Tag Archives: Pixar

Smartphone as augmented reality system with software from Brown University

You need to see this,

Amazing, eh? The researchers are scheduled to present this work sometime this week at the ACM Symposium on User Interface Software and Technology (UIST) being held in New Orleans, US, from October 20-23, 2019.

Here’s more about ‘Portal-ble’ in an October 16, 2019 news item on ScienceDaily,

A new software system developed by Brown University [US] researchers turns cell phones into augmented reality portals, enabling users to place virtual building blocks, furniture and other objects into real-world backdrops, and use their hands to manipulate those objects as if they were really there.

The developers hope the new system, called Portal-ble, could be a tool for artists, designers, game developers and others to experiment with augmented reality (AR). The team will present the work later this month at the ACM Symposium on User Interface Software and Technology (UIST 2019) in New Orleans. The source code for Andriod is freely available for download on the researchers’ website, and iPhone code will follow soon.

“AR is going to be a great new mode of interaction,” said Jeff Huang, an assistant professor of computer science at Brown who developed the system with his students. “We wanted to make something that made AR portable so that people could use anywhere without any bulky headsets. We also wanted people to be able to interact with the virtual world in a natural way using their hands.”

An October 16, 2019 Brown University news release (also on EurekAlert), which originated the news item, provides more detail,

Huang said the idea for Portal-ble’s “hands-on” interaction grew out of some frustration with AR apps like Pokemon GO. AR apps use smartphones to place virtual objects (like Pokemon characters) into real-world scenes, but interacting with those objects requires users to swipe on the screen.

“Swiping just wasn’t a satisfying way of interacting,” Huang said. “In the real world, we interact with objects with our hands. We turn doorknobs, pick things up and throw things. So we thought manipulating virtual objects by hand would be much more powerful than swiping. That’s what’s different about Portal-ble.”

The platform makes use of a small infrared sensor mounted on the back of a phone. The sensor tracks the position of people’s hands in relation to virtual objects, enabling users to pick objects up, turn them, stack them or drop them. It also lets people use their hands to virtually “paint” onto real-world backdrops. As a demonstration, Huang and his students used the system to paint a virtual garden into a green space on Brown’s College Hill campus.

Huang says the main technical contribution of the work was developing the right accommodations and feedback tools to enable people to interact intuitively with virtual objects.

“It turns out that picking up a virtual object is really hard if you try to apply real-world physics,” Huang said. “People try to grab in the wrong place, or they put their fingers through the objects. So we had to observe how people tried to interact with these objects and then make our system able accommodate those tendencies.”

To do that, Huang enlisted students in a class he was teaching to come up with tasks they might want to do in the AR world — stacking a set of blocks, for example. The students then asked other people to try performing those tasks using Portal-ble, while recording what people were able to do and what they couldn’t. They could then adjust the system’s physics and user interface to make interactions more successful.

“It’s a little like what happens when people draw lines in Photoshop,” Huang said. “The lines people draw are never perfect, but the program can smooth them out and make them perfectly straight. Those were the kinds of accommodations we were trying to make with these virtual objects.”

The team also added sensory feedback — visual highlights on objects and phone vibrations — to make interactions easier. Huang said he was somewhat surprised that phone vibrations helped users to interact. Users feel the vibrations in the hand they’re using to hold the phone, not in the hand that’s actually grabbing for the virtual object. Still, Huang said, vibration feedback still helped users to more successfully interact with objects.

In follow-up studies, users reported that the accommodations and feedback used by the system made tasks significantly easier, less time-consuming and more satisfying.

Huang and his students plan to continue working with Portal-ble — expanding its object library, refining interactions and developing new activities. They also hope to streamline the system to make it run entirely on a phone. Currently the infrared sensor requires an infrared sensor and external compute stick for extra processing power.

Huang hopes people will download the freely available source code and try it for themselves. 
“We really just want to put this out there and see what people do with it,” he said. “The code is on our website for people to download, edit and build off of. It will be interesting to see what people do with it.

Co-authors on the research paper were Jing Qian, Jiaju Ma, Xiangyu Li, Benjamin Attal, Haoming Lai, James Tompkin and John Hughes. The work was supported by the National Science Foundation (IIS-1552663) and by a gift from Pixar.

You can find the conference paper here on jeffhuang.com,

Portal-ble: Intuitive Free-hand Manipulationin Unbounded Smartphone-based Augmented Reality by Jing Qian, Jiaju Ma, Xiangyu Li∗, Benjamin Attal, Haoming Lai,James Tompkin, John F. Hughes, Jeff Huang. Brown University, Providence RI, USA; Southeast University, Nanjing, China. Presented at ACM Symposium on User Interface Software and Technology (UIST) being held in New Orleans, US

This is the first time I’ve seen an augmented reality system that seems accessible, i.e., affordable. You can find out more on the Portal-ble ‘resource’ page where you’ll also find a link to the source code repository. The researchers, as noted in the news release, have an Android version available now with an iPhone version to be released in the future.

Simon Fraser University (Vancouver, Canada) and its president’s (Andrew Petter) dream colloquium: big data

They have a ‘big data’ start to 2016 planned for the President’s (Andrew Petter at Simon Fraser University [SFU] in Vancouver, Canada) Dream Colloquium according to a Jan. 5, 2016 news release,

Big data explained: SFU launches spring 2016 President’s Dream Colloquium

Speaker series tackles history, use and implications of collecting data

 

Canadians experience and interact with big data on a daily basis. Some interactions are as simple as buying coffee or as complex as filling out the Canadian government’s mandatory long-form census. But while big data may be one of the most important technological and social shifts in the past five years, many experts are still grappling with what to do with the massive amounts of information being gathered every day.

 

To help understand the implications of collecting, analyzing and using big data, Simon Fraser University is launching the President’s Dream Colloquium on Engaging Big Data on Tuesday, January 5.

 

“Big data affects all sectors of society from governments to businesses to institutions to everyday people,” says Peter Chow-White, SFU Associate Professor of Communication. “This colloquium brings together people from industry and scholars in computing and social sciences in a dialogue around one of the most important innovations of our time next to the Internet.”

 

This spring marks the first President’s Dream Colloquium where all faculty and guest lectures will be available to the public. The speaker series will give a historical overview of big data, specific case studies in how big data is used today and discuss what the implications are for this information’s usage in business, health and government in the future.

 

The series includes notable guest speakers such as managing director of Microsoft Research, Surajit Chaudhuri, and Tableau co-founder Pat Hanrahan.  

 

“Pat Hanrahan is a leader in a number of sectors and Tableau is a leader in accessing big data through visual analytics,” says Chow-White. “Rather than big data being available to only a small amount of professionals, Tableau makes it easier for everyday people to access and understand it in a visual way.”

 

The speaker series is free to attend with registration. Lectures will be webcast live and available on the President’s Dream Colloquium website.

 

FAST FACTS:

  • By 2020, over 1/3 of all data will live in or pass through the cloud.
  • Data production will be 44 times greater in 2020 than it was in 2009.
  • More than 70 percent of the digital universe is generated by individuals. But enterprises have responsibility for the storage, protection and management of 80 percent of that.

(Statistics provided by CSC)

 

WHO’S SPEAKING AT THE COLLOQUIUM:

 

The course features lectures from notable guest speakers including:

  • Sasha Issenberg, Author and Journalist
    Tuesday, January 12, 2016
  • Surajit ChaudhuriScientist and Managing Director of XCG (Microsoft Research)
    Tuesday, January 19, 2016
  • Pat Hanrahan, Professor at the Stanford Computer Graphics Laboratory, Cofounder and Chief Scientist of Tableau, Founding member of Pixar
    Wednesday, February 3, 2016
  • Sheelagh Carpendale, Professor of Computing Science University of Calgary, Canada Research Chair in Information Visualization
    Tuesday, February 23, 2016, 3:30pm
  • Colin HillCEO of GNS Healthcare
    Tuesday, March 8, 2016
  • Chad Skelton, Award-winning Data Journalist and Consultant
    Tuesday, March 22, 2016

Not to worry, even though the first talk with Sasha Issenberg and Mark Pickup (strangely, he’s [Pickup is an SFU professor of political science] not mentioned in the news release or on the event page) has taken place, a webcast is being posted to the event page here.

I watched the first event live (via a livestream webcast which I accessed by clicking on the link found on the Event’s Speaker’s page) and found it quite interesting although I’m not sure about asking Issenberg to speak extemporaneously. He rambled and offered more detail about things that don’t matter much to a Canadian audience. I couldn’t tell if part of the problem might lie with the fact that his ‘big data’ book (The Victory Lab: The Secret Science of Winning Campaigns) was published a while back and he’s since published one on medical tourism and is about to publish one on same sex marriages and the LGBTQ communities in the US. As someone else who moves from topic to topic, I know it’s an effort to ‘go back in time’ and to remember the details and to recapture the enthusiasm that made the piece interesting.  Also, he has yet to get the latest scoop on big data and politics in the US as embarking on the 2016 campaign trail won’t take place until sometime later in January.

So, thanks to Issenberg for managing to dredge up as much as he did. Happily, he did recognize that there are differences between Canada and the US and the type of election data that is gathered and other data that can accessed. He provided a capsule version of the data situation in the US where they can identify individuals and predict how they might vote, while Pickup focused on the Canadian scene. As one expects from Canadian political parties and Canadian agencies in general, no one really wants to share how much information they can actually access (yes, that’s true of the Liberals and the NDP [New Democrats] too). By contrast, political parties and strategists in the US quite openly shared information with Issenberg about where and how they get data.

Pickup made some interesting points about data and how more data does not lead to better predictions. There was one study done on psychologists which Pickup replicated with undergraduate political science students. The psychologists and the political science students in the two separate studies were given data and asked to predict behaviour. They were then given more data about the same individuals and asked again to predict behaviour. In all. there were four sessions where the subjects were given successively more data and asked to predict behaviour based on that data. You may have already guessed but prediction accuracy decreased each time more information was added. Conversely, the people making the predictions became more confident as their predictive accuracy declined. A little disconcerting, non?

Pickup made another point noting that it may be easier to use big data to predict voting behaviour in a two-party system such as they have in the US but a multi-party system such as we have in Canada offers more challenges.

So, it was a good beginning and I look forward to more in the coming weeks (President’s Dream Colloquium on Engaging Big Data). Remember if you can’t listen to the live session, just click through to the event’s speaker’s page where they have hopefully posted the webcast.

The next dream colloquium takes place Tuesday, Jan. 19, 2016,

Big Data since 1854

Dr. Surajit Chaudhuri, Scientist and Managing Director of XCG (Microsoft Research)
Standford University, PhD
Tuesday, January 19, 2016, 3:30–5 pm
IRMACS Theatre, ASB 10900, Burnaby campus [or by webcast[

Enjoy!