizer-BioNTech COVID-19 vaccine

Documentary “NNI Retrospective Video: Creating a National Initiative” celebrates the US National Nanotechnology Initiative (NNI) and a lipid nanoparticle question

i stumbled across an August 4, 2022 tvworldwide.com news release about a video celbrating the US National Nanotechnology Initiative’s (NNI) over 20 years of operation, (Note: A link has been removed),

TV Worldwide, since 1999, a pioneering web-based global TV network, announced that it was releasing a video trailer highlighting a previously released documentary on NNI over the past 20 years, entitled, ‘NNI Retrospective Video: Creating a National Initiative’.

The video and its trailer were produced in cooperation with the National Nanotechnology Initiative (NNI), the National Science Foundation and the University of North Carolina Greensboro.

Video Documentary Synopsis

Nanotechnology is a megatrend in science and technology at the beginning of the 21 Century. The National Nanotechnology Initiative (NNI) has played a key role in advancing the field after it was announced by President Clinton in January 2000. Neil Lane was Presidential Science Advisor. Mike Roco proposed the initiative at the White House in March 1999 on behalf of the Interagency Working Group on Nanotechnology and was named the founding Chair of NSET to implement NNI beginning with Oct. 2000. NSF led the preparation of this initiative together with other agencies including NIH, DoD, DOE, NASA, and EPA. Jim Murday was named the first Director of NNCO to support NSET. The scientific and societal success of NNI has been recognized in the professional communities, National Academies, PCAST, and Congress. Nanoscale science, engineering and technology are strongly connected and collectively called Nanotechnology.

This video documentary was made after the 20th NNI grantees conference at NSF. It is focused on creating and implementing NNI, through video interviews. The interviews focused on three questions: (a) Motivation and how NNI started; (b) The process and reason for the success in creating NNI; (c) Outcomes of NNI after 20 years, and how the initial vision has been realized.

About the National Nanotechnology Initiative (NNI)

The National Nanotechnology Initiative (NNI) is a U.S. Government research and development (R&D) initiative. Over thirty Federal departments, independent agencies, and commissions work together toward the shared vision of a future in which the ability to understand and control matter at the nanoscale leads to ongoing revolutions in technology and industry that benefit society. The NNI enhances interagency coordination of nanotechnology R&D, supports a shared infrastructure, enables leveraging of resources while avoiding duplication, and establishes shared goals, priorities, and strategies that complement agency-specific missions and activities.

The NNI participating agencies work together to advance discovery and innovation across the nanotechnology R&D enterprise. The NNI portfolio encompasses efforts along the entire technology development pathway, from early-stage fundamental science through applications-driven activities. Nanoscience and nanotechnology are prevalent across the R&D landscape, with an ever-growing list of applications that includes nanomedicine, nanoelectronics, water treatment, precision agriculture, transportation, and energy generation and storage. The NNI brings together representatives from multiple agencies to leverage knowledge and resources and to collaborate with academia and the private sector, as appropriate, to promote technology transfer and facilitate commercialization. The breadth of NNI-supported infrastructure enables not only the nanotechnology community but also researchers from related disciplines.

In addition to R&D efforts, the NNI is helping to build the nanotechnology workforce of the future, with focused efforts from K–12 through postgraduate research training. The responsible development of nanotechnology has been an integral pillar of the NNI since its inception, and the initiative proactively considers potential implications and technology applications at the same time. Collectively, these activities ensure that the United States remains not only the place where nanoscience discoveries are made, but also where these discoveries are translated and manufactured into products to benefit society.

I’m embedding the trailer here and a lipid nanoparticle question follows (The origin story told in Vancouver [Canada] is that the work was started at the University of British Columbia by Pieter Quilty.),

I was curious about what involvement the US NNI had with the development of lipid nanoparticles (LNPs) and found a possible answer to that question on Wikipedia The LNP Wikipedia entry certainly gives the bulk of the credit to Quilty but there was work done prior to his involvement (Note: Links have been removed),

A significant obstacle to using LNPs as a delivery vehicle for nucleic acids is that in nature, lipids and nucleic acids both carry a negative electric charge—meaning they do not easily mix with each other.[19] While working at Syntex in the mid-1980s,[20] Philip Felgner [emphasis mine] pioneered the use of artificially-created cationic lipids (positively-charged lipids) to bind lipids to nucleic acids in order to transfect the latter into cells.[21] However, by the late 1990s, it was known from in vitro experiments that this use of cationic lipids had undesired side effects on cell membranes.[22]

During the late 1990s and 2000s, Pieter Cullis of the University of British Columbia [emphasis mine] developed ionizable cationic lipids which are “positively charged at an acidic pH but neutral in the blood.”[8] Cullis also led the development of a technique involving careful adjustments to pH during the process of mixing ingredients in order to create LNPs which could safely pass through the cell membranes of living organisms.[19][23] As of 2021, the current understanding of LNPs formulated with such ionizable cationic lipids is that they enter cells through receptor-mediated endocytosis and end up inside endosomes.[8] The acidity inside the endosomes causes LNPs’ ionizable cationic lipids to acquire a positive charge, and this is thought to allow LNPs to escape from endosomes and release their RNA payloads.[8]

From 2005 into the early 2010s, LNPs were investigated as a drug delivery system for small interfering RNA (siRNA) drugs.[8] In 2009, Cullis co-founded a company called Acuitas Therapeutics to commercialize his LNP research [emphasis mine]; Acuitas worked on developing LNPs for Alnylam Pharmaceuticals’s siRNA drugs.[24] In 2018, the FDA approved Alnylam’s siRNA drug Onpattro (patisiran), the first drug to use LNPs as the drug delivery system.[3][8]

By that point in time, siRNA drug developers like Alnylam were already looking at other options for future drugs like chemical conjugate systems, but during the 2010s, the earlier research into using LNPs for siRNA became a foundation for new research into using LNPs for mRNA.[8] Lipids intended for short siRNA strands did not work well for much longer mRNA strands, which led to extensive research during the mid-2010s into the creation of novel ionizable cationic lipids appropriate for mRNA.[8] As of late 2020, several mRNA vaccines for SARS-CoV-2 use LNPs as their drug delivery system, including both the Moderna COVID-19 vaccine and the Pfizer–BioNTech COVID-19 vaccines.[3] Moderna uses its own proprietary ionizable cationic lipid called SM-102, while Pfizer and BioNTech licensed an ionizable cationic lipid called ALC-0315 from Acuitas.[8] [emphases mine]

You can find out more about Philip Felgner here on his University of California at Irvine (UCI) profile page.

I wish they had been a little more careful about some of the claims that Thomas Kalil made about lipid nanoparticles in both the trailer and video but, getting back to the trailer (approx. 3 mins.) and the full video (approx. 25 mins.), either provides insight into a quite extraordinary effort.

Bravo to the US NNI!

Getting erased from the mRNA/COVID-19 story

Nathan Vardi’s August 17, 2021 article for Forbes magazine about Ian MacLachlan and the delivery system for mRNA vaccines tells a type of story I’ve more often seen in history books. It is reminiscent of the Thomas Edison and Nikola Tesla story of electricity. One gets all the glory while the other is largely forgotten.

I’m especially interested as much of this concerns players in the local (Vancouver, British Columbia, Canada) biotechnology scene. Vardi’s August 17, 2021 article sets the scene,

“The whole mRNA platform is not how to build an mRNA molecule; that’s the easy thing,” Bourla [Pfizer CEO Albert Bourla] says. “It is how to make sure the mRNA molecule will go into your cells and give the instructions.” 

Yet the story of how Moderna, BioNTech and Pfizer managed to create that vital delivery system has never been told. It’s a complicated saga involving 15 years of legal battles and accusations of betrayal and deceit. [emphases mine] What is clear is that when humanity needed a way to deliver mRNA to human cells to arrest the pandemic, there was only one reliable method available—and it wasn’t one originated in-house by Pfizer, Moderna, BioNTech or any of the other major vaccine companies. 

A months-long investigation by Forbes reveals that the scientist most responsible for this critical delivery method is a little-known 57-year-old Canadian biochemist named Ian MacLachlan. As chief scientific officer of two small companies, Protiva Biotherapeutics and Tekmira Pharmaceuticals, MacLachlan led the team that developed this crucial technology. Today, though, few people—and none of the big pharmaceutical companies—openly acknowledge his groundbreaking work, and MacLachlan earns nothing from the technology he pioneered. 

I have three stories (on this blog) mentioning Tekmira (all from 2014 or 2015) and none mentioning Protiva nor, for that matter, Ian MacLachlan.

Back to Vardi’s August 17, 2021 article,

Moderna Therapeutics vigorously disputes the idea that its mRNA vaccine uses MacLachlan’s delivery system, and BioNTech, the vaccine maker partnered with Pfizer, talks about it carefully. Legal proceedings are pending, and big money is at stake. 

Moderna, BioNTech and Pfizer are on their way to selling $45 billion worth of vaccines in 2021. They don’t pay a dime to MacLachlan. Other coronavirus vaccine makers, such as Gritstone Oncology, have recently licensed MacLachlan’s Protiva-Tekmira delivery technology for between 5% and 15% of product sales. MacLachlan no longer has a financial stake in the technology, but a similar royalty on the Moderna and Pfizer-BioNTech vaccines could yield as much as $6.75 billion in 2021 alone. …

Vardi provides evidence (Note: A link has been removed from the August 17, 2021 article excerpt,

Despite their denials, scientific papers and regulatory documents filed with the FDA [US Food and Drug Administration] show that both Moderna and Pfizer-BioNTech’s vaccines use a delivery system strikingly similar to what MacLachlan and his team created—a carefully formulated four-lipid component that encapsulates mRNA in a dense particle through a mixing process involving ethanol and a T-connector apparatus. 

For years, Moderna claimed it was using its own proprietary delivery system, but when it came time for the company to test its Covid-19 vaccine in mice, it used the same four kinds of lipids as MacLachlan’s technology, in identical ratios. 

According to Vardi’s LinkedIn profile: “I am a senior editor at Forbes, where I am responsible for the coverage of hedge funds, private equity, and other big investors. I lead investigative reporting efforts and have written 20 cover stories for Forbes Magazine,” he does not appear to have any medical or bioscience expertise (Bachelor of Journalism from Carleton University [Canada] and Masters of International Affairs from Columbia University [US].) Presumably someone he consulted or someone on his team provided the skills necessary for analyzing the scientific papers and documents.

You may recognize this scientist (from the August 17, 2021 article),

Not everyone ignores MacLachlan. “A lot of credit goes to Ian MacLachlan for the LNP [lipid nanoparticle],” says Katalin Karikó, [emphasis mine] the scientist who laid the groundwork for mRNA therapies before joining BioNTech in 2013. But Karikó, now a frontrunner for a Nobel Prize, is angry that MacLachlan didn’t do more to help her use his delivery system to build her own mRNA company years ago. “[MacLachlan] might be a great scientist, but he lacked vision,” she says.

I have more about Karikó and her role in the mRNA vaccine story here in a March 5, 2021 posting.

As for MacLachlan’s start (from the August 17, 2021 article),

… With a Ph.D. in biochemistry, MacLachlan joined Inex in 1996, his first job after completing a postdoctoral fellowship in a gene lab at the University of Michigan. 

Inex was cofounded by its chief scientific officer, Pieter Cullis, now 75, a long-haired physicist who taught at the University of British Columbia. From his perch there Cullis started several biotechs, cultivating an elite community of scientists that made Vancouver a hotbed of lipid chemistry. 

As companies rise and fall with intellectual property being assigned to one company or other, legal brawls ensue. This was the time that Karikó came knocking on the door, from the August 17, 2021 article,

It was in the midst of all this furious legal fighting that Hungarian biochemist Katalin Karikó first showed up at MacLachlan’s door. Karikó was early to grasp that MacLachlan’s delivery system held the key to unlocking the potential of mRNA therapies. As early as 2006, she began sending letters to MacLachlan urging him to encase her groundbreaking chemically altered mRNA in his four-lipid delivery system. Embroiled in litigation, MacLachlan passed on her offer. 

Karikó didn’t give up easily. In 2013, she flew to meet with Tekmira’s executives, offering to relocate to Vancouver and work directly under MacLachlan. Tekmira passed. “Moderna, BioNTech and CureVac all wanted me to work for them, but my number one choice, Tekmira, didn’t,” says Karikó, who took a job at BioNTech in 2013. 

By this time, Moderna CEO Stéphane Bancel [emphasis mine] was also trying to solve the delivery puzzle. Bancel held discussions with Tekmira about collaborating, but talks stalled. At one point, Tekmira indicated it wanted at least $100 million up front, plus royalties, to strike a deal.

Instead, Moderna partnered with Madden [Thomas Madden], who was still working with Cullis at their drug delivery company, Acuitas Therapeutics.  …

I have been wondering why Acuitas Therapeutics hasn’t been getting all that much attention in the hyperbolic discussions about British Columbia’s (or Vancouver’s) thriving biotechnology scene. (I’ll have more about the ‘scene’ in a later posting.) Perhaps all this legal wrangling is not considered helpful when bragging. (I do have a November 12, 2020 post, which features Acuitas, an interview with its president and chief executive office Dr. Thomas Madden, and an explanation of their technology.)

As for Moderna, I have a special interest as the company has announced plans to open a production facility here in Canada and one of Moderna’s founders is Canadian, Derek Rossi. (He too is mentioned in the March 5, 2021 posting, scroll down to the ‘Entrepreneurs rush in’ subhead; he is not an altogether happy camper.)

Rossi has opinions on how we should be doing things here as noted in a June 17, 2021 article by Barbara Shecter for the Financial Post (Moderna founder says Canada needs to build a biotech hub to avoid ‘getting caught with its pants down next time’). Thank you, Mr. Rossi. (I’m more familiar with clusters than hubs [hubs were a popular topic of conversation about 20 years ago but in Canada we seem more interested in clusters; see John Newbigin’s “Hubs, clusters and regions” on britishcouncil.org for a description of the differences].)

As for Moderna’s response to all of the legal wrangling over mRNA delivery systems, from Vardi’s August 17, 2021 article,

Moderna pursued a different strategy. It filed lawsuits with the U.S. Patent and Trademark Office seeking to nullify a series of patents related to MacLachlan’s delivery system, now controlled by Genevant. But in July 2020, as Moderna was pushing its vaccine through clinical trials, an adjudicative body largely upheld the most important patent claims. (Moderna is appealing.)

I highly recommend reading Vardi’s August 17, 2021 article as I have not done justice to all of the ‘ins and outs’ of the story.

You can see how thoroughly MacLachlan has been erased form the lipid nanoparticle delivery system/COVID-19 vaccine story in this May 24 ,2021 posting (Lipid nanoparticles: The underrated invention behind the vaccine revolution) by Nada Salem at the Science Borealis blog. It is largely a description of the technology and in the last two paragraphs a history of its development with no mention of MacLachlan or any of his companies.

One last thought, I wonder how Vardi found out about MacLachlan. Could someone have brought the story to his attention and who might that have been?

Not a pretty picture: Canada and a patent rights waiver for COVID-19 vaccines

At about 7:15 am PT this morning , May 13, 2021, I saw Dr. Mona Nemer’s (Canada’s Chief Science Advisor) tweet (Note: I’m sorry the formatting isn’t better,

Maryse de la Giroday@frogheart Does this mean Canada will support a waiver on patent rights for COVID-19 vaccines?

7:18 AM · May 13, 2021

Dr. Mona Nemer@ChiefSciCanThe global health crisis of the past year has underscored the critical importance of openly sharing scientific information. We are one step closer to making #openscience a reality around the world. So pleased that my office was part of these discussions. http://webcast.unesco.org/events/2021-05-OS-IGM/ Quote Tweet

Canada at UNESCO@Canada2UNESCO · May 6@Canada2UNESCO is partaking in negotiations today on the draft recommendation on #OpenScience The benefits of #science and #technology to health, the #economy and #development should be available to all.6:40 AM · May 13, 2021·Twitter Web App

No reply. No surprise

Brief summary of Canada’s COVID-19 patent rights nonwaiver

You’ll find more about the UNESCO meeting on open science in last week’s May 7, 2021 posting (Listen in on a UNESCO (United Nations Educational, Scientific and Cultural Organization) meeting [about Open Science]).

At the time, I noted a disparity in Canada’s policies centering on open science and patents; scroll down to the “Comments on open science and intellectual property in Canada” subsection for a more nuanced analysis. For those who don’t have the patience and/or the time, it boils down to this:

  1. Canada is happily participating in a UNESCO meeting on open science,
  2. the 2021 Canadian federal budget just dedicated a big chunk of money to augmenting Canada’s national patent strategy, and
  3. Canada is “willing to discuss” a waiver at the World Trade Organization (WTO) meetings.

I predicted UNESCO would see our representative’s enthusiastic participation while our representative at the WTO meeting would dance around the topic without committing. to anything. Sadly, it’s starting to look like I was right.

Leigh Beadon in a May 12, 2021 posting on Techdirt reveals the situation is worse than I thought (Note: Links have been removed),

Few things illustrate the broken state of our global intellectual property system better than the fact that, well over a year into this devastating pandemic and in the face of a strong IP waiver push by some of the hardest hit countries, patents are still holding back the production of life-saving vaccines. And of all the countries opposing a waiver at the WTO (or withholding support for it, which is functionally the same thing), Canada might be the most frustrating [emphasis mine].

Canada is the biggest hoarder [emphasis mine] of vaccine pre-orders, having secured enough to vaccinate the population five times over. Despite this, it has constantly run into supply problems and lagged behind comparable countries when it comes to administering the vaccines on a per capita basis. In response to criticism of its hoarding, the government continues to focus on its plans to donate all surplus doses to the COVAX vaccine sharing program — but these promises were somewhat more convincing before Canada became the only G7 country to withdraw doses from COVAX. Despite all this, and despite pressure from experts who explain how vaccine hoarding will prolong the pandemic for everyone, the country has continually refused to voice its support for a TRIPS patent waiver at the WTO.

Momentum for changing Canada’s position on a COVID-19 vaccine patent right waivers?

Maclean’s magazine has a May 10, 2021 open letter to Prime Minister Justin Trudeau,

Dear Prime Minister Trudeau,

The only way to combat this pandemic successfully is through a massive global vaccination campaign on a scale and timeline never before undertaken. This requires the production of effective tools and technologies to fight COVID-19 at scale and coordinated global distribution efforts.

The Trade-Related Aspect of Intellectual Property Rights (TRIPS) agreement at the World Trade Organization (WTO) is leading to the opposite outcome. Vaccine production is hindered by granting pharmaceutical companies monopoly power through protection of intellectual property rights, industrial designs and trade secrets. Pharmaceutical companies’ refusal to engage in health technology knowledge transfer makes large-scale, global vaccine production in (and for) low- and middle-income countries all but impossible. The current distribution of vaccines globally speaks to these obstacles.

Hundreds of civil society groups, the World Health Organization (WHO), and the elected governments of over 100 countries, including India, Afghanistan, Bangladesh, Nepal, Pakistan and Sri Lanka have come together and stated that current intellectual property protections reduce the availability of vaccines for protecting their people. On May 5, 2021 the United States also announced its intention to support a temporary waiver for vaccines at the WTO.

We are writing to ask our Canadian government to demonstrate its commitment to an equitable global pandemic response by supporting a temporary waiver of the TRIPS agreement. But clearly that is a necessary but not a sufficient first step. We recognize that scaling up vaccine production requires more than just a waiver of intellectual property rights, so we further request that our government support the WHO’s COVID-19 Technology Access Pool (C-TAP) to facilitate knowledge sharing and work with the WTO to address the supply chain and export constraints currently impeding vaccine production. Finally, because vaccines must be rolled out as part of an integrated strategy to end the acute phase of the epidemic, we request that Canada support the full scope of the TRIPS waiver, which extends to all essential COVID-19 products and technologies, including vaccines, diagnostics and therapeutics.

The status quo is clearly not working fast enough to end the acute phase of the pandemic globally. This waiver respects global intellectual property frameworks and takes advantage of existing provisions for exceptions during emergencies, as enshrined in the TRIPS agreement. Empowering countries to take measures to protect their own people is fundamental to bringing this pandemic to an end.

Anand Giridharadas (author of the 2018 book, Winners Take All: The Elite Charade of Changing the World) also makes the case for a patent rights waiver in his May 11, 2021 posting on The Ink, Note: A link has been removed,

Patents are temporary monopolies granted to inventors, to reward invention and thus encourage more of it. But what happens when you invent a drug that people around the world require to stay alive? What happens when, furthermore, that drug was built in part on technology the public paid for? Are there limits to intellectual property?

For years, activists have pressured the United States government to break or suspend patents in particular cases, as with HIV/Aids. They have had little luck. Indeed, the United States has often fought developing countries when they try to break patents to do right by their citizens, choosing American drug companies over dying people.

So it was a dramatic swerve when, last week, the Biden administration announced that it supported a waiver of the patents for Covid vaccines.

Not long afterward, I reached out to several leading activists for vaccine access to understand the significance of the announcement and where we go from here.

in all this talk about patents and social justice and, whether it’s directly referenced or not, money, the only numbers of I’ve seen,until recently, have been numbers of doses and aggregate costs.

How much does a single vaccine dose cost?

A Sunday, April 11, 2021 article by Krassen Nikolov for EURACTIV provides an answer about the cost in one region, the European Union,

“Pfizer cost €12, then €15.50. The Commission now signs contracts for €19,50”, Bulgarian Prime Minister Boyko Borissov revealed on Sunday [April 11, 2021].

The European Commission is in talks with Pfizer for the supply of COVID-19 vaccines in 2022 and 2023. Borissov said the contracts provide for €19.50 per dose.

Under an agreement with the vaccine producing companies, the European Commission has so far refused to reveal the price of vaccines. However, last December Belgian Secretary of State Eva De Bleeker shared on Twitter the vaccine prices negotiated by the Commission, as well as the number of doses purchased by her government. Then, it became known that the AstraZeneca jab costs €1.78 compared to €12 for Pfizer-BioNTech.

€12 to €19,50, that’s an increase of over 50%. I wonder how Pfizer is justifying such a hefty increase?

According to a March 16, 2021 article by Swikar Oli for the National Post (a Canadian newspaper), these prices are a cheap pandemic special prices,

A top Pfizer executive told shareholders the company is looking at a “significant opportunity” to raise the price of its Pfizer-BioNTech COVID-19 vaccine.

While addressing investors at the virtual Barclays Global Healthcare Conference last week, Pfizer CFO Frank D’Amelio noted they could raise prices when the virus becomes endemic, meaning it’s regularly found in clusters around the globe, according to a transcript of the conference posted on Pfizer’s website.

Current vaccine pricing models are pandemic-related, D’Amelio explained. After the pandemic is defeated and “normal market conditions” arrive, he noted the window would open for a “significant opportunity…from a pricing perspective.”

“So the one price that we published is the price with the U.S. of $19.50 per dose. Obviously, that’s not a normal price like we typically get for a vaccine, $150, $175 [emphasis mine] per dose,” he said, “So pandemic pricing.”

If I remember it rightly, as you increase production, you lower costs per unit. In other words, it’s cheaper to produce one dozen than one, which is why your bakery charges you less money per bun or cake if you purchase by the dozen.

During this pandemic, Pfizer has been producing huge amounts of vaccine, which they would not expect to do should the disease become endemic. As Pfizer has increased production, I would think the price should be dropping but according to the Bulgarian prime minister, it’s not.

They don’t seem to be changing the vaccine as new variants arrive. So, raising the prices doesn’t seem to be linked to research issues and as for the new production facilities, surely those didn’t cost billions.

Canada and COVID-19 money

Talking about money, Canada has a COVDI-19 billionaire according to a December 23, 2020 article (Meet The 50 Doctors, Scientists And Healthcare Entrepreneurs Who Became Pandemic Billionaires In 2020) by Giacomo Tognini for Forbes.

I have a bit more about Carl Hansen (COVID-19 billionaire) and his company, AbCellera, in my December 30, 2020 posting.

I wonder how much the Canadian life sciences community has to do with Canada’s hesitancy over a COVID-19 vaccine patent rights waiver.

mRNA, COVID-19 vaccines, treating genetic diseases before birth, and the scientist who started it all

This post was going to be about new research into fetal therapeutics and mRNA.But, since I’ve been very intrigued by the therapeutic agent, mRNA, which has been a big part of the COVID-19 vaccine story; this seemed like a good opportunity to dive a little more deeply into that topic at the same time.

It’s called messenger ribonucleic acid (mRNA) and until seeing this video I had only the foggiest idea of how it works, which is troubling since at least two COVID-19 vaccines are based on this ‘new’ technology. From a November 10, 2020 article by Damian Garde for STAT,

Garde’s article offers detail about mRNA along with fascinating insight into how science and entreneurship works.

mRNA—it’s in the details, plus, the loneliness of pioneer researchers, a demotion, and squabbles

Garde’s November 10, 2020 article provides some explanation about how mRNA vaccines work and it takes a look at what can happen to pioneering scientists (Note: A link has been removed),

For decades, scientists have dreamed about the seemingly endless possibilities of custom-made messenger RNA, or mRNA.

Researchers understood its role as a recipe book for the body’s trillions of cells, but their efforts to expand the menu have come in fits and starts. The concept: By making precise tweaks to synthetic mRNA and injecting people with it, any cell in the body could be transformed into an on-demand drug factory. [emphasis mine]

But turning scientific promise into medical reality has been more difficult than many assumed. Although relatively easy and quick to produce compared to traditional vaccine-making, no mRNA vaccine or drug has ever won approval [until 2021].

Whether mRNA vaccines succeed or not, their path from a gleam in a scientist’s eye to the brink of government approval has been a tale of personal perseverance, eureka moments in the lab, soaring expectations — and an unprecedented flow of cash into the biotech industry.

Before messenger RNA was a multibillion-dollar idea, it was a scientific backwater. And for the Hungarian-born scientist behind a key mRNA discovery, it was a career dead-end.

Katalin Karikó spent the 1990s collecting rejections. Her work, attempting to harness the power of mRNA to fight disease, was too far-fetched for government grants, corporate funding, and even support from her own colleagues.

It all made sense on paper. In the natural world, the body relies on millions of tiny proteins to keep itself alive and healthy, and it uses mRNA to tell cells which proteins to make. If you could design your own mRNA, you could, in theory, hijack that process and create any protein you might desire — antibodies to vaccinate against infection, enzymes to reverse a rare disease, or growth agents to mend damaged heart tissue.

In 1990, researchers at the University of Wisconsin managed to make it work in mice. Karikó wanted to go further.

The problem, she knew, was that synthetic RNA was notoriously vulnerable to the body’s natural defenses, meaning it would likely be destroyed before reaching its target cells. And, worse, the resulting biological havoc might stir up an immune response that could make the therapy a health risk for some patients.

It was a real obstacle, and still may be, but Karikó was convinced it was one she could work around. Few shared her confidence.

“Every night I was working: grant, grant, grant,” Karikó remembered, referring to her efforts to obtain funding. “And it came back always no, no, no.”

By 1995, after six years on the faculty at the University of Pennsylvania, Karikó got demoted. She had been on the path to full professorship, but with no money coming in to support her work on mRNA, her bosses saw no point in pressing on.

She was back to the lower rungs of the scientific academy.

“Usually, at that point, people just say goodbye and leave because it’s so horrible,” Karikó said.

There’s no opportune time for demotion, but 1995 had already been uncommonly difficult. Karikó had recently endured a cancer scare, and her husband was stuck in Hungary sorting out a visa issue. Now the work to which she’d devoted countless hours was slipping through her fingers.

“I thought of going somewhere else, or doing something else,” Karikó said. “I also thought maybe I’m not good enough, not smart enough. I tried to imagine: Everything is here, and I just have to do better experiments.”

In time, those better experiments came together. After a decade of trial and error, Karikó and her longtime collaborator at Penn — Drew Weissman, an immunologist with a medical degree and Ph.D. from Boston University — discovered a remedy for mRNA’s Achilles’ heel.

The stumbling block, as Karikó’s many grant rejections pointed out, was that injecting synthetic mRNA typically led to that vexing immune response; the body sensed a chemical intruder, and went to war. The solution, Karikó and Weissman discovered, was the biological equivalent of swapping out a tire.

Every strand of mRNA is made up of four molecular building blocks called nucleosides. But in its altered, synthetic form, one of those building blocks, like a misaligned wheel on a car, was throwing everything off by signaling the immune system. So Karikó and Weissman simply subbed it out for a slightly tweaked version, creating a hybrid mRNA that could sneak its way into cells without alerting the body’s defenses.

“That was a key discovery,” said Norbert Pardi, an assistant professor of medicine at Penn and frequent collaborator. “Karikó and Weissman figured out that if you incorporate modified nucleosides into mRNA, you can kill two birds with one stone.”

That discovery, described in a series of scientific papers starting in 2005, largely flew under the radar at first, said Weissman, but it offered absolution to the mRNA researchers who had kept the faith during the technology’s lean years. And it was the starter pistol for the vaccine sprint to come.

Entrepreneurs rush in

Garde’s November 10, 2020 article shifts focus from Karikó, Weissman, and specifics about mRNA to the beginnings of what might be called an entrepreneurial gold rush although it starts sedately,

Derrick Rossi [emphasis mine], a native of Toronto who rooted for the Maple Leafs and sported a soul patch, was a 39-year-old postdoctoral fellow in stem cell biology at Stanford University in 2005 when he read the first paper. Not only did he recognize it as groundbreaking, he now says Karikó and Weissman deserve the Nobel Prize in chemistry.

“If anyone asks me whom to vote for some day down the line, I would put them front and center,” he said. “That fundamental discovery is going to go into medicines that help the world.”

But Rossi didn’t have vaccines on his mind when he set out to build on their findings in 2007 as a new assistant professor at Harvard Medical School running his own lab.

He wondered whether modified messenger RNA might hold the key to obtaining something else researchers desperately wanted: a new source of embryonic stem cells [emphasis mine].

In a feat of biological alchemy, embryonic stem cells can turn into any type of cell in the body. That gives them the potential to treat a dizzying array of conditions, from Parkinson’s disease to spinal cord injuries.

But using those cells for research had created an ethical firestorm because they are harvested from discarded embryos.

Rossi thought he might be able to sidestep the controversy. He would use modified messenger molecules to reprogram adult cells so that they acted like embryonic stem cells.

He asked a postdoctoral fellow in his lab to explore the idea. In 2009, after more than a year of work, the postdoc waved Rossi over to a microscope. Rossi peered through the lens and saw something extraordinary: a plate full of the very cells he had hoped to create.

Rossi excitedly informed his colleague Timothy Springer, another professor at Harvard Medical School and a biotech entrepreneur. Recognizing the commercial potential, Springer contacted Robert Langer, the prolific inventor and biomedical engineering professor at the Massachusetts Institute of Technology.

On a May afternoon in 2010, Rossi and Springer visited Langer at his laboratory in Cambridge. What happened at the two-hour meeting and in the days that followed has become the stuff of legend — and an ego-bruising squabble.

Langer is a towering figure in biotechnology and an expert on drug-delivery technology. At least 400 drug and medical device companies have licensed his patents. His office walls display many of his 250 major awards, including the Charles Stark Draper Prize, considered the equivalent of the Nobel Prize for engineers.

As he listened to Rossi describe his use of modified mRNA, Langer recalled, he realized the young professor had discovered something far bigger than a novel way to create stem cells. Cloaking mRNA so it could slip into cells to produce proteins had a staggering number of applications, Langer thought, and might even save millions of lives.

“I think you can do a lot better than that,” Langer recalled telling Rossi, referring to stem cells. “I think you could make new drugs, new vaccines — everything.”

Within several months, Rossi, Langer, Afeyan [Noubar Afeyan, venture capitalist, founded and runs Flagship Ventures], and another physician-researcher at Harvard formed the firm Moderna — a new word combining modified and RNA.

Springer was the first investor to pledge money, Rossi said. In a 2012 Moderna news release, Afeyan said the firm’s “promise rivals that of the earliest biotechnology companies over 30 years ago — adding an entirely new drug category to the pharmaceutical arsenal.”

But although Moderna has made each of the founders hundreds of millions of dollars — even before the company had produced a single product — Rossi’s account is marked by bitterness. In interviews with the [Boston] Globe in October [2020], he accused Langer and Afeyan of propagating a condescending myth that he didn’t understand his discovery’s full potential until they pointed it out to him.

Garde goes on to explain how BioNTech came into the mRNA picture and contrasts the two companies’ approaches to biotechnology as a business. It seems BioNTech has not cashed in the same way as has Moderna. (For some insight into who’s making money from COVID-19 check out Giacomo Tognini’s December 23, 2020 article (Meet The 50 Doctors, Scientists And Healthcare Entrepreneurs Who Became Pandemic Billionaires In 2020) for Forbes.)

Garde ends his November 10, 2020 article on a mildly cautionary note,

“You have all these odd clinical and pathological changes caused by this novel bat coronavirus [emphasis mine], and you’re about to meet it with all of these vaccines with which you have no experience,” said Paul Offit, an infectious disease expert at Children’s Hospital of Philadelphia and an authority on vaccines.

What happened to Katalin Karikó?

Matthew Rosza’s January 25, 2021 article about Karikó and her pioneering work features an answer to my question and some advice,

“I want young people to feel — if my example, because I was demoted, rejected, terminated, I was even subject for deportation one point — [that] if they just pursue their thing, my example helps them to wear rejection as a badge,” Karikó, who today is a senior vice president at BioNTech RNA Pharmaceuticals, told Salon last month when discussing her story. “‘Okay, well, I was rejected. I know. Katalin was rejected and still [succeeded] at the end.’ So if it helps them, then it helps them.”

Despite her demotion, Karikó continued with her work and, along with a fellow immunologist named Dr. Drew Weissman, penned a series of influential articles starting in 2005. These articles argued that mRNA vaccines would not be neutralized by the human immune system as long as there were specific modifications to nucleosides, a compound commonly found in RNA.

By 2013, Karikó’s work had sufficiently impressed experts that she left the University of Pennsylvania for BioNTech RNA Pharmaceuticals.

Karikó tells Salon that the experience taught her one important lesson: In life there will be people who, for various reasons, will try to hold you back, and you can’t let them get you down.

“People that are in power, they can help you or block you,” Karikó told Salon. “And sometimes people select to make your life miserable. And now they cannot be happy with me because now they know that, ‘Oh, you know, we had the confrontation and…’ But I don’t spend too much time on these things.”

Before moving onto the genetic research which prompted this posting, I have an answer to the following questions:

Could an mRNA vaccine affect your DNA (deoxyribonucleic acid) and how do mRNA vaccines differ from the traditional ones?

No, DNA is not affected by the COVID-19 mRNA vaccines, according to a January 5, 2021 article by Jason Murdock for Newsweek,

The type of vaccines used against COVID-19 do not interact with or alter human genetic code, also known as DNA, scientists say.

In traditional vaccines, a piece of a virus, known as an “antigen,” would be injected into the body to force the immune system to make antibodies to fight off future infection. But mRNA-based methods do not use a live virus, and cannot give someone COVID.

Instead, mRNA vaccines give cells the instructions to make a “spike” protein also found on the surface of the virus that causes COVID. The body kickstarts its immune response by creating the antibodies needed to combat those specific virus proteins.

Once the spike protein is created, the cell breaks down the instructions provided by the mRNA molecule, leaving the human immune system prepared to combat infection. The mRNA vaccines are not a medicine—nor a cure—but a preventative measure.

Gavi, a vaccine alliance partnered with the World Health Organization (WHO), has said that mRNA instructions will become degraded in approximately 72 hours.

It says mRNA strands are “chemical intermediaries” between DNA in our chromosomes and the “cellular machinery that produces the proteins we need to function.”

But crucially, while mRNA vaccines will give the human body the blueprints on how to assemble proteins, the alliance said in a fact-sheet last month that “mRNA isn’t the same as DNA, and it can’t combine with our DNA to change our genetic code.”

It explained: “Some viruses like HIV can integrate their genetic material into the DNA of their hosts, but this isn’t true of all viruses… mRNA vaccines don’t carry these enzymes, so there is no risk of the genetic material they contain altering our DNA.”

The [US] Centers for Disease Control and Prevention (CDC) says on its website that mRNA vaccines that are rolling out don’t “interact with our DNA in any way,” and “mRNA never enters the nucleus of the cell, which is where our DNA (genetic material) is kept.”

Therapeutic fetal mRNA treatment

Rossi’s work on mRNA and embryonic stem cells bears a relationship of sorts to this work focusing on prebirth therapeutics. (From a January 13, 2021 news item on Nanowerk), Note: A link has been removed,

Researchers at Children’s Hospital of Philadelphia and the School of Engineering and Applied Science at the University of Pennsylvania have identified ionizable lipid nanoparticles that could be used to deliver mRNA as part of fetal therapy.

The proof-of-concept study, published in Science Advances (“Ionizable Lipid Nanoparticles for In Utero mRNA Delivery”), engineered and screened a number of lipid nanoparticle formulations for targeting mouse fetal organs and has laid the groundwork for testing potential therapies to treat genetic diseases before birth.

A January 13, 2021 Children’s Hospital of Philadelphia (CHOP) news release (also on EurekAlert), which originated the news item, delves further into the research,

“This is an important first step in identifying nonviral mediated approaches for delivering cutting-edge therapies before birth,” said co-senior author William H. Peranteau, MD, an attending surgeon in the Division of General, Thoracic and Fetal Surgery and the Adzick-McCausland Distinguished Chair in Fetal and Pediatric Surgery at CHOP. “These lipid nanoparticles may provide a platform for in utero mRNA delivery, which would be used in therapies like fetal protein replacement and gene editing.”

Recent advances in DNA sequencing technology and prenatal diagnostics have made it possible to diagnose many genetic diseases before birth. Some of these diseases are treated by protein or enzyme replacement therapies after birth, but by then, some of the damaging effects of the disease have taken hold. Thus, applying therapies while the patient is still in the womb has the potential to be more effective for some conditions. The small fetal size allows for maximal therapeutic dosing, and the immature fetal immune system may be more tolerant of replacement therapy.

Of the potential vehicles for introducing therapeutic protein replacement, mRNA is distinct from other nucleic acids, such as DNA, because it does not need to enter the nucleus and can use the body’s own machinery to produce the desired proteins. Currently, the common methods of nucleic acid delivery include viral vectors and nonviral approaches. Although viral vectors may be well-suited to gene therapy, they come with the potential risk of unwanted integration of the transgene or parts of the viral vector in the recipient genome. Thus, there is an important need to develop safe and effective nonviral nucleic acid delivery technologies to treat prenatal diseases.

In order to identify potential nonviral delivery systems for therapeutic mRNA, the researchers engineered a library of lipid nanoparticles, small particles less than 100 nanometers in size that effectively enter cells in mouse fetal recipients. Each lipid nanoparticle formulation was used to encapsulate mRNA, which was administered to mouse fetuses. The researchers found that several of the lipid nanoparticles enabled functional mRNA delivery to fetal livers and that some of those lipid nanoparticles also delivered mRNA to the fetal lungs and intestines. They also assessed the lipid nanoparticles for toxicity and found them to be as safe or safer than existing formulations.

Having identified the lipid nanoparticles that were able to accumulate within fetal livers, lungs, and intestines with the highest efficiency and safety, the researchers also tested therapeutic potential of those designs by using them to deliver erythropoietin (EPO) mRNA, as the EPO protein is easily trackable. They found that EPO mRNA delivery to liver cells in mouse fetuses resulted in elevated levels of EPO protein in the fetal circulation, providing a model for protein replacement therapy via the liver using these lipid nanoparticles.

“A central challenge in the field of gene therapy is the delivery of nucleic acids to target cells and tissues, without causing side effects in healthy tissue. This is difficult to achieve in adult animals and humans, which have been studied extensively. Much less is known in terms of what is required to achieve in utero nucleic acid delivery,” said Mitchell. “We are very excited by the initial results of our lipid nanoparticle technology to deliver mRNA in utero in safe and effective manner, which could open new avenues for lipid nanoparticles and mRNA therapeutics to treat diseases before birth.”

Here’s a link to and a citation for the paper,

Ionizable lipid nanoparticles for in utero mRNA delivery by Rachel S. Riley, Meghana V. Kashyap, Margaret M. Billingsley, Brandon White, Mohamad-Gabriel Alameh, Sourav K. Bose, Philip W. Zoltick, Hiaying Li, Rui Zhang, Andrew Y. Cheng, Drew Weissman, William H. Peranteau, Michael J. Mitchell. Science Advances 13 Jan 2021: Vol. 7, no. 3, eaba1028 DOI: 10.1126/sciadv.aba1028

This paper appears to be open access. BTW, I noticed Drew Weissman’s name as one of the paper’s authors and remembered him as one of the first to recognize Karikó’s pioneering work. I imagine that when he co-authored papers with Karikó he was risking his reputation.

Funny how a despised field of research has sparked a ‘gold rush’ for research and for riches, yes?.

Why is Precision Nanosystems Inc. in the local (Vancouver, Canada) newspaper?

Usually when a company is featured in a news item, there’s some reason why it’s considered newsworthy. Even after reading the article twice, I still don’t see what makes the Precision Nanosystems Inc. (PNI) newsworthy.

Kevin Griffin’s Jan. 17, 2021 article about Vancouver area Precision Nanosystems Inc. (PNI) for The Province is interesting for anyone who’s looking for information about members of the local biotechnology and/or nanomedicine community (Note: Links have been removed),

A Vancouver nanomedicine company is part of a team using new genetic technology to develop a COVID-19 vaccine.

Precision NanoSystems Incorporated is working on a vaccine in the same class the ones made by Pfizer-BioNTech and Moderna, the only two COVID-19 vaccines approved by Health Canada.

PNI’s vaccine is based on a new kind of technology called mRNA which stands for messenger ribonucleic acid. The mRNA class of vaccines carry genetic instructions to make proteins that trigger the body’s immune system. Once a body has antibodies, it can fight off a real infection when it comes in contact with SARS-CoV-2, the name of the virus that causes COVID-19.

James Taylor, CEO of Precision NanoSystems, said the “revolutionary technology is having an impact not only on COVID-19 pandemic but also the treatment of other diseases.

The federal government has invested $18.2 million in PNI to carry its vaccine candidate through pre-clinical studies and clinical trails.

Ottawa has also invested another $173 million in Medicago, a Quebec-city based company which is developing a virus-like particle vaccine on a plant-based platform and building a large-scale vaccine and antibody production facility. The federal government has an agreement with Medicago to buy up to 76 million doses (enough for 38 million people) of its COVID-19 vaccine.

PNI’s vaccine, which the company is developing with other collaborators, is still at an early, pre-clinical stage.

Taylor is one of the co-founders of PNI along with Euan Ramsay, the company’s chief commercial officer.

The scientific co-founders of PNI are physicist Carl Hansen [emphasis mine] and Pieter Cullis. Cullis is also board chairman and scientific adviser at Acuitas Therapeutics [emphasis mine], the UBC biotechnology company that developed the delivery system for the Pfizer-BioNTech COVID-19 vaccine.

PNI, founded in 2010 as a spin-off from UBC [University of British Columbia], focuses on developing technology and expertise in genetic medicine to treat a wide range of infectious and rare diseases and cancers.

What has been described as PNI’s flagship product is a NanoAssemblr Benchtop Instrument, which allows scientists to develop nanomedicines for testing.

It’s informational but none of this is new, if you’ve been following developments in the COVID-19 vaccine story or local biotechnology scene. The $18.2 million federal government investment was announced in the company’s latest press release dated October 23, 2020. Not exactly fresh news.

One possibility is that the company is trying to generate publicity prior to a big announcement. As to why a reporter would produce this profile, perhaps he was promised an exclusive?

Acuitas Therapeutics, which I highlighted in the excerpt from Griffin’s story, has been featured here before in a November 12, 2020 posting about lipid nanoparticles and their role in the development of the Pfizer-BioNTech COVID-19 vaccine.

Curiously (or not), Griffin didn’t mention Vancouver’s biggest ‘COVID-19 star’, AbCellera. You can find out more about that company in my December 30, 2020 posting titled, Avo Media, Science Telephone, and a Canadian COVID-19 billionaire scientist, which features a link to a video about AbCellera’s work (scroll down about 60% of the way to the subsection titled: Avo Media, The Tyee, and Science Telephone, second paragraph).

The Canadian COVID-19 billionaire scientist? That would be Carl Hansen, Chief Executive Officer and co-founder of AbCellera and co-founder of PNI. it’s such a small world sometimes.