Tag Archives: Phyto and nano soil remediation (part 2: nano)

Nanoremediation to be combined with bioremediation for soil decontamination

There’s a very interesting proposal to combine nanoremediation with bioremediatiion (also known as, phytoremediation) techniques to decontaminate soil. From a June 10, 2016 news item on Nanowerk,

The Basque Institute of Agricultural Research and Development Neiker-Tecnalia is currently exploring a strategy to remedy soils contaminated by organic compounds containing chlorine (organochlorine compounds). The innovative process consists of combining the application of zero-iron nanoparticles with bioremediation techniques. The companies Ekotek and Dinam, the UPV/EHU-University of the Basque Country and Gaiker-IK4 are also participating in this project known as NANOBIOR.

A June 10, 2016 Elhuyar Fundazioa news release, which originated the news item, provides more detail about the proposed integration of the two techniques,

Soils affected by organochlorine compounds are very difficult to decontaminate. Among these organochlorine compounds feature some insecticides mainly used to control insect pests, such as DDT, aldrin, dieldrin, endosulfan, hexachlorocyclohexane, toxaphene, chlordecone, mirex, etc. It is a well-known fact that the use of many of these insecticides is currently banned owing to their environmental impact and the risk they pose for human health.

To degrade organochlorine compounds (organic compounds whose molecules contain chlorine atoms) present in the soil, the organisations participating in the project are proposing a strategy based on the application, initially, of zero-iron nanoparticles [also known as nano zero valent iron] that help to eliminate the chlorine atoms in these compounds. Once these atoms have been eliminated, the bioremediation is carried out (a process in which microorganisms, fungi, plants or enzymes derived from them are used to restore an environment altered by contaminants to its natural state).

The bioremediation process being developed by Neiker-Tecnalia comprises two main strategies: biostimulation and bioaugmentation. The first consists of stimulating the bacteria already present in the soil by adding nutrients, humidity, oxygen, etc. Bioaugmentation is based on applying bacteria with the desired degrading capability to the soil. As part of this process, Neiker-Tecnalia collects samples of soils contaminated by organochlorine compounds and in the laboratory isolates the species of bacteria that display a greater capacity for degrading these contaminants. Once the most interesting strains have been isolated, the quantity of these bacteria are then augmented in the laboratory and the soil needing to be decontaminated is then inoculated with them.

Bank of effective strains to combat organochlorines

The first step for Neiker-Tecnalia is to identify bacterial species capable of degrading organochlorine compounds in order to have available a bank of species of interest for use in bioremediation. This bank will be gathering strains collected in the Basque Country and will allow bacteria that can be used as a decontaminating element of soils to be made available.

The combining of the application of zero-iron nanoparticles and bioremediation constitutes a significant step forward in the matter of soil decontamination; it offers the added advantage of potentially being able to apply them in situ. So this methodology, which is currently in the exploratory phase, could replace other processes such as the excavation of contaminated soils so that they can be contained and/or treated. What is more, the combination of the two techniques makes it possible to reduce the decontamination times, which would take much longer if bioremediation is used on its own.

There is a NANOBIOR webpage here.

For the curious I have two 2012 posts that provide some very nice explanations by Joe Martin, then a Master’s student in the University of Michigan’s Public Health program,: Phyto and nano soil remediation (part 1: phyto/plant) and Phyto and nano soil remediation (part 2: nano).

Inaugural workshop using *nanomaterials for environmental remediation being held in Louisiana

Participants at the Nano-4-Rem (nanomaterials for environmental remediation) aNsseRS workshop will be visiting the Southeastern Louisiana University in Hammond in early June 2013. From the Nov.  6, 2012 news item on Nanowerk,

An inaugural workshop on the safe use of nanomaterials in environmental remediation will be held at Southeastern Louisiana University June 5-7, 2013.

With increased use of nanotechnology and nanomaterials in the cleanup of hazardous sites, there is now a growing body of evidence that exposure to these materials may have adverse health effects, said conference organizer Ephraim Massawe, assistant professor of occupational safety, health and environment.

“The applications and results of nano-enabled strategies and methods for environmental remediation are increasingly promising,” Massawe said. “The challenge is ensuring that such applications are both safe and sustainable.”

There is more information on Southeastern Louisiana University’s Nano-4-Rem aNsseRS webpage,

Background: Groundwater or soil contamination is present at most Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) corrective action sites. Traditional technologies, such as pump-and-treat (P&T) and permeable reactive barriers (PRBs), have been used for decades to remediate such sites. In recent years, remediation strategies involving engineered nanoparticles (ENPs) such as zero-valent iron and titanium dioxide have been demonstrated as viable time-saving and cost-effective alternatives to traditional remediation. In addition, advances in nanotechnology-enabled assessment and monitoring methods such as nano-sensors may support more extensive, reliable, and cost effective assessment and management of remediation activities.

At the same time that applications of nano-enabled strategies and methods for environmental remediation are increasingly promising, there is a growing body of evidence linking exposure to certain nanomaterials with adverse health effects in animals at the laboratory scale. The challenge is to ensure that such applications are both safe and sustainable. …

Workshop Objectives: This is the first national workshop that provides an opportunity for representatives from the environmental remediation community, industry, academia, and government to:

  • Share their perspectives, pose questions, and develop ideas for design of good guidelines, selection criteria, and work practices to support safe and sustainable nano-enabled environmental remediation;
  • Become acquainted with other U.S. nanotechnology stakeholders, including vendors, transporters, and contractors of the remediation sites and communities; and
  • Share case studies of nano-enhanced clean up technologies, including selection criteria for alternative remediation strategies and methods, job planning, job tasks, and nanomaterial handling practices.

Furthermore, in the context of nanoinformatics (Nanoinformatics 2020 Roadmap), the workshop will present:

  • Occupational and environmental regulatory issues as they relate to remediation, synthesis and characterization, and application of nanoinformatics for safe and sustainable use of nanomaterials during remediation;
  • Fate and transport of nanomaterials during and after remediation;
  • Risks, including contributions from both toxicological properties of nanomaterials (hazard) and potentials for occupational and environmental exposure, where hazard x exposure = risk;
  • Results of the recent nanoinformatics survey of state agencies and programs described on the workshop website; and
  • Opportunities for developing and sustaining continuing advances and collaborations.

Call for Presenters and Deadlines: Participants are invited from the industry; site contractors, nanomaterial vendors; laboratories that synthesize and characterize ENPs for environmental remediation; regulatory authorities (local, state, and federal government) and academia (faculty and students). Presenters should submit titles and abstracts for podium or poster presentations by December 14, 2012. The workshop or program schedule will be finalized by February 20, 2013. Event date: June 5-7, 2013. Students are encouraged to submit proposals for podium or poster presentations. “Best student” poster and presentation awards will be given. Information about this workshop can also be found at http://cluin.org [a US Environmental Protection Agency ‘office’].

The Nov. 7, 2012 news release from Southeastern Louisiana University which originated the news item (Nanowerk seems to have posted the item before the release was posted on the university website) provides more detail,

The event, “Nano-4-Rem-Anssers 2013: Applications of Nanotechnology for Safe and Sustainable Environmental Remediations,” is one of the first of its kind in the Southeast which has been designed to provide an opportunity for involved parties to share perspectives, pose questions and develop ideas for generating solid guidelines for best work practices that support safe and sustainable nano-enabled environmental remediation.

Southeastern is sponsoring the event with other agencies and institutions, including the U.S. Environmental Protection Agency (EPA), the National Institute of Safety and Health (NIOSH), the Occupational Safety and Health Administration (OSHA) and in conjunction with the National Nanotechnology Coordination Office (NNCO).

The program will include case studies of nano-enhanced clean up technologies, including selection criteria for alternative remediation strategies and methods, job planning and tasks, and safe material handling practices. Other issues to be discussed are updates of toxicity studies, fate and transport of nanoparticules [the French word for nanoparticles is nanoparticules ..  this seems an unusual choice for a news release from a US university but Louisiana was French at one time, so perhaps there’s a desire to retain a linguistic link?]  in soils and groundwater, and nanoinformatics.

I have written about nanoremediation before. Here are a few of the latest,

Nanoremediation techniques from Iran and from South Carolina

Canadian soil remediation expert in Australia

Phyto and nano soil remediation (part 2: nano)

* ‘nanotechnolmaterials corrected to ‘nanomaterials’ on Sept. 23, 2013.