Tag Archives: Pompeii

Two bits about the brain: fiction affects your brain and the US’s BRAIN Initiative is soliciting grant submissions

As a writer I love to believe my words have a lasting impact and while this research is focused on fiction, something I write more rarely than nonfiction, hope springs eternal that one day nonfiction too will be proved as having an impact (in a good way) on the brain. From a Jan. 3, 2014 news release on EurekAlert (or you can read the Dec. 17, 2013 Emory University news release by Carol Clark),

Many people can recall reading at least one cherished story that they say changed their life. Now researchers at Emory University have detected what may be biological traces related to this feeling: Actual changes in the brain that linger, at least for a few days, after reading a novel.

“Stories shape our lives and in some cases help define a person,” says neuroscientist Gregory Berns, lead author of the study and the director of Emory’s Center for Neuropolicy. “We want to understand how stories get into your brain, and what they do to it.”

His co-authors included Kristina Blaine and Brandon Pye from the Center for Neuropolicy, and Michael Prietula from Emory’s Goizueta Business School.

Neurobiological research using functional magnetic resonance imaging (fMRI) has begun to identify brain networks associated with reading stories. Most previous studies have focused on the cognitive processes involved in short stories, while subjects are actually reading them while they are in the fMRI scanner.

All of the study subjects read the same novel, “Pompeii,” a 2003 thriller by Robert Harris that is based on the real-life eruption of Mount Vesuvius in ancient Italy.

“The story follows a protagonist, who is outside the city of Pompeii and notices steam and strange things happening around the volcano,” Berns says. “He tries to get back to Pompeii in time to save the woman he loves. Meanwhile, the volcano continues to bubble and nobody in the city recognizes the signs.”

The researchers chose the book due to its page-turning plot. “It depicts true events in a fictional and dramatic way,” Berns says. “It was important to us that the book had a strong narrative line.”

For the first five days, the participants came in each morning for a base-line fMRI scan of their brains in a resting state. Then they were fed nine sections of the novel, about 30 pages each, over a nine-day period. They were asked to read the assigned section in the evening, and come in the following morning. After taking a quiz to ensure they had finished the assigned reading, the participants underwent an fMRI scan of their brain in a non-reading, resting state. After completing all nine sections of the novel, the participants returned for five more mornings to undergo additional scans in a resting state.

The results showed heightened connectivity in the left temporal cortex, an area of the brain associated with receptivity for language, on the mornings following the reading assignments. “Even though the participants were not actually reading the novel while they were in the scanner, they retained this heightened connectivity,” Berns says. “We call that a ‘shadow activity,’ almost like a muscle memory.”

Heightened connectivity was also seen in the central sulcus of the brain, the primary sensory motor region of the brain. Neurons of this region have been associated with making representations of sensation for the body, a phenomenon known as grounded cognition. Just thinking about running, for instance, can activate the neurons associated with the physical act of running.

“The neural changes that we found associated with physical sensation and movement systems suggest that reading a novel can transport you into the body of the protagonist,” Berns says. “We already knew that good stories can put you in someone else’s shoes in a figurative sense. Now we’re seeing that something may also be happening biologically.”

The neural changes were not just immediate reactions, Berns says, since they persisted the morning after the readings, and for the five days after the participants completed the novel.

“It remains an open question how long these neural changes might last,” Berns says. “But the fact that we’re detecting them over a few days for a randomly assigned novel suggests that your favorite novels could certainly have a bigger and longer-lasting effect on the biology of your brain.”

Here’s a link to and a citation for the paper,

Short- and Long-Term Effects of a Novel on Connectivity in the Brain by Gregory S. Berns, Kristina Blaine, Michael J. Prietula, and Brandon E. Pye. Brain Connectivity. 2013, 3(6): 590-600. doi:10.1089/brain.2013.0166.

This is an open access paper where you’ll notice the participants cover a narrow range of ages (from the Materials and Methods section of the paper,

A total of 21 participants were studied. Two were excluded from the fMRI analyses: one for insufficient attendance, and the other for image abnormalities. Before the experiment, participants were screened for the presence of medical and psychiatric diagnoses, and none were taking medications. There were 12 female and 9 male participants between the ages of 19 and 27 (mean 21.5). Emory University’s Institutional Review Board approved all procedures, and all participants gave written informed consent.

It’s always good to remember that university research often draws from student populations and the question one might want to ask is whether or not those results will remain the same, more or less, throughout someone’s life span.In any event, I find this research intriguing and hope they follow this up.

Currently known as the BRAIN (Brain Research through Advancing Innovative Neurotechnologies), I first wrote about the project under its old name BAM (Brain Activity Map) in two postings, first in a March 4, 2013 posting featuring brain-to-brain communication and other brain-related tidbits, then again, in an April 2, 2013 posting featuring an announcement about its federal funding. Today (Jan. 6, 2014), I stumbled across some BRAIN funding opportunities for researchers, from the BRAIN Initiative funding opportunities webpage,

NIH released six funding opportunity announcements in support of the President’s BRAIN Initiative. Collectively, these opportunities focus on building a new arsenal of tools and technologies for helping scientists unlock the mysteries of the brain. NIH [US National Institutes of Health] plans to invest $40 million in Fiscal Year 2014 through these opportunities, contingent upon the submission of a sufficient number of scientifically meritorious applications.

The opportunities currently available are as follows:

  • Transformative Approaches for Cell-Type Classification in the Brain (U01) (RFA-MH-14-215) – aims to pilot classification strategies to generate a systematic inventory/cell census of cell types in the brain, integrating molecular identity of cell types with connectivity, morphology, and location. These pilot projects and methodologies should be designed to demonstrate their utility and scalability to ultimately complete a comprehensive cell census of the human brain.
    Contact Email: BRAIN-info-NIMH@mail.nih.gov
    Application Receipt: March 13, 2014
  • Development and Validation of Novel Tools to Analyze Cell-Specific and Circuit-Specific Processes in the Brain (U01) (RFA-MH-14-216) – aims to develop and validate novel tools that possess a high degree of cell-type and/or circuit-level specificity to facilitate the detailed analysis of complex circuits and provide insights into cellular interactions that underlie brain function. A particular emphasis is the development of new genetic and non-genetic tools for delivering genes, proteins and chemicals to cells of interest; new approaches are also expected to target specific cell types and or circuits in the nervous system with greater precision and sensitivity than currently established methods.
    Contact Email: BRAIN-info-NIMH@mail.nih.gov
    Application Receipt: March 13, 2014
  • New Technologies and Novel Approaches for Large-Scale Recording and Modulation in the Nervous System (U01) (RFA-NS-14-007) – focuses on development and proof-of-concept testing of new technologies and novel approaches for large scale recording and manipulation of neural activity, with cellular resolution, at multiple spatial and/or temporal scales, in any region and throughout the entire depth of the brain. The proposed research may be high risk, but if successful could profoundly change the course of neuroscience research.
    Contact Email: NINDS-Brain-Initiative@nih.gov
    Application Receipt: March 24, 2014
  • Optimization of Transformative Technologies for Large Scale Recording and Modulation in the Nervous System (U01) (RFA-NS-14-008) – aims to optimize existing and emerging technologies and approaches that have the potential to address major challenges associated with recording and manipulating neural activity. This FOA is intended for the iterative refinement of emergent technologies and approaches that have already demonstrated their transformative potential through initial proof-of-concept testing, and are appropriate for accelerated engineering development with an end-goal of broad dissemination and incorporation into regular neuroscience research.
    Contact Email: NINDS-Brain-Initiative@nih.gov
    Application Receipt: March 24, 2014
  • Integrated Approaches to Understanding Circuit Function in the Nervous System (U01) (RFA-NS-14-009) – focuses onexploratory studies that use new and emerging methods for large scale recording and manipulation to elucidate the contributions of dynamic circuit activity to a specific behavioral or neural system. Applications should propose teams of investigators that seek to cross boundaries of interdisciplinary collaboration, for integrated development of experimental, analytic and theoretical capabilities in preparation for a future competition for large-scale awards.
    Contact Email: NINDS-Brain-Initiative@nih.gov
    Application Receipt: March 24, 2014
  • Planning for Next Generation Human Brain Imaging (R24) (RFA-MH-14-217) – aims to create teams of imaging scientist together with other experts from a range of disciplines such as engineering, material sciences, nanotechnology and computer science, to plan for a new generation of non-invasive imaging techniques that would be used to understand human brain function. Incremental improvements to existing technologies will not be funded under this announcement.
    Contact Email: sgrant@nida.nih.gov
    Application Receipt: March 13, 2014

For the interested, in the near future there will be some informational conference calls regarding these opportunities,

Informational Conference Calls for Prospective Applicants

NIH will be hosting a series of informational conference calls to address technical questions regarding applications to each of the RFAs released under the BRAIN Initiative.   Information on dates and contacts for each of the conference calls is as follows:

January 10, 2014, 2:00-3:00 PM EST
RFA-MH-14-215, Transformative Approaches for Cell-Type Classification in the Brain

For call-in information, contact Andrea Beckel-Mitchener at BRAIN-info-NIMH@mail.nih.gov.

January 13, 2014, 2:00-3:00 PM EST
RFA-MH-14-216, Development and Validation of Novel Tools to Analyze Cell-Specific and Circuit-Specific Processes in the Brain

For call-in information, contact Michelle Freund at BRAIN-info-NIMH@mail.nih.gov.

January 15, 2014, 1:00-2:00 PM EST
RFA-MH-14-217, Planning for Next Generation Human Brain Imaging

For call-in information, contact Greg Farber at BRAIN-info-NIMH@mail.nih.gov.

February 4, 2014, 1:00-2:30 PM EST
RFA-NS-14-007, New Technologies and Novel Approaches for Large-Scale Recording and Modulation in the Nervous System
RFA-NS-14-008, Optimization of Transformative Technologies for Large Scale Recording and Modulation in the Nervous System
RFA-NS-14-009, Integrated Approaches to Understanding Circuit Function in the Nervous System

For call-in information, contact Karen David at NINDS-Brain-Initiative@nih.gov.
In addition to accessing the information provided in the upcoming conference calls, applicants are strongly encouraged to consult with the Scientific/Research Contacts listed in each of the RFAs to discuss the alignment of their proposed work with the goals of the RFA to which they intend to apply.

Good luck!

It’s kind of fascinating to see this much emphasis on brains what with the BRAIN Initiative in the US and the Human Brain Project in Europe (my Jan. 28, 2013 posting announcing the European Union’s winning Future and Emerging Technologies (FET) research projects, The prizes (1B Euros to be paid out over 10 years to each winner) had been won by the Human Brain FET project and the Graphene FET project, respectively