Tag Archives: Piero Baglioni

Removing vandals’ graffiti from street art with nanotechnology-enabled method and Happy Italian Research in the World Day and more …

Happy Italian Research in the World Day! Each year since 2018 this has been celebrated on the day that Leonardo da Vinci was born over 500 years ago on April 15. It’s also the start of World Creativity and Innovation Week (WCIW), April 15 – 21, 2021 with over 80 countries (Italy, The Gambia, Mauritius, Belarus, Iceland, US, Syria, Vietnam, Indonesia, Denmark, etc.) celebrating. By the way, April 21, 2021 is the United Nations’ World Creativity and Innovation Day. Now, onto some of the latest research, coming from Italy, on art conservation.

There’s graffiti and there’s graffiti as Michele Baglioni points out in an April 13, 2021 American Chemical Society (ACS) press conference (Rescuing street art from vandals’ graffiti) held during the ACS Spring 2021 Meeting being held online April 5-30, 2021.

An April 13, 2021 news item on ScienceDaily announced the research,

From Los Angeles and the Lower East Side of New York City to Paris and Penang, street art by famous and not-so-famous artists adorns highways, roads and alleys. In addition to creating social statements, works of beauty and tourist attractions, street art sometimes attracts vandals who add their unwanted graffiti, which is hard to remove without destroying the underlying painting. Now, researchers report novel, environmentally friendly techniques that quickly and safely remove over-paintings on street art.

A new eco-friendly method can remove the graffiti that this person is about to spray on the street art behind them. Credit: FOTOKITA/Shutterstock.com

An April 13, 2021 ACS news release (also on EurekAlert), which originated the news item, provides details about this latest work and how it fits into the field of art conservation,

“For decades, we have focused on cleaning or restoring classical artworks that used paints designed to last centuries,” says Piero Baglioni, Ph.D., the project’s principal investigator. “In contrast, modern art and street art, as well as the coatings and graffiti applied on top, use materials that were never intended to stand the test of time.”

Research fellow Michele Baglioni, Ph.D., (no relation to Piero Baglioni) and coworkers built on their colleagues’ work and designed a nanostructured fluid, based on nontoxic solvents and surfactants, loaded in highly retentive hydrogels that very slowly release cleaning agents to just the top layer — a few microns in depth. The undesired top layer is removed in seconds to minutes, with no damage or alteration to the original painting.

Street art and overlying graffiti usually contain one or more of three classes of paint binders — acrylic, vinyl or alkyd polymers. Because these paints are similar in composition, removing the top layer frequently damages the underlying layer. Until now, the only way to remove unwanted graffiti was by using chemical cleaners or mechanical action such as scraping or sand blasting. These traditional methods are hard to control and often damaged the original art.

“We have to know exactly what is going on at the surface of the paintings if we want to design cleaners,” explains Michele Baglioni, who is at the University of Florence (Italy). “In some respects, the chemistry is simple — we are using known surfactants, solvents and polymers. The challenge is combining them in the right way to get all the properties we need.”

Michele Baglioni and coworkers used Fourier transform infrared spectroscopy to characterize the binders, fillers and pigments in the three classes of paints. After screening for suitable low-toxicity, “green” solvents and biodegradable surfactants, he used small angle X-ray scattering analyses to study the behavior of four alkyl carbonate solvents and a biodegradable nonionic surfactant in water.

The final step was formulating the nanostructured cleaning combination. The system that worked well also included 2-butanol and a readily biodegradable alkyl glycoside hydrotrope as co-solvents/co-surfactants. Hydrotropes are water-soluble, surface-active compounds used at low levels that allow more concentrated formulations of surfactants to be developed. The system was then loaded into highly retentive hydrogels and tested for its ability to remove overpaintings on laboratory mockups using selected paints in all possible combinations.

After dozens of tests, which helped determine how long the gel should be applied and removed without damaging the underlying painting, he tested the gels on a real piece of street art in Florence, successfully removing graffiti without affecting the original work.

“This is the first systematic study on the selective and controlled removal of modern paints from paints with similar chemical composition,” Michele Baglioni says. The hydrogels can also be used for the removal of top coatings on modern art that were originally intended to preserve the paintings but have turned out to be damaging. The hydrogels will become available commercially from CSGI Solutions for Conservation of Cultural Heritage, a company founded by Piero Baglioni and others. CSGI, the Center for Colloid and Surface Science, is a university consortium mainly funded through programs of the European Union.

And, there was this after the end of the news release,

The researchers acknowledge support and funding from the European Union NANORESTART (Nanomaterials for the Restoration of Works of Art) Program [or NanoRestArt] and CSGI.

The NanoRestArt project has been mentioned here a number of times,

The project ended in November 2018 but the NanoRestArt website can still be accessed.

European Union’s close-up on nanotechnology

A Nov. 21, 2014 news item on Nanowerk features a special issue of the research*eu magazine,

When it first earned public recognition in the early 2000s, nanotechnology was mostly a niche market. It started out with a few applications such as cosmetics, food products, textiles and automotive bumpers, but quickly expanded to other sectors. Recently, the growing market reached the frantic pace of 3 or 4 new products being released each week.

Decision-makers worldwide were quick to acknowledge this tremendous potential — although not without apprehension. In 2004, right after the US Congress came up with its ‘21st Century Nanotechnology Research and Development Act’, the European Commission adopted its communication ‘Towards a European Strategy for Nanotechnology’ which aimed to institutionalise R&D efforts with a coherent strategy. The document notably underlined nanotechnology’s capacity to address the challenges faced by society through novel applications for the likes of health and biology, ICT [information and communications technology], energy production and storage, manufacturing and environment protection.

The news item is from the editorial for the ‘Close-up on Nanotechnology‘ special issue November 2014 (you can download the PDF), of research*eu,

This was 10 years ago. Since then, the EU has invested some EUR 3.5 billion in nanotechnology-related projects, both to develop new products in strategic fields and to ensure all potential uses are subjected to thorough safety controls and measures. As we are now at the dawn of Horizon 2020, we decided to focus this magazine on some of the latest EU research achievements under the FP7-NMP programme. This makes for a truly horizontal ‘special’ section, with themes including art conservation, electronics, water purification, clothing, building and construction and nanosafety.

These specials include two interviews. The first is with Sabine Paulussen, who presents the outcomes of NANOPUR and its new membrane technology to improve the efficiency of water purification. Then, Prof. Piero Baglioni introduces NANOFORART, a project with ambitions to help restorers in their difficult mission to preserve ancient works of art.

The special section is followed by the usual thematic sections on biology and medicine, social sciences and humanities, energy and transport, environment, IT and telecommunications, industrial technologies and space.

Other highlights in the November 2014 issue (from the download page; you may need to scroll down to find the free issue),

  • New hope for patients suffering from rare genetic disease
  • How research can help pluralism across Europe
  • Hi-tech cooperation: the answer to effective transport security
  • Using underwater robots for a better understanding of the underwater world
  • Flying robots will go where humans can’t
  • Mass producing super-thin films that can ‘squeeze’ electricity
  • Africa–Europe Earth Observation project

Happy Reading!

Mexico, nano, and bombs

Violence in pursuit of a cause is not unusual. With a goal in sight, often it’s freedom of one kind or another, people will revert to violence to achieve their ends, especially when they feel there are no alternatives and/or are under attack. However, violence in pursuit of some vague worldview is more difficult to understand (at least, it is for me).

An anarchist group (ITS, aka, Individuals Tending to Savagery) has again claimed ‘credit’ for violence against scientists in Mexico. From Robert Beckhusen’s Mar. 12, 2013 article about the ITS and the violence for Wired magazine (Note: A link has been removed),

Over the past two years, Mexican scientists involved in bio- and nanotechnology have become targets. They’re not threatened by the nation’s drug cartels. They’re marked for death by a group of bomb-building eco-terrorists with the professed goal of destroying human civilization.

The group, which goes by the name Individualidades Tendiendo a lo Salvaje (ITS), posted its manifesto to anarchist blog Liberacion Total last month. The manifesto takes credit for a failed bombing attempt that month against a researcher at the Biotechnology Institute at the National Autonomous University of Mexico. And the group promises more.

ITS posted on Feb. 18, 2013 on the War On Society blog something called the Seventh communique from Individualists Tending toward the Wild (ITS)  (Gabriella Segata Antolini is named as the poster)

The aim of this text is to make our stance clear, continuing the work of spreading our ideas, clearing up some apparent doubts and misinterpretations, as well as accepting mistakes and/or errors. In no way do we want to start an endless discussion that only takes up time and energy, nor do we want this text to turn into something other than what it is. Anyone who reads it will be able to interpret correctly (or incorrectly) what they are aiming to read; the intelligent reader will know to reflect and consequently do what seems right to them.

ITS is not going to cover every person or group’s forms of thought, but the ones we respect, that we tolerate, is something else; the ideas, doctrines, stances (etc) that deserve critiques (because we are in disagreement with them [being that they cover discourses that are leftist, progressivist, irrational, religious, etc]) will be mentioned in this way; the ones that don’t, we will let pass or agree with.

All the texts that ITS has made public are not for society to “wake up and decide to attack the system,” they are not to forcibly change what the others think, nothing like this is intended; the lines we write are for the intelligent, strong individuals who decide to see reality in all its rawness, for those few who form, think and carry out the sensible critique of the highest expression of domination–the Techno-industrial System (a).

And so that our words, critiques, clarifications and statements are made known as they have been spread up to now, we have decided (until now) to take the next step, which has been to attack and try to kill the key persons who make the system improve itself. [emphasis mine]

This is the only viable way for radical critiques to emerge in the public light, making pressure so this discourse comes to the surface. We are extremists and we act as such, without compassion, without remorse, taking any means to reach our objectives.

It’s a lengthy, rambling communiqué that provides little insight into what would motivate anyone to “attack and kill.”

Beckhusen attempts to make some sense of the situation in Mexico with references to the Unabomber (a US citizen who developed a radical critique of technology and bombed various facilities) and trends within Latin American societies.

In a couple of 2012 articles for Nature (May 28, 2012 and Aug. 29, 2012), Leigh Phillips discussed and tried to make some sense of the ITS attacks in Mexico and the attacks in Europe, which were carried out by different extremist groups who do not appear to be connected, by giving it a global perspective.

Meanwhile, nanotechnology continues to be practiced and discussed in Mexico. A Mar. 13, 2012 news item on Azonano notes a recent meeting,

Nano Labs Corp. is pleased to report on the Fifteenth Meeting of the ISO/TC 229 Nanotechnologies Conference held last week [Mar. 4 – 8, 2013?] in Queretaro City, Mexico.

Nano Labs was proud to sponsor two important events in the field of international regulations of nanotechnology, in the colonial City of Queretaro, in Central Mexico. The first was a joint Organization for Economic Co-operation and Development (OECD)/ International Organization for Standardization (ISO) Expert Meeting on Physical-Chemical Properties of Manufactured Nanomaterials and Test Guidelines, and the second the 15th Meeting of ISO/TC 229 Nanotechnologies by the ISO Secretariat.

“… One of the major issues of the ISO conference is to establish a global ISO standard and regulate the safety issues related to the production and uses of nano particles in the manufacturing process on a global scale,” stated Dr. Victor Castano, Chief Innovations Officer of Nano Labs, who attended the conference.

Mexico also recently hosted a conference for the European Commission’s NanoForArt project, which I mentioned in a Mar. 1, 2013 posting,

The Feb. 2013 conferences in Mexico as per a Feb. 27, 2013 Agencia EFE news item on the Global Post website featured (Note: Links have been removed),

Baglioni [Piero Baglioni, a researcher and professor at the University of Florence] and Dr. Rodorico Giorgi, also of the University of Florence, traveled to Mexico earlier this month to preside over a conference on Nanotechnology applied to cultural heritage: wall paintings/cellulose, INAH [Instituto Nacional de Antropología e Historia] said.

I don’t know that there is any sense to be made of the situation in Mexico (certainly I can’t do it). The ITS communiqué doesn’t provide much insight. My guess is that this is a small group of people who will seem rather pathetic once they are caught—any power derived from their clandestine, violent activities disappeared.

For my previous postings about the bombings in Mexico:

Nanotechnology terrorism in Mexico? (Aug. 11, 2011)

In depth and one year later—the nanotechnology bombings in Mexico (Aug. 31, 2012)

ETC group replies to Nature’s “Nanotechnology: Armed resistance” article (Oct. 11, 2012)

While this isn’t strictly speaking on topic, I did cover a fascinating study on right wing violence in this posting,

Higher education and political violence (Sept. 23, 2010)

NanoForArt in Mexico

Mexico recently hosted (Feb. 7 – 8, 2013) a pair of conferences focused on nanotechnology and art conservation. The country is part of an international consortium in the European Commision’s Seventh Framework Programme (FP7), NanoForArt project. Before mentioning the conference, here’s a little information about the NanoForArt project from its homepage,

The main objective of the NANOFORART proposal is the development and experimentation of new nano-materials and responsive systems for the conservation and preservation of movable and immovable artworks. [emphasis mine]

While the progress in material science has generated sophisticated nanostructured materials, conservation of cultural heritage is still mainly based on traditional methods and conventional materials that often lack the necessary  compatibility with the original artworks and a durable performance in responding to the changes of natural environment and man-made activities.

The main challenge of NANOFORART is the combination of sophisticated functional materials arising from the recent developments in nano-science/technology with innovative techniques in the restoration and preventive conservation of works of art, with unprecedented efficiency.

Immovable artworks tend to be things like cave art, frescoes, and other forms of wall and rock art. The Feb. 2013 conferences in Mexico as per a Feb. 27, 2013 Agencia EFE news item on the Global Post website featured (Note: Links have been removed),

Baglioni [Piero Baglioni, a researcher and professor at the University of Florence] and Dr. Rodorico Giorgi, also of the University of Florence, traveled to Mexico earlier this month to preside over a conference on Nanotechnology applied to cultural heritage: wall paintings/cellulose, INAH [Instituto Nacional de Antropología e Historia] said.

The project includes specialists from Italy, Spain, Britain, France, Denmark, the Czech Republic, Germany,  Slovenia and Mexico and is coordinated by the CSGI center [Center for Colloids and Surface Science] at the University of Florence.

NANONFORART is set to conclude in December 2014 with the “validation of the technology and the methods developed, as well as training activities,” INAH said.

Until now, preservation of cultural treasures has been carried out using conventional materials that are often incompatible with the works and can, over time, alter the appearance of the object.

Baglioni has worked with INAH personnel to clean and restore pre-Columbian murals at the Cacaxtla, Cholula, Tlatelolco, Mayapan, El Tajin, Monte Alban and Teotihuacan sites.

I have mentioned Baglioni’s work in Mexico previously in a Sept. 20, 2010 posting about  some work at La Antigua Ciudad Maya de Calakmul, an archaeological site which is located in the Campeche state.

Unfortunately, there aren’t too many details about the conferences, the Feb. 7, 2013 conference sported the previously noted title (in the Agencia EFE news item), Nanotechnology Applied to Cultural Heritage: Wall Paintings/Cellulose, and the Feb. 8, 2013 conference was titled, Nanotechnology for the Cleaning of Cultural Heritage.

There’s more information about nanotechnology aspects on the NanoForArt Overall page (Note: Links have been removed),

The work plan will start with design and formulation of nanostructured systems with special functionalities (WP1) such as deacidification of movable artworks (paper, parchment, canvas, leather), cleaning of movable artworks (paper, parchment, canvas paintings), protection of movable artworks (paper, canvas), consolidation of immovable artworks (wall-paintings, plaster and stones), and cleaning of immovable artworks (wallpaintings, plaster and stones). These systems, whose formulation will be optimized according to their functions, will include microemulsions, micellar solutions, gels and dispersions of different kinds of nanoparticles. A physico-chemical characterization of the developed materals (WP2) will constantly support the formulation activity. This will allow to understand and control the nature of interaction mechanisms between these nanostructures and the target substances/supports.

Assessment of the applicability of materials (WP3) will start in the second half of the first year. In this phase the up-scale of the technologies from the laboratory to the market level will be tackled. All the partners will interact in order to clarify and merge the priority from all the points of view. Evaluation of possible human health effects and environmental impacts of developed nanomaterials for restoration (WP7) will also start in the second half of the first year. Special emphasis will be given to potential hazardousness of nanoparticles used for design and formulation of nanostructured systems, as well as environmental impacts associated with the use of these nano-based products.

Nanotechnology developed by NANOFORART will aim also to significantly reduce the use of harmful solvents, as well as to introduce new environmentally friendly nanomaterials. Once the applicability and safety of the developed materials will be assessed, the development of industry process (WP4, WP5) will start in order to transfer technology on the market by the standardization of the applicative protocols and production of the nanomaterials on medium and large scale. Small and Medium Enterprise (SME) partners will have their main competence in this phase, that should start at the beginning of the second year. Safety and health risks of the industry processes will be also assessed. At the end of the first year, a study of the long-term behavior of the products and of the treated works of art (WP6) will be started by means of artificial ageing, in order to avoid damages due to unforeseen phenomena. The partners will have their main competence in ageing, monitoring of environmental pollution, and control of exhibitions and museums conditions.

The project is scheduled for completion in 2014.

The aspect I find most interesting is the ‘immovable art’. There was a controversy in Spain in 2011 over the prospect of opening some caves to tourists, from the Oct. 26, 2011 news item on ScienceDaily,

Plans to reopen Spain’s Altamira caves are stirring controversy over the possibility that tourists’ visits will further damage the 20,000-year old wall paintings that changed views about the intellectual ability of prehistoric people. That’s the topic of an article in the current edition of Chemical & Engineering News, ACS’ weekly newsmagazine. The caves are the site of Stone Age paintings so magnificent that experts have called them the “Sistine Chapel of Paleolithic Art.”

Carmen Drahl, C&EN associate editor, points out in the article that Spanish officials closed the tourist mecca to the public in 2002 after scientists realized that visitors were fostering growth of bacteria that damage the paintings. Now, however, they plan to reopen the caves. Declared a World Heritage Site by the United Nations’ Educational, Scientific and Cultural Organization (UNESCO), Altamira’s rock paintings of animals and human hands made scientists realize that Stone Age people had intellectual capabilities far greater than previously believed.

You can find an Oct. 6, 2011 piece about the Altamira rock paintings by Drahl titled, Keeping Visitors Out To Keep Cave Paintings Safe, on the Chemical and Engineering News (C&EN) blog. For anyone interested in more about rock art, there’s a UNESCO (United Nations Educational, Scientific, and Cultural Organization) World Rock Archives project or, as they call them, activity,

Due to their long sequence chronology, susceptibility to climate changes and vandalism, rock art sites are also among the most vulnerable on the World Heritage List.

Rock art, in the form of paintings and engravings, is a clear and lasting evidence of the transmission of human thoughts and beliefs through art and graphic representations. It functions as a repository of memory, enabling each culture to speak about themselves and their origins in all geographical settings.

I have two more items on cave art. The first is a piece I’ve been wanting to feature for almost two years. It’s an article on Slate by John Jeremiah Sullivan dated March 21, 2011 and titled, America’s Ancient Cave Art
Deep in the Cumberland Plateau, mysterious drawings, thousands of years old, offer a glimpse of lost Native American cultures and traditions. It’s an excerpt of an essay Sullivan wrote for the Paris Review. A fascinating exploration of a cave system that isn’t nearly as well known as France’s Lascaux Caves, here’s a snippet,

Over the past few decades, in Tennessee, archaeologists have unearthed an elaborate cave­-art tradition thousands of years old. The pictures are found in dark­ zone sites—places where the Native American people who made the artwork did so at personal risk, crawling meters or, in some cases, miles underground with cane torches—as opposed to sites in the “twilight zone,” speleologists’ jargon for the stretch, just beyond the entry chamber, which is exposed to diffuse sunlight. A pair of local hobby cavers, friends who worked for the U.S. Forest Service, found the first of these sites in 1979. They’d been exploring an old root cellar and wriggled up into a higher passage. The walls were covered in a thin layer of clay sediment left there during long­ ago floods and maintained by the cave’s unchanging temperature and humidity. The stuff was still soft. It looked at first as though someone had finger­-painted all over, maybe a child—the men debated even saying anything. But the older of them was a student of local history. He knew some of those images from looking at drawings of pots and shell ornaments that emerged from the fields around there: bird men, a dancing warrior figure, a snake with horns. Here were naturalistic animals, too: an owl and turtle. Some of the pictures seemed to have been first made and then ritually mutilated in some way, stabbed or beaten with a stick.

That was the discovery of Mud Glyph Cave, which was reported all over the world and spawned a book and a National Geographic article. No one knew quite what to make of it at the time. The cave’s “closest parallel,” reported the Christian Science Monitor, “may be caves in the south of France which contain Ice Age art.” A team of scholars converged on the site.

The sites range from Missouri to Virginia, and from Wisconsin to Florida, but the bulk lie in Middle Tennessee. Of those, the greater number are on the Cumberland Plateau, which runs at a southwest slant down the eastern part of the state, like a great wall dividing the Appalachians from the interior.

If you do decide to read the excerpt, you may want to reserve 30 to 45 minutes (at least).

For the last tidbit, here’s an introduction to TED (Technology, Entertainment and Design) Fellow, Genevieve von Petzinger’s work on cave art,

Genevieve von Petzinger’s [from the University of Victoria in British Columbia, Canada] database of prehistoric geometric shapes in cave art reveals some startling insights. More than mere doodles, the signs used across geological boundaries suggest there may have been a common iconography before people first moved out of Africa. When did people begin graphic communication, and what was its purpose? Genevieve studies these questions of our common heritage.

A very interesting interview follows that introduction.

As I more often cover movable art, I thought it was time to devote, again, at least part of a posting to immovable art.

Bacterial art lovers

With all the emphasis on eradicating bacteria (with signs everywhere telling you to wash your hands, often will illustrated instructions), it’s easy to forget that some bacteria are necessary for health. It also turns out that some bacteria can help us preserve art works. From the June 7, 2011 news item on Nanowerk,

Researchers at the Institute of Heritage Restoration (IRP) and the Centre for Advanced Food Microbiology (CAMA), both from the Polytechnic University of Valencia (Spain), are beginning to experiment with this new technique on the frescoes of Antonio Palomino from the 17th century in the Church of Santos Juanes in Valencia.

They have shown that a certain type of micro-organism is capable of cleaning works of art in a fast, specific and respectful way as well as being non-toxic for the restorer or the environment.

Here’s the background on the problem the art restorers were trying to fix (from the news item),

The project came about when the IRP [Institute of Heritage Restoration] was in the process of restoring the murals of the Church of Santos Juanes that were virtually destroyed after a fire in 1936 and were improperly restored in the 1960s. The researchers tested new techniques for filling with transferred printed digital images in spaces without painting, but had great difficulty dealing with salt efflorescence, the white scabs caused by the build up of crystallized salts and the enormous amount of gelatine glue remaining on the pulled-off murals.

With the problem defined, the researchers then investigated a technique developed in Italy that looked promising (from the news item),

Therefore, Rosa María Montes and Pilar Bosch travelled to Italy to learn from the authors about the pioneering studies that used bacteria to remove hardened glue that was very difficult to treat with conventional methods.

The restoration of the Campo Santo di Pisa wall paintings was performed under the direction of Gianluiggi Colalucci, restorer of the Sistine Chapel, and his colleagues Donatella Zari and Carlo Giantomassi who applied the technique developed by microbiologist Giancarlo Ranalli. The researcher had also been testing with black crusts that appear on sculptures and artistic monuments.

The team returned to Spain to practice the technique and add some refinements (from the news item),

Back in Valencia, the multidisciplinary team perfected this method and trained the most suitable strain of Pseudomonas bacteria to literally eat the saline efflorescence found in the lunettes of the vault behind which pigeons nest.

“By the action of gravity and evaporation, the salts of organic matter in decomposition migrate to the paintings and produce a white crust hiding the work of art and sometimes can also cause the loose of the painting layer” says Pilar Bosch.

These scientists have managed to reduce the application time, and have also innovated in the way of extending the bacteria. According to Dr. Bosch: “In Italy they use cotton wool to apply the micro-organisms. We, however, have developed a gel that acts on the surface, which prevents moisture from penetrating deep into the material and causing new problems.

“After an hour and a half, we remove the gel with the bacteria. The surface is then cleaned and dried.” Without a wet environment, the remaining bacteria die.

Here’s a picture that demonstrates the advantages of the new process according to whomever wrote up the caption in Spanish (I may have gotten the translation wrong),

Las ventajas del nuevo proceso (The advantages of the new process) image downloaded from RUVID website

If you do have the Spanish language skills you can read the article as it was written originally here.

I have from time to time (in my Sept. 20, 2010 posting and Oct. 26, 2009 posting) featured a different nano art restoration technique as it’s practiced by Piero Baglioni’s (Correction Mar. 1, 2013: Name was changed from Pier Baglioni) team on projects in Mexico and Italy. Baglioni and his cohorts use a technique involving a micro-emulsion partially derived from cellulose. From an Oct. 26, 2009 article written by Michael Berger on Nanowerk,

The solution developed by Baglioni and his team has been to develop a micro-emulsion cleaning agent that is designed to dissolve only the organic molecules on the surface of a painting or other artwork. This emulsion is not only suitable for removing the aged coating on paintings but also for the removal of aged organic varnishes from the surface of easel paintings or gilded surfaces, as an alternative to gels traditionally used in conservation.

The cleaning agent is made by dissolving the volatile solvent p-xylene in water and thickening it into a gel with hydrophobically modified hydroxyethylcellulose (hmHEC) – a gelling and thickening agent derived from cellulose. This oil-in-water emulsion has a microstructure of tiny droplets of oil-coated water trapped in the cellulose chains, and these will dissolve organic polymers on the painting’s surface, thereby restoring the original, clean finish.

Nanoparticles, art conservation, and cultural heritage

Piero Baglioni, a professor of Physical Chemistry at the University of Florence (whose work was mentioned previously in my October 26, 2009 posting) spoke at the 3rd EuCheMS Chemistry Congress: Chemistry – the Creative Force, August 29 – September 2, 2010, Nürnberg / Germany about his team’s to better preserve wall paintings at a site in Mexico. From the news item on physorg.com,

La Antigua Ciudad Maya de Calakmul is located in the Campeche state (Mexico) and is one of the most important cities of the Classic Maya period (AD 250-800). The excavation of this site (set up in 1993) involves, under the supervision of the archaeologist Ramon Carrasco, archaeologists, architects, engineers, conservators and epigraphists, besides other specialists. Since 2004, the Center for Colloid and Surface Science (CSGI) at the University of Florence (CSGI), and currently directed by Piero Baglioni, has been an active partner, being involved in the study of the painting technique and in the development of nanotechnology for the consolidation and protection of the wall paintings and limestone.

There is a published article available in Chemistry: A European Journal,

Nanoparticles for Cultural Heritage Conservation: Calcium and Barium Hydroxide Nanoparticles for Wall Painting Consolidation.

Authors:
1. Rodorico Giorgi Dr.,
2. Moira Ambrosi Dr.,
3. Nicola Toccafondi Dr.,
4. Piero Baglioni Prof.

Article first published online: 23 JUL 2010
DOI: 10.1002/chem.201001443

The article is freely available at this time. If you’re interested in this history of the mural, there’s an article (Chemical & Engineering News, Central Science)by Sarah Everts,

Sometime before 600 BC, Mayan artists painted one of the few frescoes–still in existence–that displays the domestic life of normal people in this ancient civilization (other Mayan frescoes display the lives of deities and rulers). The frescoes were found in a pyramid at the Calakmul archaeology site in Mexico. Calakmul is one of the biggest Mayan sites around, but it hasn’t been excavated to the same extent as say, Tikal, which had a cameo in “Return of the Jedi” as the Ewok planet and is also host to a constant throng of tourists.

I expect there’ll be more about nanotechnology and art conservation as time goes on, the promise being that taking samples and working at the nanoscale promises to minimize damage of an art piece we are trying to preserve.

ETA: I forgot to include the recent McGill University research on a photoacoustic technique for art restoration in my Sept. 2, 2010 posting.

Art conservation and nanotechnology; the science of social networks; carbon nanotubes and possible mesothelioma; Eric Drexler has a few words

It looks like nanotechnology innovations in the field of art conservation may help preserve priceless works for longer and with less damage. The problem as articulated in Michael Berger’s article on Nanowerk is,

“Nowadays, one of the most important problems faced during the cleaning of works of art is the removal of organic materials, mainly acrylic polymers, applied in the past as consolidants or protective coatings,” explains Piero Baglioni, a professor of Physical Chemistry at the University of Florence. “Unfortunately, their application induces a drastic alteration of the interfacial properties of the artwork and leads to increased degradation. These organic materials must therefore be removed.”

Baglioni and his colleagues at the University of Florence have developed “… a micro-emulsion cleaning agent that is designed to dissolve only the organic molecules on the surface of a painting …”

This is a little off Azonano’s usual beat (and mine too) but Rensselaer Polytechnic Institute’s Army Research Laboratory is launching an interdisciplinary research center for the study of social and cognitive networks.  From the news item,

“Rensselaer offers a unique research environment to lead this important new network science center,” said Rensselaer President Shirley Ann Jackson. “We have assembled an outstanding team of researchers, and built powerful new research platforms. The team will work with one of the largest academic supercomputing centers in the world – the Rensselaer Computational Center for Nanotechnology Innovations – and the leading visualization and simulation capabilities within our new Experimental Media and Performing Arts Center. The Center for Social and Cognitive Networks will bring together our world-class scientists in the areas of computer science, cognitive science, physics, Web science, and mathematics in an unprecedented collaboration to investigate all aspects of the ever-changing and global social climate of today.”

The center will study the fundamentals of social and cognitive networks and their roles in today’s society and organizations, including the U.S. Army. The goal will be to gain a deeper understanding of these networks and build a firm scientific basis in the field of network science. The work will include research on large social networks, with a focus on networks with mobile agents. An example of a mobile agent is someone who is interacting (e.g., communicating, observing, helping, distracting, interrupting, etc.) with others while moving around the environment.

My suspicion is that the real goal for the work is to exploit the data for military advantage, if possible. Any other benefits would be incidental. Of course, a fair chunk of the technology we enjoy today (for example, tv and the internet) was investigated by the military first.

I’ve mentioned carbon nanotubes and possible toxicology before. Specifically, some carbon nanotubes resemble asbestos fibers and pilot studies have suggested they may behave the same way when ingested by one means or another  into the body. There is a new confirmation of this hypothesis with a study where mice inhaled carbon nanotubes. From the news item on Nanowerk,

Using mice in an animal model study, the researchers set out to determine what happens when multi-walled carbon nanotubes are inhaled. Specifically, researchers wanted to determine whether the nanotubes would be able to reach the pleura, which is the tissue that lines the outside of the lungs and is affected by exposure to certain types of asbestos fibers which cause the cancer mesothelioma. The researchers used inhalation exposure and found that inhaled nanotubes do reach the pleura and cause health effects.

This was one exposure and the mice recovered after three months. More studies will be needed to determine the effects of repeated exposure. This study (Inhaled Carbon Nanotubes Reach the Sub-Pleural Tissue in Mice by Dr. James Bonner, Dr. Jessica Ryman-Rasmussen, Dr. Arnold Brody, et. al.) can be found in the Oct. 25, 2009 issue of Nature Nanotechnology.

On Friday (Oct. 23, 2009) I mentioned an essay by Chris Toumey on the forthcoming 50th anniversary of Richard Feynman’s seminal talk, There’s plenty of room at the bottom. Today I found a response to the essay by Eric Drexler.  From Drexler’s essay on Nanowerk,

Unfortunately, yesterday’s backward-looking guest article in Nanowerk reinforces the widespread but quite mistaken idea that my views are essentially the opposite of what I’ve stated above, and that those perverse ideas are also those of the Foresight Institute. I cannot speak for that organization, or vice versa, because I left it years ago. Contrary to what the article may suggest, I have no affiliation with the organization whatsoever. Regarding terminology, it is of course entirely appropriate to use the term “nanotechnology” to describe nanoscale technologies. The idea that there is a conflict between progress in the field and future applications of that progress is puzzling. This idea appears to stem from a strange episode that came to a head during the political push for the bill that established and funded the U.S. National Nanotechnology Initiative, an episode in which some leading science spokesmen quite properly rejected a collection of popular fantasies, but quite improperly attributed those fantasies to me. Reading claims by confused enthusiasts and the press that “Drexler says this” or “Drexler says that” is no substitute for reading my journal articles, or the technical analysis in my book, Nanosystems, and in my MIT dissertation). The failure of these leaders to do their homework has had substantial and lingering toxic effects.

(My own focus was on the ‘origin’ story for nanotechnology and not on Drexler’s theories.) If I understand the situation rightly, much of the controversy has its roots in Drexler’s popular book, Engines of Creation. It was written over 20 years ago and struck a note which reverberates to this day. The irony is that there are writers who’d trade places with Drexler in a nano second. Imagine having that kind of impact on society and culture (in the US primarily). The downside as Drexler has discovered is that the idea or story has taken on its own life. For a similar example, take Mary Shelley’s book where Frankenstein is not the monster’s name, it’s the scientist’s name. However, the character took its own life and name.