I love e-Life, the open access journal where its editors noted that a submitted synthetic biology and bioengineering report was replete with US and UK experts (along with a European or two) but no expert input from other parts of the world. In response the authors added ‘transatlantic’ to the title. It was a good decision since it was too late to add any new experts if the authors planned to have their paper published in the foreseeable future.
I’ve commented many times here when panels of experts include only Canadian, US, UK, and, sometimes, European or Commonwealth (Australia/New Zealand) experts that we need to broaden our perspectives and now I can add: or at least acknowledge (e.g. transatlantic) that the perspectives taken are reflective of a rather narrow range of countries.
Now getting to the report, here’s more from a November 21, 2017 University of Cambridge press release,
Human genome editing, 3D-printed replacement organs and artificial photosynthesis – the field of bioengineering offers great promise for tackling the major challenges that face our society. But as a new article out today highlights, these developments provide both opportunities and risks in the short and long term.
Rapid developments in the field of synthetic biology and its associated tools and methods, including more widely available gene editing techniques, have substantially increased our capabilities for bioengineering – the application of principles and techniques from engineering to biological systems, often with the goal of addressing ‘real-world’ problems.
In a feature article published in the open access journal eLife, an international team of experts led by Dr Bonnie Wintle and Dr Christian R. Boehm from the Centre for the Study of Existential Risk at the University of Cambridge, capture perspectives of industry, innovators, scholars, and the security community in the UK and US on what they view as the major emerging issues in the field.
Dr Wintle says: “The growth of the bio-based economy offers the promise of addressing global environmental and societal challenges, but as our paper shows, it can also present new kinds of challenges and risks. The sector needs to proceed with caution to ensure we can reap the benefits safely and securely.”
The report is intended as a summary and launching point for policy makers across a range of sectors to further explore those issues that may be relevant to them.
Among the issues highlighted by the report as being most relevant over the next five years are:
Artificial photosynthesis and carbon capture for producing biofuels
If technical hurdles can be overcome, such developments might contribute to the future adoption of carbon capture systems, and provide sustainable sources of commodity chemicals and fuel.
Enhanced photosynthesis for agricultural productivity
Synthetic biology may hold the key to increasing yields on currently farmed land – and hence helping address food security – by enhancing photosynthesis and reducing pre-harvest losses, as well as reducing post-harvest and post-consumer waste.
Synthetic gene drives
Gene drives promote the inheritance of preferred genetic traits throughout a species, for example to prevent malaria-transmitting mosquitoes from breeding. However, this technology raises questions about whether it may alter ecosystems [emphasis mine], potentially even creating niches where a new disease-carrying species or new disease organism may take hold.
Human genome editing
Genome engineering technologies such as CRISPR/Cas9 offer the possibility to improve human lifespans and health. However, their implementation poses major ethical dilemmas. It is feasible that individuals or states with the financial and technological means may elect to provide strategic advantages to future generations.
Defence agency research in biological engineering
The areas of synthetic biology in which some defence agencies invest raise the risk of ‘dual-use’. For example, one programme intends to use insects to disseminate engineered plant viruses that confer traits to the target plants they feed on, with the aim of protecting crops from potential plant pathogens – but such technologies could plausibly also be used by others to harm targets.
In the next five to ten years, the authors identified areas of interest including:
Regenerative medicine: 3D printing body parts and tissue engineering
While this technology will undoubtedly ease suffering caused by traumatic injuries and a myriad of illnesses, reversing the decay associated with age is still fraught with ethical, social and economic concerns. Healthcare systems would rapidly become overburdened by the cost of replenishing body parts of citizens as they age and could lead new socioeconomic classes, as only those who can pay for such care themselves can extend their healthy years.
Microbiome-based therapies
The human microbiome is implicated in a large number of human disorders, from Parkinson’s to colon cancer, as well as metabolic conditions such as obesity and type 2 diabetes. Synthetic biology approaches could greatly accelerate the development of more effective microbiota-based therapeutics. However, there is a risk that DNA from genetically engineered microbes may spread to other microbiota in the human microbiome or into the wider environment.
Intersection of information security and bio-automation
Advancements in automation technology combined with faster and more reliable engineering techniques have resulted in the emergence of robotic ‘cloud labs’ where digital information is transformed into DNA then expressed in some target organisms. This opens the possibility of new kinds of information security threats, which could include tampering with digital DNA sequences leading to the production of harmful organisms, and sabotaging vaccine and drug production through attacks on critical DNA sequence databases or equipment.
Over the longer term, issues identified include:
New makers disrupt pharmaceutical markets
Community bio-labs and entrepreneurial startups are customizing and sharing methods and tools for biological experiments and engineering. Combined with open business models and open source technologies, this could herald opportunities for manufacturing therapies tailored to regional diseases that multinational pharmaceutical companies might not find profitable. But this raises concerns around the potential disruption of existing manufacturing markets and raw material supply chains as well as fears about inadequate regulation, less rigorous product quality control and misuse.
Platform technologies to address emerging disease pandemics
Emerging infectious diseases—such as recent Ebola and Zika virus disease outbreaks—and potential biological weapons attacks require scalable, flexible diagnosis and treatment. New technologies could enable the rapid identification and development of vaccine candidates, and plant-based antibody production systems.
Shifting ownership models in biotechnology
The rise of off-patent, generic tools and the lowering of technical barriers for engineering biology has the potential to help those in low-resource settings, benefit from developing a sustainable bioeconomy based on local needs and priorities, particularly where new advances are made open for others to build on.
Dr Jenny Molloy comments: “One theme that emerged repeatedly was that of inequality of access to the technology and its benefits. The rise of open source, off-patent tools could enable widespread sharing of knowledge within the biological engineering field and increase access to benefits for those in developing countries.”
Professor Johnathan Napier from Rothamsted Research adds: “The challenges embodied in the Sustainable Development Goals will require all manner of ideas and innovations to deliver significant outcomes. In agriculture, we are on the cusp of new paradigms for how and what we grow, and where. Demonstrating the fairness and usefulness of such approaches is crucial to ensure public acceptance and also to delivering impact in a meaningful way.”
Dr Christian R. Boehm concludes: “As these technologies emerge and develop, we must ensure public trust and acceptance. People may be willing to accept some of the benefits, such as the shift in ownership away from big business and towards more open science, and the ability to address problems that disproportionately affect the developing world, such as food security and disease. But proceeding without the appropriate safety precautions and societal consensus—whatever the public health benefits—could damage the field for many years to come.”
The research was made possible by the Centre for the Study of Existential Risk, the Synthetic Biology Strategic Research Initiative (both at the University of Cambridge), and the Future of Humanity Institute (University of Oxford). It was based on a workshop co-funded by the Templeton World Charity Foundation and the European Research Council under the European Union’s Horizon 2020 research and innovation programme.
Here’s a link to and a citation for the paper,
A transatlantic perspective on 20 emerging issues in biological engineering by Bonnie C Wintle, Christian R Boehm, Catherine Rhodes, Jennifer C Molloy, Piers Millett, Laura Adam, Rainer Breitling, Rob Carlson, Rocco Casagrande, Malcolm Dando, Robert Doubleday, Eric Drexler, Brett Edwards, Tom Ellis, Nicholas G Evans, Richard Hammond, Jim Haseloff, Linda Kahl, Todd Kuiken, Benjamin R Lichman, Colette A Matthewman, Johnathan A Napier, Seán S ÓhÉigeartaigh, Nicola J Patron, Edward Perello, Philip Shapira, Joyce Tait, Eriko Takano, William J Sutherland. eLife; 14 Nov 2017; DOI: 10.7554/eLife.30247
This paper is open access and the editors have included their notes to the authors and the authors’ response.
You may have noticed that I highlighted a portion of the text concerning synthetic gene drives. Coincidentally I ran across a November 16, 2017 article by Ed Yong for The Atlantic where the topic is discussed within the context of a project in New Zealand, ‘Predator Free 2050’ (Note: A link has been removed),
Until the 13th century, the only land mammals in New Zealand were bats. In this furless world, local birds evolved a docile temperament. Many of them, like the iconic kiwi and the giant kakapo parrot, lost their powers of flight. Gentle and grounded, they were easy prey for the rats, dogs, cats, stoats, weasels, and possums that were later introduced by humans. Between them, these predators devour more than 26 million chicks and eggs every year. They have already driven a quarter of the nation’s unique birds to extinction.
Many species now persist only in offshore islands where rats and their ilk have been successfully eradicated, or in small mainland sites like Zealandia where they are encircled by predator-proof fences. The songs in those sanctuaries are echoes of the New Zealand that was.
But perhaps, they also represent the New Zealand that could be.
In recent years, many of the country’s conservationists and residents have rallied behind Predator-Free 2050, an extraordinarily ambitious plan to save the country’s birds by eradicating its invasive predators. Native birds of prey will be unharmed, but Predator-Free 2050’s research strategy, which is released today, spells doom for rats, possums, and stoats (a large weasel). They are to die, every last one of them. No country, anywhere in the world, has managed such a task in an area that big. The largest island ever cleared of rats, Australia’s Macquarie Island, is just 50 square miles in size. New Zealand is 2,000 times bigger. But, the country has committed to fulfilling its ecological moonshot within three decades.
…
In 2014, Kevin Esvelt, a biologist at MIT, drew a Venn diagram that troubles him to this day. In it, he and his colleagues laid out several possible uses for gene drives—a nascent technology for spreading designer genes through groups of wild animals. Typically, a given gene has a 50-50 chance of being passed to the next generation. But gene drives turn that coin toss into a guarantee, allowing traits to zoom through populations in just a few generations. There are a few natural examples, but with CRISPR, scientists can deliberately engineer such drives.
Suppose you have a population of rats, roughly half of which are brown, and the other half white. Now, imagine there is a gene that affects each rat’s color. It comes in two forms, one leading to brown fur, and the other leading to white fur. A male with two brown copies mates with a female with two white copies, and all their offspring inherit one of each. Those offspring breed themselves, and the brown and white genes continue cascading through the generations in a 50-50 split. This is the usual story of inheritance. But you can subvert it with CRISPR, by programming the brown gene to cut its counterpart and replace it with another copy of itself. Now, the rats’ children are all brown-furred, as are their grandchildren, and soon the whole population is brown.
Forget fur. The same technique could spread an antimalarial gene through a mosquito population, or drought-resistance through crop plants. The applications are vast, but so are the risks. In theory, gene drives spread so quickly and relentlessly that they could rewrite an entire wild population, and once released, they would be hard to contain. If the concept of modifying the genes of organisms is already distasteful to some, gene drives magnify that distaste across national, continental, and perhaps even global scales.
These excerpts don’t do justice to this thought-provoking article. If you have time, I recommend reading it in its entirety as it provides some insight into gene drives and, with some imagination on the reader’s part, the potential for the other technologies discussed in the report.
One last comment, I notice that Eric Drexler is cited as on the report’s authors. He’s familiar to me as K. Eric Drexler, the author of the book that popularized nanotechnology in the US and other countries, Engines of Creation (1986) .