Tag Archives: protective clothing

Protective clothing made of slime

Researchers at the University of Guelph have struck again! (See also my June 21, 2012 posting about their work on packaging for mangoes.) This time, it’s hagfish slime. From the Nov. 28, 2012 news item on ScienceDaily,

… If new scientific research pans out, people may be sporting shirts, blouses and other garments made from fibers modeled after those in the icky, super-strong slime from a creature called the hagfish. The study appears in ACS’ journal Biomacromolecules.

Lead author Atsuko Negishi, her supervisor Douglas S. Fudge and colleagues explain that petroleum is the raw material for making modern synthetics. Rising prices and the quest for more sustainable alternatives have led scientists to consider the possibilities of using protein-based raw materials, such as spider silk. Another candidate comes from the hagfish, an eel-like fish that produces a thick slime to protect itself against predators. A single Atlantic Hagfish can produce quarts of slime in seconds. It clogs the gills and may suffocate other fish. The slime consists of tens of thousands of remarkably strong threads, each 100 times thinner than a human hair. The scientists set out to investigate spinning spider-silk-like fibers from the proteins of these slime threads.

I gather the scientists were successful given the title of their scientific paper,

The Production of Fibers and Films from Solubilized Hagfish Slime Thread Proteins by Atsuko Negishi, Clare L. Armstrong, Laurent Kreplak, Maikel C. Rheinstadter, Loong-Tak Lim, Todd E. Gillis, and Douglas S. Fudge in Biomacromolecules, 2012, 13 (11), pp 3475–3482 DOI: 10.1021/bm3011837 Publication Date (Web): September 27, 2012 Copyright © 2012 American Chemical Society

Interesting to note that the American Chemical Society has a copyright notice for an article about research that was funded at least partially by taxpayers. From the ScienceDaily news item,

The authors acknowledge funding from the Advanced Foods and Materials Network and the Ontario Ministry of Economic Development and Innovation.

Good luck to the researchers at the University of Guelph in their pursuit of protective clothing made of hagfish slime to replace materials using petroleum products.

Canada Foundation for Innovation “World’s Best”?; Ping hoodie, clothing that networks socially; life protection clothing; getting spiders to weave building materials?; open access archive for nano papers

The headline for the news release on Marketwire (via the Canadian Science Policy site) is: Canada Foundation for Innovation(CFI) Practices is Called ‘World’s Best’. As it’s been a bit slow for news here I began wondering ‘which practices in which countries are being compared’? After reviewing the reports quickly, I can’t answer the question. There are no bibliographies in any of the three reports related to this KPMG study while the footnotes make reference only to other KPMG and Canadian studies. It was a bit of surprise, I was expecting to see reports from other countries and/or from international organizations and some insight into their analysis as comparing agencies in different countries can be complicated.

I’m not sure how they arrived at their conclusion although they provide some interesting data. From the Overall Evaluation report (p. 28 PDF, p. 24 print),

Exhibit [Table] 4.16 shows that, on average, there have been about 6.4 collaborations with end-users per PL/PU in the past year, three-quarters of which used the CFI projects as key resources, and about 10.2 collaborations per Department Head, about 70% of which using CFI projects in a significant way. For PLs/PUs, there are only small differences in use of CFI projects as a key resource by type of end-user, but Department Heads show more variation in the use of CFI project by type of user; it is unknown if this is significant.

Note that 64% of PL/PUs’ and 80% of Department Heads’ end-user collaborations, respectively, are with Canadian organizations; there is a significant international component (with OMS data suggesting that the CFI projects are a significant attractor for international organizations to collaborate [emphasis mine]).

It certainly seems laudable although I question whether you can conclude that the CFI is a significant international organization attractor by inference alone. Shouldn’t this be backed up with another instrument, such as a questionnaire for a survey/poll of the international organizations, asking why they are collaborating with Canadian scientists? I was not able to find any mention of such a survey or poll taking place.

From everything I hear, Canadians are excellent at academic science research and attracting researchers from around the world and because of our penchant for collaboration we (as they say) “punch above our weight.” I just wish this report did a better job of providing evidence for its assertions about the CFI’s ‘best practices’.

Ping hoodie

Thanks to Adrian Covert’s article on Fast Company, I found information about a prototype for a piece of wearable computing, the Ping hoodie. From Covert’s article,

The Ping clothing concept makes use of embedded electronics and haptics controlled by the Arduino Lilypad system, which transmits to your device (most likely a smartphone) using the Lylipad Xbee. This tech serves as the core interface between you and the information you need. If someone special is sending you a call or text, you can set the hoodie to vibrate in a specific manner, letting you know it’s them. Actions as simple as lifting or dropping the hood can be used to send status updates and messages on Facebook, with the potential to target certain groups of friends.

There’s more at Fast Company or you can check out electricfoxy where the designer, Jennifer Darmour has her site which is where I found this image,

Ping hoodie (wearable computing) designed by Jennifer Darmour at electricfoxy

Do go to Darmour’s site (although Fast Company offers a pretty good selection) if you want to see all the images including close ups of the fabric (don’t forget to scroll horizontally as well as vertically).

Clothing that protects your life

P2i, a company I’ve mentioned here before, has announced a ‘new’ revolutionary form of protective clothing. Actually, it sounds like an improvement rather than a revolutionary concept but maybe I’m getting jaded. From the news item on Nanowerk,

A revolutionary new generation of high-performance body armour, launched today, is lighter, more comfortable and more protective than any previous design, thanks to P2i’s liquid-repellent nano-coating technology.

The new G Tech Vest is a joint development between two world-class UK companies with very strong credentials for the life protection market: P2i, whose technology was originally developed to make soldiers’ protective clothing more effective against chemical attack; and Global Armour, which has been at the leading edge of product innovation in the armour industry for over 30 years.

The G Tech Vest employs brand-new lightweight materials, both in the physical armour itself (a closely-guarded trade secret) and the fabric that forms the armour into a garment. P2i’s technology reduces weight by avoiding the need for bulky durable water repellents and increases comfort by preserving the natural airflow and drape of the garment material.

I recently (April 15, 2010) made a comment about how modern soldiers are beginning to resemble medieval knights and this talk of armour certainly reinforces the impression.

Spiders weaving building materials?

Michael Berger at Nanowerk has written an in-depth article about spider silk and its possible application, amongst others, as a building material. He’s interviewed one of the authors (Markus J. Buehler) of a recent paper that lays out “… a framework for predicting the nanostructure of spider silk using atomistic principles.” More from the Spotlight article on Nanowerk,

In a paper published as the cover article in Applied Physics Letters on April 12, 2010 (“Atomistic model of the spider silk nanostructure”), [Sinan] Keten and Buehler demonstrate an innovative application of replica exchange molecular dynamics simulations on a key spider silk repeating sequence, resulting in the first atomistic level structure of spider silk.

More specifically, the MIT researchers found the formation of beta-sheet structures in poly-Ala rich parts of the structure, the presence of semi-extended GGX domains that form H-bonded 31 helix type structures and a complete lack of alpha-helical conformations in the molecular structures formed by the self-assembly of MaSp1 proteins. These results resolve controversies around the structure of the amorphous domains in silk, by illustrating for the first time that these semi-extended, well-oriented and more sparsely H-bonded structures that resemble 31 helices could be the molecular source of the large semi-crystalline fraction of silks and the so-called ‘pre-stretched’ configuration proposed for these domains.

Shy of reading the original research, which I likely wouldn’t understand easily, Berger’s article provides an excellent entry into the subject.

Open access archive for nano papers

My final item for today is about a project to give free access to papers on nanotechnology that they host and/or publish.  Hooray! It’s very frustrating to get stuck behind paywalls so I’m thrilled that there’s an agency offering free access. From the news item on Nanowerk,

The Nano Archive, the online open-access repository for nanoscience and nanotechnology, invites you to submit research papers to be published free online for users across the globe.

Submitted papers can include peer-reviewed articles, journal articles, review articles, conference and workshop papers, theses and dissertations, book chapters and sections, as well as multimedia and audio-visual materials. The Nano Archive also welcomes new, unpublished research results to be shared with the wider community.

The Nano Archive is part of the ICPC NanoNet project, funded by the EU under FP7. It brings together partners from the EU, Russia, India, China and Africa, and provides wider access to published nanoscience research and opportunities for collaboration between scientists in the EU and International Cooperation Partner Countries.

The Nano Archive currently hosts over 6000 papers. You can read more about the sponsoring agency, the ICPC (International Cooperation Partner Countries) NanoNet here. It has funding for four years and was started in 2008.