Tag Archives: Project for Emerging Nanotechnologies

Cosmetics giant, L’Oréal, to 3D print skin

L’Oréal, according to a May 19, 2015 BBC (British Broadcasting Corporation) online news item, has partnered with Organovo, a 3D bioprinting startup, to begin producing skin,

French cosmetics firm L’Oreal is teaming up with bio-engineering start-up Organovo to 3D-print human skin.

It said the printed skin would be used in product tests.

Organovo has already made headlines with claims that it can 3D-print a human liver but this is its first tie-up with the cosmetics industry.

Experts said the science might be legitimate but questioned why a beauty firm would want to print skin. [emphasis mine]

L’Oreal currently grows skin samples from tissues donated by plastic surgery patients. It produces more than 100,000, 0.5 sq cm skin samples per year and grows nine varieties across all ages and ethnicities.

Its statement explaining the advantage of printing skin, offered little detail: “Our partnership will not only bring about new advanced in vitro methods for evaluating product safety and performance, but the potential for where this new field of technology and research can take us is boundless.”

The beauty and cosmetics industry has a major interest in technology, especially anything to do with the skin. I’m curious as to what kind of an expert wouldn’t realize that cosmetics companies test products on skin and might like to have a ready supply. Still, I have to admit to surprise when I first (2006) started researching nanotechnology;  L’Oréal at one point was the sixth largest nanotechnology patent holder in the US (see my Nanotech Mysteries Wiki page: Marketers put the buy in nano [scroll down to Penetration subhead]). In 2008 L’Oréal company representatives were set for a discussion on their nanotechnology efforts and the precautionary principle, which was to be hosted by the Wilson Center’s Project for Emerging Nanotechnologies (PEN). The company cancelled at a rather interesting time as I had noted in my June 19, 2008 posting. (scroll down about 40% of the way until you see mention of Dr. Andrew Maynard).

Back to 3D printing technology and cosmetics giants, a May 5, 2015 Organovo/L’Oréal press release provides more detail about the deal,

L’Oreal USA, the largest subsidiary of the world’s leading beauty company, has announced a partnership with 3-D bioprinting company Organovo Holdings, Inc. (NYSE MKT: ONVO) (“Organovo”).  Developed between L’Oreal’s U.S.-based global Technology Incubator and Organovo, the collaboration will leverage Organovo’s proprietary NovoGen Bioprinting Platform and L’Oreal’s expertise in skin engineering to develop 3-D printed skin tissue for product evaluation and other areas of advanced research.

This partnership marks the first-ever application of Organovo’s groundbreaking technology within the beauty industry.

“We developed our technology incubator to uncover disruptive innovations across industries that have the potential to transform the beauty business,” said Guive Balooch, Global Vice President of L’Oreal’s Technology Incubator.  “Organovo has broken new ground with 3-D bioprinting, an area that complements L’Oreal’s pioneering work in the research and application of reconstructed skin for the past 30 years. Our partnership will not only bring about new advanced in vitro methods for evaluating product safety and performance, but the potential for where this new field of technology and research can take us is boundless.”

Organovo’s 3D bioprinting enables the reproducible, automated creation of living human tissues that mimic the form and function of native tissues in the body.

“We are excited to be partnering with L’Oreal, whose leadership in the beauty industry is rooted in scientific innovation and a deep commitment to research and development,” said Keith Murphy, Chairman and Chief Executive Officer at Organovo. “This partnership is a great next step to expand the applications of Organovo’s 3-D bioprinting technology and to create value for both L’Oreal and Organovo by building new breakthroughs in skin modeling.”

I don’t have much information about Organovo here, certainly nothing about the supposed liver (how did I miss that?), but there is a Dec. 26, 2012 posting about its deal with software giant, Autodesk.

Safe use of nanotechnology for environmental remediation June 5 – 7, 2013 conference/workshop

The inaugural conference/national workshop on the safe use of nanotechnology for environmental remediation is being held at Southeastern Louisiana University from June 5 – 7, 2013. A Southeastern Louisiana University May 23, 2013 news release provides more detail,

An increasing number of hazardous waste disposal sites are using nanotechnology and nanomaterials in their environmental remediation efforts, leaving open questions about the safety of such techniques.

“While applications and results of nano-enabled strategies for environmental remediation are promising, there is still the challenge of ensuring such applications are both safe and sustainable,” said conference organizer Ephraim Massawe. “The federal government has established different projects coordinated by different agencies, called signature initiatives. We plan on generating information supportive of some of these federal initiatives.”

The event, “Nano-4_Rem_Anseers2013: Applications of Nanotechnolgoy for Safe and Sustainable Environmental Remediations,” [sic] is a cooperative endeavor involving the university and agencies and institutions, such as the U.S. Environmental Protection Agency (EPA), the National Institute of Safety and Health (NIOSH) and the Occupational Safety and Health Administration (OSHA). The Louisiana Board of Regents is providing partial financial support.

The news release (which can also be viewed as a May 24, 2013 news item on Azonano) goes on to provide details about the keynote speakers,

Four keynote speakers are slated to address the three-day conference, which will be held on the Southeastern campus. Speakers and topics include:

— Patrick O’Shaughnessy, professor of occupational and environmental health in the Department of Civil and Environmental Engineering at the University of Iowa, “Nanosafety: Current Issues and Guidance;”
— Dongye Zhao, Huff endowed professor of environmental engineering at Auburn University: “Application of Stabilized Nanoparticles for in situ Remediation of Contaminated Soil and Groundwater;”
— Souhail Al-Abed of the EPA Office of Research and Development, National Risk Management Research Laboratory in Cincinnati: “Nanotechnology and the Environment: an Overview of Sustainable and Safe Applications in Site Remediation.”

In addition, a representative of the National Nanotechnology Coordinating Office will speak at the workshop.

Massawe had this to add about federal initiatives (from the news release),

Massawe said at least 30 EPA Superfund sites across the nation are currently using nanomaterials in remediation operations.

I have written about Nano-4_Rem_aNssERs2013: Applications of Nanotechnology for Safe and Sustainable Environmental Remediations before in a Nov. 7, 2012 posting when it was first announced and where you will find links to some of my other posts on nanotechnology and environmental remediation. Rather than add links to yet a few my other postings on the topic, here’s a link to the Project for Emerging Nanotechnologies Nanoremediation Map. I’m not sure how exhaustive the listings are or how recent but it should give you some idea about the activities occurring in the US and around the world.

Women in Europe for a Common Future advises precautionary principle for manufacture nanomaterials

Another organization advises the precautionary principle when dealing with nanomaterials. This time it’s the Women in Europe for a Common Future (WECF) organization and they’ve just released a position paper. From the March 30, 2012 news item on Nanowerk,

Women in Europe for a Common Future, an international network of over 100 women’s, environmental and health organisations implementing projects in 40 countries and advocating globally for a healthy environment, has released a position paper on nanoparticles and nanotechnology: Nano – The great unknown (pdf).

WECF recognizes that nanotechnologies could bring long-term profits and overall societal benefits. However, in order to make an overall judgment, data is needed regarding the hazards, exposure, risks and ethical consequences for humans, the environment and our society as a whole.

Maybe I’m getting grumpy these days but It seems to me that the time for describing ‘nanotechnology as the latest buzzword’ has passed. Here’s the opening sentence from the position paper,

Nanotechnology, the latest buzzword in the global technology revolution, is the science of ‘small things’: the de­signing, manipulating and engineer­ing of materials at nanoscale. (p. 1)

Also on page 1 is a claim as to the number of nanotechnology-enabled products on the market,

The number of consumer products on the world market claiming to contain nanomaterials exceeded 1300 already by 2010, and there are probably more, as the actual presence of nanomaterials is dif­ficult to identify.

The source for the number of nano products is not cited although WECF does list the Project for Emerging Nanotechnologies (PEN) and its product inventory in the bibliography. PEN’s inventory has no oversight (PEN has always been quite frank about this); anyone can register a product and claim there are nanomaterials in it.

Further in the position paper, Canada and California are mentioned,

Other regulatory entities too are work­ing on developing the first laws that can address the concerns on nanomaterials. Canada and the state of California, for example, took the step of imposing mandated disclosure requirements on nanomaterial use and toxicity assess­ment. Canada’s law of January 2009 targets domestic companies and institu­tions that manufacture or buy more than 1 kilogram of nanomaterial per year. According to these new regulations, these entities must now reveal how much nanomaterial they use, how they use it, and what they know about its toxicity. (p. 3)

I’m not familiar enough with the situation in California to comment on it but I am somewhat puzzled by the description of a Canadian law targeting domestic companies and institutions that manufacture or buy more than 1 kilogram of nanomaterials per year. There was a one time only requirement to report on how much nanomaterial was being imported into Canada but, as far as I’m aware, there is no law or regulation which states that this must be done on an ongoing basis. (You can read more about the reporting scheme in my April 12, 2010 posting.) This statement was not cited and I can’t find anything in the bibliography that might be the source for this information.

My problem with this position paper is that I can’t trust any of the information because the little I am familiar with contradicts their statements and they don’t support those statements with sources that I can research.

Phyto and nano soil remediation (part 2: nano)

For Part 2, I’ve included part of my original introduction (sans the story about the neighbour’s soil and a picture of Joe Martin):

I’m pleased to repost a couple of pieces on soil remediation written by Joe Martin for the Mind the Science Gap (MTSG) blog.

I wrote about the MTSG blog in my Jan. 12, 2012 posting, which focussed on this University of Michigan project designed by Dr. Andrew Maynard for Master’s students in the university’s Public Health program. Very briefly here’s a description of Andrews and the program from the About page,

Mind the Science Gap is a science blog with a difference.  For ten weeks between January and April 2012, Masters of Public Health students from the University of Michigan will each be posting weekly articles as they learn how to translate complex science into something a broad audience can understand and appreciate.

Each week, ten students will take a recent scientific publication or emerging area of scientific interest, and write a post on it that is aimed at a non expert and non technical audience.  As the ten weeks progress, they will be encouraged to develop their own area of focus and their own style.

About the Instructor.  Andrew Maynard is Director of the University of Michigan Risk Science Center, and a Professor of Environmental Health Sciences in the School of Public Health.  He writes a regular blog on emerging technologies and societal implications at 2020science.org.

Here’s a bit more about Joe Martin,

I am a second year MPH student in Environmental Quality and Health, and after graduation from this program, I will pursue a Ph.D. in soil science.  My interests lie in soil science and chemistry, human health and how they interact, especially in regards to agricultural practice and productivity.

Here’s part 2: nano soil remediation or Joe’s Feb. 10, 2012 posting:

Last week I wrote about phytoremediation, and its potential to help us combat and undo soil contamination. But, like any good advanced society, we’re not pinning all our hopes on a single technique. A commenter, Maryse, alerted me to the existence of another promising set of techniques and technologies: nano-remediation.

For those who don’t know, nano-technology is a science which concerns itself with manipulating matter on a very small scale.  Nano-particles are commonly described as being between 100 nanometers (nm) to 1nm, though this is hardly a hard and fast rule. (For perspective, a nanometer is one one-millionth of a millimeter. If you aren’t inclined to the metric system, there are roughly four hundred million nanometers per inch.) On such micro-scales, the normal properties of compounds can be altered without changing the actual chemical composition. This allows for many new materials and products, (such as Ross Nanotechnology’s Neverwet Spray,) and for new applications for common materials, (using graphene to make the well-known carbon nanotubes).

When we apply the use of nano-scale particles to the remediation of contaminated soil, we are using nano-remediation. Unlike phytoremediation, this actually encompasses several different strategies which can be broadly classes as adsorptive or reactive. (Mueller and Nowack, 2010) The use of iron oxides to adsorb and immobilize metals and arsenic is not a new concept, but nano-particles offer new advantages. When I wrote “adsorb”, I was not making a spelling error; adsorption is a process by which particles adhere to the surface of another material, but do not penetrate into the interior. This makes surface area, not volume, the important characteristic. Nano-particles provide the maximum surface area-to-weight ratio, maximizing the adsorptive surfaces onto which these elements can attach. These adsorptive processes a very effective at binding and immobilizing metals and arsenic, but they do not allow for the removal of the toxic components. This may be less-than-ideal, but in places like Bangladesh, where arsenic contamination of groundwater poses major health risks, it may be just short of a miracle.

Reactive nano-remediation strategies focus on organic pollutants, and seem to work best for chlorinated solvents such as the infamous PCBs. Nano-scale zero valent iron, or nZVI, is the most widely explored and tested element used in these methods. The nZVI, or sometimes nZVI bound to various organic molecules like polysaccharides or protein chains, force redox reactions which rapidly disassemble the offending molecules.

There are other advantages to these nano-molecular techniques aside from the efficiency with which they bind or destroy the offending pollutants. In reactive remediation, the hyper reactivity nZVI causes it to react with other common and natural elements, such as dissolved oxygen in ground water, or nitrate and sulfate molecules, and in the process this inactivates the nZVI. While this forces multiple applications of the nano-particle (delivered in slurry form, through an injection well), it also prevents unused iron from drifting out of the treatment zone and becoming a pollutant itself. For adsorptive and reactive remediation techniques, that active nano-particles are injected into a well dug into or near the contaminated soil and/or groundwater. When injected as a slurry, the nano-particles can drift along with the flow of ground water, effectively creating an “anti-pollution” plume. In other formulations, the active mixture is made to flow less easily, effectively creating a barrier to filter spreading pollution or through which polluted ground water can be pulled.

There are health risks and concerns associated with the production and use of nano-particles, so some caution and validation is needed before its used everywhere. However, there has already been some successes with nano-remediation. The example of PCB remediation with nZVI is taken from great success the US Air Force has had. (PCB contamination is a legacy of their use as fire-suppressants). Beyond this, while nano-remediation has not been widely applied on surface or near-surface soils, it does enable remediation in deeper soils normally only accessed by “pump-and-treat” methods, (which are expensive and can have decades-long time frames). When coupled with other techniques, (like phytoremediation), it does fit nicely into an expanding tool bag, one with which we as a society and species can use to reverse our impact on the planet, (and our own health).

Further Reading: There was no way for me to represent the full sum of nano-remediation, nevertheless nanotechnology, in this post. It has such potential, and is developing at such a rate that the attention it deserves is better measured in blogs (or perhaps decablogs). So if you are interested in nano-technology or nano-remediation, click through some of the links below.

List of popular blogs: http://www.blogs.com/topten/10-popular-nanotechnology-blogs/, including some very important ones on the health risks of nano-technology.

A cool site listing sites currently using nano-remediation: http://www.nanotechproject.org/inventories/remediation_map/, and another post from the same site dealing with nano-remediation [PEN webcast on site remediation]: http://www.nanotechproject.org/events/archive/remediation/

An excellent peer-reviewed article: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799454/

Citation: Mueller C and Nowack B. Nanoparticles for Remediation: Solving Big Problems with Little Particles. 2010. Elements, Vol. 6. pp 395-400.

You can read about the other MTSG contributors and find links to their work here.

I have mentioned remediation before on the blog,

soil remediation and Professor Dennis Carroll at the University of Western Ontario in my Nov. 4, 2011 posting

remediation and a patent for Green-nano zero valent iron (G-nZVI) in my June 17, 2011 posting

groundwater remediation and nano zero valent iron (nZVI) at the University of California at Santa Barbara in my March 30, 2011 posting

site remediation and drywall in my Aug. 2, 2010 posting

remediation technologies and oil spills my May 6, 2010 posting

my March 4, 2010 posting  (scroll down about 1/2 way) which is a commentary on the Project for Emerging Nanotechnologies (PEN) webcast about site remediation in Joe’s list of resources

Thank you Joe for giving me permission to repost your pieces. For more of Joe’s pieces,  Read his posts here –>