Tag Archives: physics

Consciousness, energy, and matter

Credit: Rice University [downloaded from https://phys.org/news/2023-10-energy-consciousness-physics-thorny-topic.html]

There’s an intriguing approach tying together ideas about consciousness, artificial intelligence, and physics in an October 8, 2023 news item on phys.org,

With the rise of brain-interface technology and artificial intelligence that can imitate brain functions, understanding the nature of consciousness and how it interacts with reality is not just an age-old philosophical question but also a salient challenge for humanity.

An October 9, 2023 University of Technology Sydney (UTS) press release (also on EurekAlert but published on October 8, 2023), which originated the news item, delves further into the subject matter, Note: Links have been removed,

Can AI become conscious, and how would we know? Should we incorporate human or animal cells, such as neurons, into machines and robots? Would they be conscious and have subjective experiences? Does consciousness reduce to physicalism, or is it fundamental? And if machine-brain interaction influenced you to commit a crime, or caused a crime, would you be responsible beyond a reasonable doubt? Do we have a free will?

AI and computer science specialist Dr Mahendra Samarawickrama, winner of the Australian Computer Society’s Information and Communications Technology (ICT) Professional of the year, has applied his knowledge of physics and artificial neural networks to this thorny topic.

He presented a peer-reviewed paper on fundamental physics and consciousness at the 11th International Conference on Mathematical Modelling in Physical Sciences, Unifying Matter, Energy and Consciousness, which has just been published in the AIP (the American Institute of Physics) Conference Proceedings. 

“Consciousness is an evolving topic connected to physics, engineering, neuroscience and many other fields. Understanding the interplay between consciousness, energy and matter could bring important insights to our fundamental understanding of reality,” said Dr Samarawickrama.

“Einstein’s dream of a unified theory is a quest that occupies the minds of many theoretical physicists and engineers. Some solutions completely change existing frameworks, which increases complexity and creates more problems than it solves.

“My theory brings the notion of consciousness to fundamental physics such that it complements the current physics models and explains the time, causality, and interplay of consciousness, energy and matter.

“I propose that consciousness is a high-speed sequential flow of awareness subjected to relativity. The quantised energy of consciousness can interplay with matter creating reality while adhering to laws of physics, including quantum physics and relativity.

“Awareness can be seen in life, AI and even physical realities like entangled particles. Studying consciousness helps us be aware of and differentiate realities that exist in nature,” he said. 

Dr Samarawickrama is an honorary Visiting Scholar in the School of Computer Science at the University of Technology Sydney, where he has contributed to UTS research on data science and AI, focusing on social impact.

“Research in this field could pave the way towards the development of conscious AI, with robots that are aware and have the ability to think becoming a reality. We want to ensure that artificial intelligence is ethical and responsible in emerging solutions,” Dr Samarawickrama said.

Here’s a link to and a citation for the paper Samarawickrama presented at the 11th International Conference on Mathematical Modelling in Physical Sciences, Unifying Matter, Energy and Consciousness,

Unifying matter, energy and consciousness by Mahendra Samarawickrama. AIP Conf. Proc. Volume 2872, Issue 1, 28 September 2023, 110001 (2023) DOI: https://doi.org/10.1063/5.0162815

This paper is open access.

The researcher has made a video of his presentation and further information available,

It’s a little bit over my head but hopefully repeated viewings and readings will help me better understand Dr. Samarawickrama’s work.

Investigate thermodynamics by getting a grasp entropy with a hands-on model!

Using dice and buttons for understanding entropy? Apparently, filling the boxes in the image below with everyday objects helps students to better understand entropy and thermodynamics,

Caption: This hands-on model leverages known conditions of a simple system of hard particles to demonstrate how entropy is related to the number of accessible microstates by observing the degrees of freedom available to each particle. Credit: T. Ryan Rogers

A September 6, 2023 news item on ScienceDaily describes a new approach to teaching entropy,

Though a cornerstone of thermodynamics, entropy remains one of the most vexing concepts to teach budding physicists in the classroom. As a result, many people oversimplify the concept as the amount of disorder in the universe, neglecting its underlying quantitative nature.

In The Physics Teacher, co-published by AIP [American Institute of Physics] Publishing and the American Association of Physics Teachers, researcher T. Ryan Rogers designed a hand-held model to demonstrate the concept of entropy for students. Using everyday materials, Rogers’ approach allows students to confront the topic with new intuition — one that takes specific aim at the confusion between entropy and disorder.

A September 6, 2023 AIP news release (also on EurekAlert), which originated the news item, provides more detail,

“It’s a huge conceptual roadblock,” Rogers said. “The good news is that we’ve found that it’s something you can correct relatively easily early on. The bad news is that this misunderstanding gets taught so early on.”

While many classes opt for the imperfect, qualitative shorthand of calling entropy “disorder,” it’s defined mathematically as the number of ways energy can be distributed in a system. Such a definition merely requires students to understand how particles store energy, formally known as “degrees of freedom.”  

To tackle the problem, Rogers developed a model in which small objects such as dice and buttons are poured into a box, replicating a simple thermodynamic system. Some particles in the densely filled box are packed in place, meaning they have fewer degrees of freedom, leading to an overall low-entropy system.

As students shake the box, they introduce energy into the system, which loosens up locked-in particles. This increases the overall number of ways energy can be distributed within the box.

“You essentially zoom in on entropy so students can say, ‘Aha! There is where I saw the entropy increase,’” Rogers said.

As students shake further, the particles settle into a configuration that more evenly portions out the energy among them. The catch: at this point of high entropy, the particles fall into an orderly alignment. 

“Even though it looks more orientationally ordered, there’s actually higher entropy,” Rogers said.

All the students who participated in the lesson were able to reason to the correct definition of entropy after the experiment.

Next, Rogers plans to extend the reach of the model by starting a conversation about entropy with other educators and creating a broader activity guide for ways to use the kits for kindergarten through college. He hopes his work inspires others to clarify the distinction in their classrooms, even if by DIY means.

“Grapes and Cheez-It crackers are very effective, as well,” Rogers said.

Here’s a link to and a citation for the paper,

Hands-on Model for Investigating Entropy and Disorder in the Classroom by T. Ryan Rogers. Phys. Teach. 61, 439–443 (2023) DOI: https://doi.org/10.1119/5.0089761 Published online September 1, 2023

This paper is open access.

I prefer this image of the teaching tool,

Common materials for handheld entropy demonstration. (a) Small, hard, rectangular, clear box with lid. (b) Octahedral dice serving as hard particles. (c) Sewing buttons serving as hard disks. (d) Wooden dowels cut to equal lengths serving as hard rods. [downloaded from https://pubs.aip.org/aapt/pte/article/61/6/439/2908340/Hands-on-Model-for-Investigating-Entropy-and]

Leaning Out of Windows (LOoW): An Art and Physics Collaboration (2023 book) in Vancouver (Canada)

Be careful not to fall, is a familiar stricture when applied to ‘leaning out of windows’ supplying a frisson of danger to the ‘lean’ but in German, ‘aus dem Fenster lehnen’ or ‘lean out of the window’, is an expression for interdisciplinarity. It’s a nice touch for a book about an art/physics collaboration where it can feel ‘dangerous’ to move so far out of your comfort zone. The book is described this way in its Vancouver (Canada) Public Library catalogue entry,

Art and physics collide in this expansive exploration of how knowledge can be translated across disciplinary communities to activate new aesthetic and scientific perspectives.

Leaning Out of Windows shares findings from a six-year collaboration by a group of artists and physicists exploring the connections and differences between the language they use [emphasis mine], the means by which they develop knowledge, how that knowledge is visualized, and, ultimately, how they seek to understand the universe. Physicists from TRIUMF, Canada’s particle physics accelerator, presented key concepts in the physics of Antimatter, Emergence, and In/visible Forces to artists convened by Emily Carr University of Art + Design; the participants then generated conversations, process drawings, diagrams, field notes, and works of art. The “wondrous back-and-forth” of this process allowed both scientists and artists to, as Koenig [Ingrid Koenig] and Cutler [Randy Lee Cutler] describe, “lean out of our respective fields of inquiry and inhabit the infinite spaces of not knowing.”

From this leaning into uncertainty comes a rich array of work towards furthering the shared project of artists and scientists in shaping cultural understandings of the universe: Otoniya J. Okot Bitek reflects on the invisible forces of power; Jess H. Brewer contemplates emergence, free will, and magic; Mimi Gellman looks at the resonances between Indigenous Knowledge and physics; Jeff Derksen finds Hegelian dialectics within the matter-antimatter process; Sanem Güvenç considers the possibilities of the void; Nirmal Raj ponders the universe’s “special moment of light and visibility” we happen to inhabit; Sadira Rodrigues eschews the artificiality of the lab for a “boring berm of dirt”; and Marina Roy metaphorically turns beams of stable and radioactive gold particles into art of pigments, oils, liquid plastic, and wood. Combined with additional essays, diagrams, and artworks, these texts and artworks live in the intersection of disparate fields that nonetheless share a deep curiosity of the world and our place within it, and a dedication to building and sharing knowledges.

Self-published, “Leaning Out of Windows: An Art and Physics Collaboration” and edited by Ingrid Koenig & Randy Lee Cutler (who also wrote many of the essays) was produced through an entity known as Figure 1 (located in Vancouver). It can be purchased for $45 CAD here on the Figure 1 website or $41.71 (CAD?) on Amazon. (Weirdly, if you look at the back outside cover you’ll see a price of $45 USD.)

Kind of a book

“Leaning” functions as three kinds of books in one package. First, it is documentation for a six year project funded by the Social Sciences and Humanities Research Council of Canada (SSHRC), second, a collection of essays, and, third, a catalogue for three inter-related exhibitions. (Aside: my focus is primarily on the text for an informal book review.)

Like an art exhibition catalogue, this book is printed in a large, awkward to hold format, with shiny (coated) pages. It makes reading the essays and documentation a little challenging but perfect for a picture book/coffee table book where the images are supposed to look good.

I particularly liked the maps for the various phases of the project and the images for phase 1 showing what happens when an image is passed from one artist to the next, without explanation, asking for a new image to be produced and passed on to yet another artist and so on. There is no discussion amongst the artists about the initial impetus (the first artist in the stream of four met with physicists at a science symposium to talk about antimatter).

Ingrid Koenig, Antimatter Process Design (detail), 2017. This diagram shows the process design of five different streams of interactions, mapping out routes for 26 artists and 26 physicists, as well as an experimental class taught by Koenig at Emily Carr University of Art and Design. [downloaded from https://canadianart.ca/features/searching-for-the-language-of-the-universe/]

Unexpectedly, the documentation proved to be a highlight for me. BTW, you can find out more about the Leaning Out of Windows (LOoW) project (e.g. participants, phases, and art/science resources) on its website.

Koenig should be congratulated for getting as much publicity for the book as possible, given the topic and that there are no celebrities involved. CBC gave it a mention (May 8, 2023) on its Books: Leaning Out of Windows webpage. It also got a mention by Dana Gee in a May 12, 2023 ‘Books brief‘ posting on the Vancouver Sun website.

Plus, there were a couple of articles in an art magazine highlighting the art/science project while it was in progress featuring the few images I was about to access online for this project.

A January 6, 2020 article in Canadian Art Magazine by Randy Lee Cutler and Ingrid Koenig introduces the project (Note: I’ll revisit the “metaphor and analogy” mention in this article and throughout the LOoW book later in this post),

The disciplines of art and physics share certain critical perspectives: both deal with how metaphor and analogy inform creative processes. Additionally, artists and physicists address issues of the imagination, creative thinking and communication, and how meaning is made through theoretical research and process-based investigations. There are also important differences in these perspectives. Art brings an appreciation for abstract or non-representational practices. Physics research addresses complex problems relevant to understanding the study of matter and motion through space and time. Physicists also contribute knowledge about how the universe behaves. Together, the achievements of art and physics allow the possibility of a much richer understanding of the nature of reality than each field can contribute individually.

There’s a January 13, 2020 article in Canadian Art Magazine by Perrin Grauer featuring Mimi Gellman, Note: A link has been removed,

Artwork by artist and ECU Associate Professor Mimi Gellman was selected to appear on the cover of the current issue of Canadian Art magazine.

The gleaming, otherworldly image graces the magazine’s issue on antimatter —a subject which “presents a mirror world of abstract phenomena: time reversals, mutual annihilation, cosmic rays, cloud chambers, an infinite sea of sub-atomic particles that parallels our ‘real’ world of matter,” according to the issue’s editors.

Mimi describes her work as approaching some of the affinities between the biological, the perceptual, the cultural and the astronomical.

“My drawings do not explore the exterior world we perceive but rather what I call the ‘architecture of consciousness’ which permits us to perceive it,” she says.

“Recalling astronomical diagrams and reflecting the mixture of hybrid cultural worldviews in my background, they reveal deep similarities between the dimension explored by sub-atomic physics and the implicit interiority of contemporary art.”

I’m sorry I never saw any announcements for the project exhibitions, all of which seemed to have taken place at the Emily Carr University of Art + Design. There were three concepts each explored in three exhibitions, with different artists each time, titled: Antimatter, Emergence, and In/visible Forces, respectively.

A bouquet or two and a few nitpicks

Randy Lee Cutler and Ingrid Koenig have a wonderful quote from Karen Barad, physicist and philosopher, in their essay titled, “Collaborative Research between Artists and Physicists,”

Barad introduces the concept of intra-action and the fluidity of materialization through our bodily entanglements—through intra-action our bodies remain entangled with those around us. “Not only subjects but also objects are permeated through and through with their entangled kin, the other is not just in one’s skin, but in one’s bones, in one’s belly in one’s heart, in one’s nucleus, in one’s past and future.This is a true for electrons as it is for brittlestars as it is for the differentially constituted human.” As Barad asks herself, “How do I know where my physics begins and ends?” … [p. 13]

To the left of the page is a black and white photograph of entangled cables captioned, “GRIFFIN (Gamma Ray Infrastructure for Fundamental Investigations of Nuclei- TRIUMF.” It’s a nice touch and points to the difficulty of ‘illustrating’ or producing visual art in response to physics ideas such as quantum entanglement, something Einstein called, ‘spooky action at a distance’. From the Quantum entanglement Wikipedia entry, Note: Links have been removed,

Quantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of the others [[emphasis mine], including when the particles are separated by a large distance [emphasis mine]. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.[1]

Some of the essays

One essay that stood out in LOoW, was “A Boring Berm of Dirt’ (pp. 141-7) by Sadira Rodrigues. She notes that dirt and soil are not the same; one is dead (dirt) and the other is living (soil) and that the berm has an important role at TRIUMF. If you want a more specific discussion of the difference between dirt and soil, see David Beaulieu’s February 23, 2023 essay (Soil vs. Dirt: What’s the Difference?) on The Spruce website.

Rodrigues’ essay (part of the Emergence concept) situates the work physically (word play alert: physics/physically) whereas all of the other work is based on ideas.

In “Boring Berm … ,” radioactivity is mentioned, a term which is largely taboo these days due its association with poisoning, bombs, and death. The eassy goes into fascinating detail about TRIUMF’s underground facility and how the facility deals with its nuclear waste and the role that the berm plays. (On a more fanciful note, the danger in the title of the book is given another dimension in this essay focused on nuclear topics.) Regardless, the essay was definitely an eye-opener.

Aside: The institution has been rebranded from: TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics) to: TRIUMF (Canada’s national particle accelerator centre). You can find a reference to the ‘nuclear’ name in my October 2, 2018 posting although the name was already changed, probably in the early to mid-2010s. There is no mention of the ‘nuclear’ name in TRIUMF’s Wikipedia entry, accessed August 22, 2023.

Gellman and language

Mimi Gellman’s essay, “Crossing No Divide: Mapping Affinities in Art and Science” evokes unity, as can be seen in the title. She’s one of the more ‘lyrical’ writers,

There is a place in our imagination where east or west, or large or small, or any other opposites cease to be productive contradictions. As an artist and educator, I have become interested in the non-binary and resonance between Indigenous Knowledge and physics, between art and science, and between traditional ways of considering cognition and thinking with the hand. [p. 33]

This is how Gellman is described for the January 13, 2020 article in Canadian Art Magazine, which is archived on the Emily Carr University of Art + Design (ECUAD) website,

Mimi Gellman is an Anishinaabe/Ashkenazi (Ojibway-Jewish Métis) visual artist and educator with a multi-streamed practice in architectural glass and conceptual installation. She is currently an Associate Professor in the Faculty of Culture + Community at Emily Carr University of Art + Design in Vancouver, Canada, and is completing her research praxis PhD in Cultural Studies at Queen’s University on the metaphysics of Indigenous mapping.

She highlights some interesting observations about language and thinking,

The Ojibwe language, Anishinaabemowin, like many Indigenous languages is verb-based in contrast with Western languages’ noun-based constructions and these have deep implications for the development of one’s worldview. …

I suspect anyone who speaks more than one language can testify to the observation that language affects one’s worldview. More academically, it’s called linguistic relativity or the Sapir-Whorf hypothesis. I find it hard to believe that it’s considered a controversial idea but here goes from the Linguistic relativity Wikipedia entry, Note: Links have been removed,

The idea of linguistic relativity, also known as the Sapir–Whorf hypothesis /səˌpɪər ˈhwɔːrf/ sə-PEER WHORF, the Whorf hypothesis, or Whorfianism, is a principle suggesting that the structure of a language influences its speakers’ worldview or cognition, and thus individuals’ languages determine or shape their perceptions of the world.[1]

The hypothesis has long been controversial, and many different, often contradictory variations have existed throughout its history.[2] The strong hypothesis of linguistic relativity, now referred to as linguistic determinism, says that language determines thought and that linguistic categories limit and restrict cognitive categories. This was held by some of the early linguists before World War II,[3] but it is generally agreed to be false by modern linguists.[4] Nevertheless, research has produced positive empirical evidence supporting a weaker version of linguistic relativity:[4][3] that a language’s structures influence and shape a speaker’s perceptions, without strictly limiting or obstructing them.

Gettng back to Gellman, language, linguistic relativity, worldviews, and, adding physics/science, she quotes James (Sa’ke’j) Youngblood Henderson “a research fellow at the Native Law Centre of Canada, University of Saskatchewan College of Law. He was born to the Bear Clan of the Chickasaw Nation and Cheyenne Tribe in Oklahoma in 1944 and is married to Marie Battiste, a Mi’kmaw educator. In 1974, he received a juris doctorate in law from Harvard Law School,”

[at a 1993 dialogue between Western and Indigenous scientists …]

[Youngblood Henderson] We don’t have one god. You need a noun-based language to have one god. We have forces. All forces are equal and you are just the amplifier of the forces. The way you conduct your life and the dignity you give to other things gives you access to other forces. Even trees are verbs instead of nouns. The Mi’kmaq named their trees for the sound the wind makes when it blows through the trees during the autumn about an hour after the sunset, when the wind usually comes from a certain direction. So one might be like a ‘shu-shu’ something and another more like a ‘tinka-tinka’ something. Although physics in the western world has been essentially the quest for the smallest noun (which used to be a-tom, ‘that which cannot be further divided’), as they were inside the atom things weren’t acting like nouns anymore. The physicists were intrigued with the possibilities inherent in a language that didn’t depend on nouns but could move right to verbs when the circumstances were appropriate.3

This work from Gellman is a favourite of mine, and is featured in the January 13, 2020 article in Canadian Art Magazine and you’ll find it in the book,

Image courtesy Mimi Gellman. Mimi Gellman, ‘Invisible Landscapes,’ 2017. Conte on Japanese Obonai paper, 63.5 x 48.3 cm. [downloaded from https://www.ecuad.ca/news/2020/canadian-art-magazine-features-cover-artwork-by-mimi-gellman]

There are more LOoW images embedded in the January 6, 2020 article on the Canadian Art Magazine website.

Derksen and his poem

Karl Marx, Friedrich Engels, Theodor W. Adorno, and Georg Wilhelm Friedrich Hegel were unexpected guest stars in Derksen’s essay, “From Two to Another: The Anti-Matter Series,” given that he is an award-winning poet. These days he has this on his profile page on the Department of English, Simon Fraser University website, “Dean and Associate Provost, Graduate and Postdoctoral Studies.”

From LOoW,

Karl Marx and Friedrich Engels are well known as materialists, having helped define a materialist view of history, of economics and of capitalism. And both Marx and Engels aimed to develop Marxism as a science rather than a model based on naturalizing capitalism and “man.” … [p. 89]

Derksen includes a diagram/poem, for which I can’t find a digitized copy, but here’s what he had to say about it,

My mode of looking at this [antimatter] is through poetic research —which itself does not aim to arrive at a synthesis but instead looks for relational moments. In this I also see a poetic language emerge from both discourses [artistic/scientific]—matter-antimatter thought and dialectical thinking. For my contribution to Leaning Out of Windows, I have tried to combine the scientific aspect of dialectical thinking with the poetic aspect of matter-antimatter thought and experimentation. To do this, I have taken the diagrammatic rendering of Carl Anderson’s experiment which resulted in his 1932 paper … as a model to relate the dialectical thinking at the heart of Marxism and matter-antimatter thought. …

Towards the end of his essay, Derksen notes that he’s working (on what I would call) a real poem. I sent an email to Derksen on August 21, 2023 asking,

  • Have you written the poem or is still in progress?
  • If you have written it, has it been published or is it being readied for publication? I would be happy to mention where.
  • If you do have it ready and would like to ‘soft launch’ the poem, could you send it to me for inclusion in the post?

No response at this time.

Flashback to Alan Storey

I think it was 2002 or 2003 when I first heard about an artist at TRIUMF, Alan Storey. The ‘residency’ was the product of a joint effort between the Canada Council for the Arts (Canada Council) and the Natural Sciences and Engineering Council of Canada (NSERC).

I spoke with Storey towards the end of his ;residency; and he was a little disappointed because nothing much had come of it. Nobody really seemed to know what to do with an artist at a nuclear facility and he didn’t really didn’t seem to know either. (Alan Storey’s work can be seen in the City of Vancouver’s collection of public art works here and on his website.)

My guess is that someone had a great idea but didn’t think past the ‘let’s give money to science institutions so they can host some artists who will magically produce wonderful things for us’ stage of thinking. While there is no longer a Canada Council/NSERC programme, it’s clear from LOoW (funded by the Social Sciences and Humanities Research Council of Canada [SSHRC]) that lessons have been learned.

Kudos to David Morissey who acted as an interface and convenor for the artists and to Nigel Smith (Director 2021 – present) and Jonathan Bagger (Director 2014 – 2020) for supporting the project from the TRIUMF side and to Ingrid Koenig and Randy Lee Cutler who organized and facilitated LOoW from the artists’ side.

Now, for the nits

“Co-thought” is mentioned a number of times. What is it? According to my searches, it has something to do with gestures. Here’s one of the few reference I could find for co-thought,

Co-thought and co-speech gestures are generated by the same action generation process by Mingyuan Chu and Sotaro Kita. Exp Psychol Learn Mem Cogn. 2016 Feb;42(2):257-70. doi: 10.1037/xlm0000168. Epub 2015 Aug 3.

Abstract

People spontaneously gesture when they speak (co-speech gestures) and when they solve problems silently (co-thought gestures) [emphasis mine]. In this study, we first explored the relationship between these 2 types of gestures and found that individuals who produced co-thought gestures more frequently also produced co-speech gestures more frequently (Experiments 1 and 2). This suggests that the 2 types of gestures are generated from the same process. We then investigated whether both types of gestures can be generated from the representational use of the action generation process that also generates purposeful actions that have a direct physical impact on the world, such as manipulating an object or locomotion (the action generation hypothesis). To this end, we examined the effect of object affordances on the production of both types of gestures (Experiments 3 and 4). We found that individuals produced co-thought and co-speech gestures more often when the stimulus objects afforded action (objects with a smooth surface) than when they did not (objects with a spiky surface). These results support the action generation hypothesis for representational gestures. However, our findings are incompatible with the hypothesis that co-speech representational gestures are solely generated from the speech production process (the speech production hypothesis).

It would have been nice if Koenig and Cutler had noted they were borrowing a word ot coining a word and explaining how it was being used in the LOoW context.

Fruit, passports, and fishing trips

The editors/writers use the words or variants, metaphor, poetry, and analogy with great abandon.

“Fruitful bridge” (top of page) and “fruitful match-ups” (bottom of page) on p. 18 seemed a bit excessive as did the “metaphorical passport” on p. 5.

I choked a bit over this on p. 19, “… these artist/scientist interactions can be seen as ‘procedural metaphors’ that enact a thought experiment … .” Procedural metaphor? It seems a bit of a stretch.

A last example and it’s a pair: “metaphorical fishing trips whereby artist and scientists received whatever they might reel in …” on p. 42 (emphases mine). Fishing trips are mentioned in a later essay too, one of the few times there’s some sort of follow through on an analogy.

Maybe someone who wasn’t involved with the project should have taken a look at the text before it was sent to the printer.

Using the words, poetry, metaphor, and analogy can be tricky and, I want to emphasize that in my opinion, those words were not often put to good use in this book.

Moving on, arts and sciences together have a longstanding history.

*ETA October 3, 2023: Ooops! I had a comment about the use of the word ‘passports’ in the book but somewhere in all my edits, I cut it out. (huff)*

Poetry and physics

One of the giants of 19th century physics, James Clerk Maxwell was also known for his poetry. and some of the most evocative (poetic) text in the LOoW book can be found in the quotes from various physicists of the 20th century. The link between physicist and poetry is explicit in a September 17, 2018 posting (12 poignant poems (and one bizarre limerick) written by physicists about physics) by Colin Hunter for the Perimeter Institute for Theoretical Physics in Waterloo, Canada.

Going back further, there’s De rerum natura, a poem in six books, by Lucretius ((c. 99 BCE– c. 55 BCE). Amongst many other philosophical concerns (e.g., the nature of mind and soul, etc.), Lucretius also discussed atomism (“… a natural philosophy proposing that the physical universe is composed of fundamental indivisible components known as atoms; from the Atomism Wikipedia entry). So, poetry and physics have a long history.

Leaving aside Derksen’s diagram/poem, there’s a dearth of poetry in the book except for a suite of seven poems from TRIUMF physicist and professor at UBC, Jess Brewer following his “Emergence, Free Will and Magic” essay,

Emergence / An extremely brief history of one universe, expressed as a series of science fiction poems by Jess H. Brewer, June 29, 2019

Inspired by Dyson Freeman’s delightful lecture series , “Time Without End: Physics and Biology in an Open Universe,” Reviews of Modern Physics (51) 1979

1. Bang
Why not?
For reasons known only to itself,
the universe begins
The quantum foam of spacetime seethes
with effortless energies,
entering and exiting this continuum
with a turbulent intensity
transcending the superficially smooth
expanding cosmos
and yet it kens the glacial passage of “time”,
because it waits.
And kens the vast reaches of “space”,
because it watches,
Its own experiences has taught it that
from each iteration of complexity,
awareness will emerge.

… [p. 149]

My thanks to Brewer for the poetry and magic and my apologies for any mistakes I’ve introduced into his piece. I was trying to be especially careful with the punctuation as that can make quite a difference to how a piece is read.

While Muriel Rukeyser is not a physicist at TRIUMF or, indeed, alive, one of her poems leads the essay “Leaning into Language or the Universe is Made of Stories,” by Randy Lee Cutler and Ingrid Koenig,

Time comes into it
Say it. Say it.
The universe is made of stories,
not of atoms..
—Muriel Ruykeyser, Speed of Darkness, 1968

Before getting into the response that physicist, David Morrissey, had to the poem, here’s a little about the poet, from the Poetry Foundation’s Muriel Ruykeyser (1913-1980) webpage,

Muriel Rukeyser was a poet, playwright, biographer, children’s book author, and political activist. Indeed, for Rukeyser, these activities and forms of expression were linked. …

One of Rukeyser’s intentions behind writing biographies of nonliterary persons was to find a meeting place between science and poetry. [emphasis mine] In an analysis of Rukeyser’s The Life of Poetry, Virginia Terris argued that Rukeyser believed that in the West, poetry and science are wrongly considered to be in opposition to one another. Thus, writes Terris, “Rukeyser [set] forth her theoretical acceptance of science … [and pointed] out the many parallels between [poetry and science]—unity within themselves, symbolic language, selectivity, the use of the imagination in formulating concepts and in execution. [emphasis mine] Both, she believe[d], ultimately contribute to one another.”

Rokeyser’s poem raised a few questions. Is her poem a story? Or, is she using symbolic language, the poem, to poke fun at stories and atoms? Is she suggesting that atoms are really stories? I found the poem evocative especially with where it was placed in the book.

Morrissey takes a prosaic approach, from the essay “Leaning into Language or the Universe is Made of Stories,”

… [in response to Rukeyser’s claim about stories] Morrissey responded stating that “scientific theories are stories—but how we evaluate stories is important—they need to be true, but they do probe, and some are more popular than others, especially theories that we can’t measure.” He surprised us further when he said that wrong stories can also be useful—they may have elements in them that turn out to be useful for future research. … [pp. 205-6]

In general and throughout this project, it seems as if they (artists and physicists) tried but, for the most part, were never quite able to articulate in poetic, metaphoric, and analogical forms. They tended to fall back onto their preferred modes of scientific notations, prosaic language, and artworks.

Both sides of the knife blade cut

Everybody does it. Poets, academics, artists, scientists, etc. we all appropriate ideas and language, sometimes without understanding them very well. Take this for example, from the Canadian Broadcasting’s (CBC) Books “Elementary Particles” August 16, 2023 webpage,

Elementary Particles by Sneha Madhavan-Reese

A poetry collection about family history and scientific exploration

Through keen, quiet observation, Sneha Madhavan-Reese’s evocative new collection takes us from the wide expanse of rural India to the minute map of Michigan we carry on the palms of our hands. These poems contemplate ancestral language, the wonder and uncertainty of scientific discovery, the resilience of a dung beetle, the fleeting existence of frost flowers on the Arctic Ocean.

The collection is full of familiar characters, from Rosa Parks to Seamus Heaney to Corporal Nathan Cirillo, anchoring it in specific moments in time and place, but has the universality that comes from exploring the complex relationship between a child and her immigrant parents, and in turn, a mother and her children. Elementary Particles examines the building blocks of a life — the personal, family, and planetary histories, transformations, and losses we all experience. (From Brick Books)

Sneha Madhavan-Reese is a writer currently based in Ottawa. In 2015 she received Arc Poetry Magazine’s Diana Brebner Prize and was shortlisted for the Montreal International Poetry Prize. Her previous poetry collection is called Observing the Moon

As you can see, there’s no substantive mention of physics in this book description—it’s just a title. Puzzling since there’s this about the author on Asian Heritage Canada’s Sneha Madhavan-Reese webpage

Sneha Madhavan-Reese’s award winning poetry has been widely published in literary magazines in North America and Australia. She earned a bachelor’s degree in mechanical engineering from MIT in 2000, and a master’s degree in mechanical engineering from the University of Michigan in 2002. Madhavan-Reese currently lives in Ottawa, Ontario. [emphases mine]

It seems the mechanical engineer did not write up her book blurb because even though the poet’s scientific specialty is not physics as such, I’d expect a better description.

In the end, it seems art and science or poetry and science (in this case, physics) sells.

Alchemy, beauty, and Marx’s surprise connection to atomism

It was unexpected to see a TRIUMF physicist reference alchemy. The physicists haven’t turned lead into gold but they have changed one element into another. If memory holds it was one metallic atom being changed into another type of metallic atom. (Having had to return the book to the library, memory has serve.)

The few references to alchemy that I’ve stumbled across elsewhere in my readings of assorted science topics are derogatory, hence the surprise. Things may be changing; Princeton University Press published a November 7, 2018 posting by author William R. Newman about Newton and alchemy. First, here’s a bit about William Newman,

William R. Newman is Distinguished Professor and Ruth N. Halls Professor in the Department of History and Philosophy of Science and Medicine at Indiana University. His many books include Atoms and Alchemy: Chymistry and the Experimental Origins of the Scientific Revolution and Promethean Ambitions: Alchemy and the Quest to Perfect Nature. He lives in Bloomington, Indiana.

Now for Newman’s comments, from the November 7, 2018 posting,

People often say that Isaac Newton was not only a great physicist, but also an alchemist. This seems astonishing, given his huge role in the development of science. Is it true, and if so, what is the evidence for it?

WN: The astonishment that Newton was an alchemist stems mostly from the derisive opinion that many moderns hold of alchemy [emphasis mine]. How could the man who discovered the law of universal gravitation, who co-invented calculus, and who was the first to realize the compound nature of white light also engage in the seeming pseudo-science of alchemy? There are many ways to answer this question, but the first thing is to consider the evidence of Newton’s alchemical undertaking. We now know that at least a million words in Newton’s hand survive in which he addresses alchemical themes. Much of this material has been edited in the last decade, and is available on the Chymistry of Isaac Newton site at www.chymistry.org. Newton wrote synopses of alchemical texts, analyzed their content in the form of reading notes and commentaries, composed florilegia or anthologies made up of snippets from his sources, kept experimental laboratory notebooks that recorded his alchemical research over a period of decades, and even put together a succession of concordances called the Index chemicus in which he compared the sayings of different authors to one another. The extent of his dedication to alchemy was almost unprecedented. Newton was not just an alchemist, he was an alchemist’s alchemist. 

… 

Beauty

The ‘beauty’ essay by Ingrid Koenig was also a surprise. Beauty seems to be anathema to contemporary artists. I wrote this in an August 23, 2016 posting (Georgina Lohan, Bharti Kher, and Pablo Picasso: the beauty and the beastliness of art [in Vancouver]), “It seems when it comes to contemporary art, beauty is transgressive.”

Koenig describes it as irrelevant for contemporary artists and yet, beauty is an important attribute to physicists. Her thoughts on beauty in visual art and in physics were a welcome addition to the book.

Marx’s connection to atomism

This will take a minute.

De rerum natura, a six-volume poem by Lucretius (mentioned under the Poetry and physics subhead of this posting), helped to establish the concept of atomism. As it turns out, Lucretius got the idea from earlier thinkers, Epicurus and Democritus.

Karl Marx’s doctoral dissertation, which focused on Lucretius, Epicurus and more, suggests an interest in science that may have led to his desire to establish economics as a science. From Cambridge University Press’s “Approaches to Lucretius; Traditions and Innovations in Reading the De Rerum Natura,” Chapter 12 – A Tribute to a Hero: Marx’s Interpretation of Epicurus in his Dissertation,

Summary

This chapter turns to Karl Marx’s treatment of Epicureanism and Lucretius [emphasis mine] in his doctoral dissertation, and argues that the questions raised by Marx may be brought to bear on our own understanding of Epicurean philosophy, particularly in respect of a tension between determinism and individual self-consciousness in a universe governed by material causation. Following the contours of Marx’s dissertation [emphasis mine], the chapter focusses on three key topics: the difference between Democritus’ and Epicurus’ methods of philosophy; the swerve of the atom; and the so-called ‘meteors’, or heavenly bodies [emphasis mine]. Marx sought to develop Hegel’s understanding of Epicurus, in particular by elevating the principle of autonomous action to a first form of self-consciousness – a consideration largely mediated by Lucretius’ theorization of the atomic swerve and his poem’s overarching framework of liberating humans from the oppression of the gods.

Fascinating, eh? The rest of this is behind a paywall. For the interested, here’s a citation and link for the book,

Approaches to Lucretius; Traditions and Innovations in Reading the De Rerum Natura
Edited by Donncha O’Rourke, University of Edinburgh

Publisher: Cambridge University Press
Online publication date: June 2020
Print publication year: 2020
Online ISBN: 9781108379854

DOI: https://doi.org/10.1017/9781108379854

32.99 (USD) Digital access

It’s a little surprising Derksen doesn’t mention the connection in his essay.

Finally

It’s an interesting book if not an easy one. (By the way, I wish they’d included an index.) You can get a preview of some of the artwork in the January 6, 2020 article on the Canadian Art Magazine website.

I can’t rid myself of the feeling that LOoW (the book) is meant to function as a ‘proof of concept’ for someone wanting to start an art/science department or programme at the Emily Carr University of Art + Design, perhaps jointly with the University of British Columbia. It is highly unusual to see this sort of material in anything other than a research journal or as a final summary to the granting agency.

Should starting an art/science programme be the intention, I hope they are successful in getting such it together and, in the meantime, thank you to the physicists and artists for their work.

We should all ‘lean out of windows’ on occasion and, if it means, falling or encountering ‘dangerous, uncomfortable ideas’ then, that’s alright too.

Fluid mechanics in the kitchen

Caption: Dr. Maciej Lisicki is developing a formula for perfectly creamy ice cream in his laboratory. Credit Photo: Michal Czerepaniak, source: Faculty of Physics, University of Warsaw.

It’s unusual to see a scientist in an orange (maybe it could be called fire engine red?) jumpsuit as it has an altogether different meaning (prison wear) in the US.

Sadly, there isn’t a video of Dr. Maciej Lisicki or other scientists in the kitchen but here’s a description of what they’ve been up to from a June 22, 2023 University of Warsaw (Poland) press release (also on EurekAlert),

Take four brilliant physicists who specialize in fluid mechanics and put them in the kitchen. Give them pots, pans, basic foodstuffs, and a bottle of champagne. Add a COVID-19 pandemic, a pinch of boredom, and a handful of good ideas. Stir, wait, and voilà – you have a “delicious” publication that will teach you how bubbles are created in champagne, how to brew the perfect espresso, and how “kitchen revolutions” can contribute to innovations in many fields, including biomedicine and nanotechnology.

Most of us visit this place every day. But the kitchen is not just for cooking meals. “It can be an excellent place to conduct experiments and even make scientific discoveries,” argues Maciej Lisicki, of the Faculty of Physics of the University of Warsaw, co-author of a publication in the prestigious journal Reviews of Modern Physics. The team of researchers, which in addition to Maciej Lisicki includes Arnold Mathijssen of the University of Pennsylvania, Endre J.L. Mossige of the University of Oslo and Vivek N. Prakash of the University of Miami, not only explores the history of food science, but also shows how phenomena in the kitchen lead to innovations in biomedicine and nanotechnology.

COVID pandemic and bubbles in champagne

Maciej Lisicki and his fellow researchers began working on the article during the COVID-19 pandemic, when many researchers could not work in the lab and began experimenting in their homes. “It started primarily with the intention to make an educational tool, given that kitchens offer a low barrier of entry to doing science — all you need are some pots, pans, and a few ingredients to get a few reactions going—but it quickly grew into a more scientific reflection of the history of food once we realized how interwoven the fields are,” says Arnold Mathijssen.

The team of researchers constructed the results of their work along the lines of a menu. “Tasting” begins with the physics of drinks and cocktails, then moves on to main courses, and finishes with coffee and desserts, whose preparation is also based on the intuitive use of the laws of nature.

As with any good party, everything begins with the opening of a bottle of champagne. After a characteristic “pop”, we observe how a mist forms around the neck of the bottle. – This phenomenon is associated with a rapid change in pressure. Inside the bottle it reaches almost five atmospheres, but when the bottle is opened it drops to one atmosphere.  “The expansion is accompanied by a drop in temperature, which causes the water vapor that accumulates near the mouth of the bottle to freeze, and the carbon dioxide coming out of the bottle to condense”, Maciej Lisicki explains.

In their paper, the researchers also look at bubbles, which give sparkling wines their unique flavor. “Circulating bubbles force the transport of the liquid in the glass, and thus facilitate the release and spread of aromatic notes and flavors”, the researcher adds. From the section of the paper devoted to drinks and cocktails, we will also learn what makes the foam in beer so thick and stable, why aniseed drinks such as rakija and ouzo get cloudy when enough water is added (the phenomenon is even called the “ouzo effect”), and what “tears of wine” are.

When water surfs the pan

Moving on to the main course, the scientists explain the role of heat and its effect on food textures, aromas, and flavors. Among other things, they describe the Leidenfrost effect, in which a drop of liquid placed on a very hot surface forms an insulating layer of vapor, that prevents rapid boiling. “Water drops thrown onto the pan ‘surf’ and even bounce off the surface, instead of evaporating immediately”, Lisicki says. 

Proper temperature is crucial in the preparation of many foods. “It doesn’t take a Ph.D. in physics to fry the perfect steak. Everyone knows that one needs to quickly sear the meat in a sufficiently hot pan. As a result, the proteins on the surface of the steak coagulate and the moisture is kept inside”, the researcher explains. 

A Ph.D. in dishwashing

The text also includes examples of scientific discoveries that researchers have made without leaving their own kitchens. One of them is related to the biography of Agnes Pockels.

“Her story speaks of the inequality in science. She was a woman in Germany in the late 19th century, so she was not allowed to attend university for formal training, making it difficult for her to submit her research to journals,” Mathijssen says.

Running her parents’ household and spending a lot of time in the kitchen, she quickly began experimenting there. “Observing the formation of foam and films on the surface of dirty dishes, she was the first to describe the phenomenon of surface tension and developed an instrument to measure it. Initially, scientific journals were reluctant to publish the results of her experiments due to her lack of formal training and affiliation with university staff. Her first paper was published through Lord Rayleigh in Nature and contributed to the understanding of surface effects in liquids. Agnes Pockels then became well-known and respected, and all her subsequent work was published in high-profile journals. This example shows that it is possible to become a respected scientist without leaving home,” notes Maciej Lisicki.

Salad dressing vs. nanoengineering

Research in fluid mechanics can help improve food processing technologies, as well as find applications in other fields such as nanoengineering and medicine. “In an earlier study (“Rechargeable self-assembled droplet microswimmers driven by surface phase transitions”, published in Nature Physics) conducted by my team, we used a simple emulsion that is the basis of salad dressings – oil with water. We were able to make droplets of such an emulsion, with the addition of a surfactant, form tendrils under temperature and move like bacteria. Such nontoxic, biocompatible microfluidics could be used in the future, for example, to precisely deliver drugs anywhere in our bodies”, Lisicki explains. 

The review also highlights the applicability of these technologies in areas such as food safety and quality control. By deploying devices that can detect food-borne pathogens or toxins using principles of fluid dynamics, the scientific community can contribute significantly to public health.

Another key aspect of their review is the potential impact it could have on policy decisions, particularly those related to environmental sustainability and food safety. The authors highlight the significance of science-based policies, for example – referencing the announced EU ban on PFAS non-stick coatings by 2030. Using the scientific understanding offered by studies like these, policy makers can make informed decisions to foster a more sustainable and safer food future.

“Kitchen flows show us that significant scientific problems are available at our fingertips and do not always require space technology to explore them. On the other hand, more than a few cosmic technologies were born from inspiration by everyday phenomena. The kitchen can therefore entertain us, but also teach us – in this case, physics. This is why it is worth a try to unleash your curiosity and experiment!” Lisicki adds.

This research was supported by the United States Department of Agriculture (USDA-NIFA AFRI 2020-67017-30776 and 2020-67015-32330).

Faculty of Physics of the University of Warsaw
Physics and astronomy at the University of Warsaw appeared in 1816 as part of the then Faculty of Philosophy. In 1825, the Astronomical Observatory was established. Currently, the Faculty of Physics at the University of Warsaw consists of the following institutes: Experimental Physics, Theoretical Physics, Geophysics, the Department of Mathematical Methods and the Astronomical Observatory. The research covers almost all areas of modern physics, on scales from quantum to cosmological. The Faculty’s research and teaching staff consists of over 200 academic teachers, 88 of whom are professors. About 1,100 students and over 170 doctoral students study at the Faculty of Physics at the University of Warsaw.

Perhaps the paper provides more information about the ice cream research depicted in the visual image at the top of this posting. Here’s a link to and a citation for the paper,

Culinary fluid mechanics and other currents in food science by Arnold J. T. M. Mathijssen, Maciej Lisicki, Vivek N. Prakash, and Endre J. L. Mossige. Rev. Mod. Phys. Vol. 95, Iss. 2 — April – June 2023 025004 DOI: https://doi.org/10.1103/RevModPhys.95.025004 Published: 5 June 2023 © 2023 American Physical Society

This paper is behind a paywall.

Physics in James Joyce’s Ulysses and physics amongst the penguins

So James Joyce included some physics in his novel, Ulysses (serialized in The Little Review from March 1918 to December1920 and published as a novel in February 1922)?

That’s not the only surprise. Apparently, penguins perform some interesting feats from a physics perspective. I have two stories about penguin physics with the latest research being published in June 2023.

Let’s start with literature.

James Joyce, Ulysses, and 19th century physics

This article came to my attention in April 2023 but the material is from 2021/22. Thankfully, since it’s a literature topic, timing doesn’t matter quite as much as it does for other topics. From a December 22, 2021 American Institute of Physics news release highlights an intriguing article in The Physics Teacher,

James Joyce’s book “Ulysses” is widely considered a 20th-century literary masterpiece. It also contains a surprising amount of 19th-century classical physics, according to Harry Manos, faculty member at Los Angeles City College.

“Ulysses” chronicles the ordinary life of the protagonist Leopold Bloom over a single day in 1904. In The Physics Teacher, by AIP Publishing, Manos reveals several connections that have not been analyzed before in the Joycean literature between classic physics prevalent during that time and various passages of the book.

“‘Ulysses’ exemplifies what physics students and teachers should realize — namely, physics and literature are not mutually exclusive,” Manos said.

Manos shows how Joyce uses the optics of concave and convex mirrors to metaphorically parallel “Ulysses” with Homer’s “Odyssey,” and how Joyce uses physics to show Bloom’s strengths and weaknesses in science.

Here’s a link to and a citation for the paper,

Physics in James Joyce’s Ulysses by Harry Manos. The Physics Teacher 60, 6–10 (2022) DOI: https://doi.org/10.1119/5.0028832 Published online: January 1, 2022

This paper is behind a paywall but there is a freely available abstract

Ulysses by James Joyce (1882–1941) has a surprising amount of 19th-century, classical physics. The physics community is familiar with the name James Joyce mainly through the word “quark” (onomatopoeic for the sound of a duck or seagull), which Murray Gell-Mann (1929-2019 – Physics Nobel Prize 1969) sourced from Joyce’s Finnegan’s Wake. Ulysses, however, was ranked number one in 1998 on the Modern Library “100 Best Novels” list and is, in whole or in part, in the literature curriculum in university English departments worldwide. The fact that Ulysses contains so much classical physics should not be surprising. Joyce’s friend Eugene Jolas observed: “the range of subjects he [Joyce] enjoyed discussing was a wide one … [including] certain sciences, particularly physics, geometry, and mathematics.” Knowing physics can enhance everyone’s understanding of this novel and enrich its entertainment value. Ulysses exemplifies what physics students (science and non-science majors) and physics teachers should realize, namely, physics and literature are not mutually exclusive.

In addition to the December 22, 2021 American Institute of Physics news release which provides some detail about the physics in Ulysses, there’s Jennifer Ouellette’s April 2, 2023 article for Ars Technica where in addition to the material in the news release, she adds some intriguing information, Note: Links have been removed,

In Chapter 15 (“Circe”), one of the characters says, “You can call me up by sunphone any old time”—a phrase that also appears in Joyce’s handwritten notes for the chapter. While Manos was unable to trace a specific source for this term, there was a similar device that had been invented some 20 years earlier: Alexander Graham Bell’s photophone, co-invented with his assistant Charles Sumner Tainter.

Unlike the telephone, which relies on electricity, the photophone transmitted sound on a beam of light. Bell’s voice was projected through the instrument to a mirror, causing similar vibrations in the mirror. When he directed sunlight into the mirror, it captured and projected the mirror’s vibrations via reflection, which were then transformed back into sound at the receiving end of the projection. Bell’s device never found immediate application, but it’s arguably the progenitor to modern fiber-optic telecommunications.

There are several other instances of physics (both correct and incorrect/outdated) mentioned in Ulysses, per Manos, including Bloom misunderstanding the science of X-rays; his confusion over parallax; trying to figure out the source of buoyancy in the Dead Sea; ruminating on Archimedes’ “burning glass”; seeing rainbow colors in a water spray; and pondering why he hears the ocean when he places a seashell to his ear. Manos believes introducing literature like Ulysses into physics courses could be a boon for non-majors, as well as encouraging physics and engineering students to learn more about literature.

In fact, Manos notes that an earlier 1995 paper introduced a handy introductory physics problem involving distance, velocity, and time. Ulysses opens with Stephen Dedalus and his roommate, Buck Mulligan, standing at the Martello tower overlooking a bay at Sandy Cove. …

Now onto …

Penguin physics

Two stories, two research teams, and six months separate their papers.

A February 7, 2023 news item on phys.org features work from a team of Japanese scientists studying how penguins turn in the water, Note: A link has been removed,

Penguins constitute a fascinating family of flightless birds, that although somewhat clumsy on land, are extremely talented swimmers. Their incredible maneuverability in water has captivated biologists for decades, with the first hydrodynamic studies on their swimming dating back to the 1970s.

Although a rare few studies have clarified some of the physics behind penguins’ dexterity, most of them have focused on forward swimming rather than turning. While one may argue that existing studies on the turning mechanisms of flying birds could shed some light on this topic, water is 800 hundred times denser than air, and thus the turning mechanisms employed are presumably very different between these media.

In an effort to bridge this knowledge gap, a pair of Japanese scientists from Tokyo Institute of Technology (Tokyo Tech), including Associate Professor Hiroto Tanaka, recently conducted a study. The main goal of this work, which was published in Journal of Experimental Biology, was to gain a better understanding of the three dimensional (3D) kinematics and hydrodynamic forces that enable penguins to turn underwater.

Penguin Physics: Understanding the Mechanisms of Underwater Turning Maneuvers in Penguins
Credit: Tokyo Institute of Technology

A February 8, 2023 Tokyo Institute of Technology (Tokyo Tech) press release, which originated the news item, describes the research in more technical detail,

The researchers recorded two sessions of gentoo penguins (Pygoscelis papua) free swimming in a large water tank at Nagasaki Penguin Aquarium, Japan, using a dozen or more underwater cameras. Then, thanks to a technique called 3D direct linear transformation, they were able to integrate data from all the footage and conduct detailed 3D motion analyses by tracking various points on the penguins’ bodies and wings.

Armed with these data, the researchers then established a mathematical 3D body model of the penguins. This model covered the orientation and angles of the body, the different positions and motions of the wings during each stroke, the associated kinematic parameters and hydrodynamic forces, and various turning metrics. Through statistical analyses and comparisons with the experimental data, the researchers validated the model and gained insight into the role of the wings and other body movements during turning.

The main findings of the study were related to how penguins generate centripetal force to assist their turns. They achieve this, in part, is by maintaining outward banking, which means that they tilt their bodies such that their belly faces inward. In powered turns—those in which the penguin flaps its wings—the majority of changes in direction occur during the upstroke, whereas the forward thrust occurs during the downstroke. In addition, it turns out that penguins flap their wings with a certain asymmetry during powered turns. “We found contralateral differences in wing motion; the wing on the inside of the turn becomes more elevated during the upstroke than the other,” explains Assoc. Prof. Tanaka, “Quasi-steady calculations of wing forces confirmed that this asymmetry in wing motion with the outward banking contributes to the generation of centripetal force during the upstroke. In the following downstroke, the inside wing generates thrust and counter yaw torque to brake the turning.”

Overall, these findings contribute to a greater understanding of how penguins turn when swimming, which is relevant from both biological and engineering standpoints. However, Assoc. Prof. Tanaka remarks that these findings bring but one piece to the puzzle: “The mechanisms of various other maneuvers in penguins, such as rapid acceleration, pitch up and down, and jumping out of the water, are still unknown. Our study serves as the basis for further understanding of more complex maneuvers.”

Let us hope future research helps fully clarify how penguins achieve their mesmerizing aquatic prowess!

Here’s a link to and a citation for the paper,

Kinematic and hydrodynamic analyses of turning manoeuvres in penguins: body banking and wing upstroke generate centripetal force by Natsuki Harada and Hiroto Tanaka. J Exp Biol (2022) 225 (24): jeb244124. DOI: https://doi.org/10.1242/jeb.244124 Published online December 22, 2022

This paper is open access.

Penguins are the fastest swimming birds and this team published a paper about their propulsion six months after the ‘turning’ team according to a June 20, 2023 news item on phys.org,

Penguins aren’t just cute: they’re also speedy. Gentoo penguins are the fastest swimming birds in the world, and that ability comes from their unique and sophisticated wings.

Researchers from the University of Chinese Academy of Sciences, Chinese Academy of Sciences, and King Mongkut’s Institute of Technology Ladkrabang [KMITL or KMIT Ladkrabang; Thailand] developed a model to explore the forces and flow structures created by penguin wings underwater. They determined that wing feathering is the main factor for generating thrust. Their findings have been published in the journal Physics of Fluids.

An American Institute of Physics June 20, 2022 news release (also on EurekAlert), which originated the news item, provides further explanation of how penguins are able to achieve their swimming speed,

Penguin wings, aka flippers, bear some resemblance to airplane wings covered with scaly feathers. To maximize efficiency underwater instead of in the air, penguin wings are shorter and flatter than those of flying birds.

The animals can adjust swimming posture by active wing feathering (changing the angle of their wings to reduce resistance), pitching, and flapping. Their dense, short feathers can also lock air between the skin and water to reduce friction and turbulence.

“Penguins’ superior swimming ability to start/brake, accelerate/decelerate, and turn swiftly is due to their freely waving wings. They allow penguins to propel and maneuver in the water and maintain balance on land,” said author Prasert Prapamonthon. “Our research team is always curious about sophisticated creatures in nature that would be beneficial to mankind.”

The hydrodynamic model takes in information about the flapping and feathering of the wings, including amplitude, frequency, and direction, and the fluid parameters, such as velocity and viscosity. Using the immersed boundary method, it solves for the motion of the wing and the thrust, lift, and lateral forces.

To establish the movement of wings across species, researchers use the ratio of wing flapping speed to forward speed. This value avoids any differences between air and water. Additionally, the authors define an angle of thrust, determined by the angle of the wings. Both of these parameters have a significant impact on the penguin’s thrust.

“We proposed the concept of angle of thrust, which explains why finned wings generate thrust: Thrust is primarily determined by the angle of attack and the relative angle of the wings to the forward direction,” said Prapamonthon. “The angle of thrust is an important concept in studying the mechanism of thrust generated by flapping motion and will be useful for designing mechanical wing motion.”

These findings can guide the design of aquatic vehicles by quickly estimating propulsion performance without high experimental or computational costs.

In the future, the team plans to examine a more realistic 3D penguin model. They will incorporate different wing properties and motion, such as starting, braking, turning, and jumping in and out of water.

Here’s a link to and a citation for the paper,

Hydrodynamic performance of a penguin wing: Effect of feathering and flapping by Hao Zhanzhou (郝占宙), Yin Bo (银波), Prasert Prapamonthon, Yang Guowei (杨国). Physics of Fluids 35 (6), 061907 (2023) DOI: https://doi.org/10.1063/5.0147776 Published online: June 20, 2023

This paper is open access.

Chaos science, 3d printing, and jewellery

Caption: The chaotic shapes depicted in this image, printed in bronze, are the first the group have made. They represent the first step in the transformation from chaos to manufacturable forms. Credit: Francesca Bertacchini, Pietro S. Pantano, Eleonora Bilotta

This reminds me of Viking (and maybe Celtic too) jewellery but it’s all based on chaos theory according to a January 24, 2023 news item on phys.org (Note: Links have been removed),

The further out in time, the more unreliable a weather forecast. That’s because small variations in initial weather conditions can completely change the entire system, making it unpredictable. Put another way, in the “butterfly effect,” an insect can flap its wings and create a microscopic change in initial conditions that leads to a hurricane halfway around the world.

This chaos is seen everywhere, from weather to labor markets to brain dynamics. And now, in the journal Chaos, researchers from the University of Calabria explored how to turn the twisting, fractal structures behind the science into jewelry with 3D printing.

A January 24, 2023 American Institute of Physics news release (also on EurekAlert), which originated the news item, describes the difficulty of transforming chaos into jewellery,

The jewelry shapes are based on the Chua circuit, a simple electronic system that was the first physical, mathematical, and experimental proof of chaos. Instead of an ordinary circuit, which produces an oscillating current, Chua’s circuit results in oscillations that never repeat.

“These chaotic configurations, called strange attractors, are complex structures that had never been observed before,” said author Eleonora Bilotta. “The depictions of such structures are strikingly beautiful, continually shifting when the point of view is changing. Jewelry seemed to be the best way to interpret the beauty of chaotic shapes.”

At first, the team tried to employ goldsmiths to create prototypes of the twisting, arcing patterns. But the chaotic forms proved too difficult to manufacture with traditional methods. In contrast, additive printing allows for the necessary detail and structure. By 3D-printing the jewelry, the team created a counter-mold for a goldsmith to use as a cast.

“Seeing the chaotic shapes transformed into real, polished, shiny, physical jewelry was a great pleasure for the whole team. Touching and wearing them was also extremely exciting,” said Bilotta. “We think it is the same joy that a scientist feels when her theory takes form, or when an artist finishes a painting.”

The jewelry can also be used as an educational tool, providing students the ability to develop their scientific knowledge and artistic creativity. By building Chua’s circuit, they can manipulate chaos and discover the extreme sensitivity to initial conditions. While designing the jewelry before sending it to be printed, they can tweak the parameters to generate different shapes according to personal taste.

In the future, the authors want to explore representations of chaos using spheres instead of lines. They also plan to create images of chaotic patterns and have developed an exhibition that can be adapted for international museums.               

Here’s a link to and a citation for the paper,

Jewels from chaos: A fascinating journey from abstract forms to physical objects by Francesca Bertacchini, Pietro S. Pantano, and Eleonora Bilotta. Chaos: An Interdisciplinary Journal of Nonlinear Science Volume 33 Issue 1, 013132 (2023) DOI: https://doi.org/10.1063/5.0130029 Published online: 24 January 2023

This paper is behind a paywall.

The physics of biology: “Nano comes to Life” by Sonia Contera

Louis Minion provides an overview of a newly published book, “Nano Comes to Life: How Nanotechnology is Transforming Medicine and the Future of Biology” by Sonia Contera, in a December 5, 2022 article for Physics World and notes this in his final paragraph,

Nano Comes to Life is aimed at both the general reader as well as scientists [emphasis mine], emphasizing and encouraging the democratization of science and its relationship to human culture. Ending on an inspiring note, Contera encourages us to throw off our fear of technology and use science to make a fairer and more prosperous future.

Minion notes elsewhere in his article (Note: Links have been removed),

Part showcase, part manifesto, Sonia Contera’s Nano Comes to Life makes the ambitious attempt to convey the wonder of recent advances in biology and nanoscience while at the same time also arguing for a new approach to biological and medical research.

Contera – a biological physicist at the University of Oxford – covers huge ground, describing with clarity a range of pioneering experiments, including building nanoscale robots and engines from self-assembled DNA strands, and the incremental but fascinating work towards artificially grown organs.

But throughout this interesting survey of nanoscience in biology, Contera weaves a complex argument for the future of biology and medicine. For me, it is here the book truly excels. In arguing for the importance of physics and engineering in biology, the author critiques the way in which the biomedical industry has typically carried out research, instead arguing that we need an approach to biology that respects its properties at all scales, not just the molecular.

This book was published in hard cover in 2019 and in paperback in 2021 (according to Sonia Contera’s University of Oxford Department of Physics profile page), so, I’m not sure why there’s an article about it in December 2022 but I’m glad to learn of the book’s existence.

Princeton University Press, which published Contera’s book, features a November 1, 2019 interview (from the Sonia Contera on Nano Comes to Life webpage),

What is the significance of the title of the book? What is the relationship between biology and nanotechnology?

SC: Nanotechnology—the capacity to visualize, manipulate, and interact with matter at the nanometer scale—has been engaged with and inspired by biology from its inception in the 1980s. This is primarily because the molecular players in biology, and the main drug and treatment targets in medicine—proteins and DNA—are nanosize. Since the early days of the field, a main mission of nanotechnologists has been to create tools that allow us to interact with key biological molecules one at a time, directly in their natural medium. They strive to understand and even mimic in their artificial nanostructures the mechanisms that underpin the function of biological nanomachines (proteins). In the last thirty years nanomicroscopies (primarily, the atomic force microscope) have unveiled the complex dynamic nature of proteins and the vast numbers of tasks that they perform. Far from being the static shapes featured in traditional biochemistry books, proteins rotate to work as nanomotors; they  literally perform walks to transport cargo around the cell. This enables an understanding of molecular biology that departs quite radically from traditional biochemical methods developed in the last fifty years. Since the main tools of nanotechnology were born in physics labs, the scientists who use them to study biomolecules interrogate those molecules within the framework of physics. Everyone should have the experience of viewing atomic force microscopy movies of proteins in action. It really changes the way we think about ourselves, as I try to convey in my book.

And how does physics change the study of biology at the nanoscale?

SC: In its widest sense the physics of life seeks to understand how the rules that govern the whole universe  led to the emergence of life on Earth and underlie biological behaviour. Central to this study are the molecules (proteins, DNA, etc.  that underpin biological processes. Nanotechnology enables the investigation of the most basic mechanisms of their functions, their engineering principles, and ultimately mathematical models that describe them. Life on Earth probably evolved from nanosize molecules that became complex enough to enable replication, and evolution on Earth over billions of years has created the incredibly sophisticated nanomachines  whose complex interactions constitute the fabric of the actions, perceptions, and senses of all living creatures. Combining the tools of nanotech with physics to study the mechanisms of biology is also inspiring the development of new materials, electronic devices, and applications in engineering and medicine.

What consequences will this have for the future of biology?

SC: The incorporation of biology (including intelligence) into the realm of physics facilitates a profound and potentially groundbreaking cultural shift, because it places the study of life within the widest possible context: the study of the rules that govern the cosmos. Nano Comes to Life seeks to reveal this new context for studying life and the potential for human advancement that it enables. The most powerful message of this book is that in the twenty-first century life can no longer be considered just the biochemical product of an algorithm written in genes (one that can potentially be modified at someone’s convenience); it must be understood as a complex and magnificent (and meaningful) realization of the laws that created the universe itself. The biochemical/genetic paradigm that dominated most of the twentieth century has been useful for understanding many biological processes, but it is insufficient to explain life in all its complexity, and to unblock existing medical bottlenecks. More broadly, as physics, engineering, computer science, and materials science merge with biology, they are actually helping to reconnect science and technology with the deep questions that humans have asked themselves from the beginning of civilization: What is life? What does it mean to be human when we can manipulate and even exploit our own biology? We have reached a point in history where these questions naturally arise from the practice of science, and this necessarily changes the sciences’ relationship with society.

We are entering a historic period of scientific convergence, feeling an urge to turn our heads to the past even as we walk toward the future, seeking to find, in the origin of the ideas that brought us here, the inspiration that will allow us to move forward. Nano Comes to Life focuses on the science but attempts to call attention to the potential for a new intellectual framework to emerge at the convergence of the sciences, one that scientists, engineers, artists, and thinkers should tap to create narratives and visions of the future that midwife our coming of age as a technological species. This might be the most important role of the physics of life that emerges from our labs: to contribute to the collective construction of a path to the preservation of human life on Earth.

You can find out more about Contera’s work and writing on her University of Oxford Department of Physics profile page, which she seems to have written herself. I found this section particularly striking,

I am also interested in the relation of physics with power, imperialism/nationalism, politics and social identities in the XIX, XX and XXI centuries, and I am starting to write about it, like in this piece for Nature Review Materials : “Communication is central to the mission of science”  which explores science comms in the context of the pandemic and global warming. In a recent talk at Fundacion Telefonica, I explored the relation of national, “East-West”, and gender identity and physics, from colonialism to the Manhattan Project and the tech companies of the Silicon Valley of today, can be watched in Spanish and English (from min 17). Here I explore the future of Spanish science and world politics at Fundacion Rafael del Pino (Spanish).

The woman has some big ideas! Good, we need them.

BTW, I’ve posted a few items that might be of interest with regard to some of her ideas.

  1. Perimeter Institute (PI) presents: The Jazz of Physics with Stephon Alexander,” this April 5, 2023 posting features physicist Stephon Alexander’s upcoming April 14, 2023 presentation (you can get on the waiting list or find a link to the livestream) and mentions his 2021 book “Fear of a Black Universe; An Outsider’s Guide to the Future of Physics.”
  2. There’s also “Scientists gain from communication with public” posted on April 6, 2023.

Hexbug Nanos (TM), robotic insect toys, engage students in scientific research

Caption: Hexbug Nanos used in online lab course to teach undergraduate research skills in physics. Credit: Kristopher Vargas, Pomona College

An October 21, 2022 news item on phys.org features a new approach to teaching undergraduate physics (Note: Links have been removed),

Although the sudden switch to remote and hybrid learning was seen as an enormous challenge during the COVID-19 pandemic, academic and commercial interest in creative online lab class development has since skyrocketed.

In the American Journal of Physics, researchers from Pomona College in California developed an online undergraduate physics lab course using small robotic bugs called Hexbug Nanos (TM) to engage students in scientific research from their homes.

An October 21, 2022 American Institute of Physics (AIP) news release (also on EurekAlert), which originated the news item, fills in more details,

Hexbug Nanos look like bright-colored beetles with 12 flexible legs that move rapidly in a semi-random manner. This makes collections of Hexbugs ideal models for exploring particle behavior that can be difficult for students to visualize. For the lab course, students used the Hexbugs that were mailed to them, along with a smartphone and common household items.

“We found that the pandemic-inspired reliance on simple, home-built experiments, while de-emphasizing the use of sophisticated equipment, enabled students to more effectively achieve laboratory learning objectives such as designing, implementing, and troubleshooting an experimental apparatus,” co-author Janice Hudgings said.

Students first completed a short experiment to investigate the ideal gas law, which describes how pressure, volume, and temperature of a gas are related. They used a rectangular cardboard box divided by a movable wall, made from cardboard and bamboo skewers, that slid along the length of the box.

Varying numbers of Hexbugs were placed on either side of the moving wall to model two gases of different pressures. Students used their smartphones to record the “gas molecules” colliding into the moving wall. Video tracking software was used to obtain the position of the wall as a function of time while it moved until the pressure in the two chambers equalized.

Students then proposed semesterlong research projects of their choice, designing experiments using Hexbugs to investigate concepts in statistical mechanics and electrical conduction. One project focused on the Drude model, which uses classical physics to describe the movement of electrons in a metal.

The at-home setup included a long rectangular cardboard box, with 2-inch cardboard rings at fixed locations used to model defects in the metal. Gravity is applied by raising one end of the box relative to the other end. The Hexbug “electrons” are released near the top of the box, randomly scattering from the defects as they are gradually “conducted” down the box due to the gravitational field.

“The Hexbug experiment provides a clearly visible, macroscale model of carrier transport in a wire that is consistent with the Drude model,” Hudgings said.

Similar Hexbug experiments could also be useful as online or in-person lab or lecture demonstrations in statistical mechanics, physical chemistry, biophysics, or introductory electromagnetism.

Here’s a link to and a citation for the paper,

Using Hexbugs™ to model gas pressure and electrical conduction: A pandemic-inspired distance lab by Genevieve DiBaria, Liliana Valle, Refilwe Tanah Buac, Lucas Cunningham, Eleanor Hort, Taylor Venenciano, and Janice Hudgings. American Journal of Physics 90, 817 (2022) DOI: https://doi.org/10.1119/5.0087142 Published online: October 21, 2022

This paper is open access.